Linux Perf
event_analyzing_sample.py
Go to the documentation of this file.
1 # event_analyzing_sample.py: general event handler in python
2 # SPDX-License-Identifier: GPL-2.0
3 #
4 # Current perf report is already very powerful with the annotation integrated,
5 # and this script is not trying to be as powerful as perf report, but
6 # providing end user/developer a flexible way to analyze the events other
7 # than trace points.
8 #
9 # The 2 database related functions in this script just show how to gather
10 # the basic information, and users can modify and write their own functions
11 # according to their specific requirement.
12 #
13 # The first function "show_general_events" just does a basic grouping for all
14 # generic events with the help of sqlite, and the 2nd one "show_pebs_ll" is
15 # for a x86 HW PMU event: PEBS with load latency data.
16 #
17 
18 import os
19 import sys
20 import math
21 import struct
22 import sqlite3
23 
24 sys.path.append(os.environ['PERF_EXEC_PATH'] + \
25  '/scripts/python/Perf-Trace-Util/lib/Perf/Trace')
26 
27 from perf_trace_context import *
28 from EventClass import *
29 
30 #
31 # If the perf.data has a big number of samples, then the insert operation
32 # will be very time consuming (about 10+ minutes for 10000 samples) if the
33 # .db database is on disk. Move the .db file to RAM based FS to speedup
34 # the handling, which will cut the time down to several seconds.
35 #
36 con = sqlite3.connect("/dev/shm/perf.db")
37 con.isolation_level = None
38 
40  print "In trace_begin:\n"
41 
42  #
43  # Will create several tables at the start, pebs_ll is for PEBS data with
44  # load latency info, while gen_events is for general event.
45  #
46  con.execute("""
47  create table if not exists gen_events (
48  name text,
49  symbol text,
50  comm text,
51  dso text
52  );""")
53  con.execute("""
54  create table if not exists pebs_ll (
55  name text,
56  symbol text,
57  comm text,
58  dso text,
59  flags integer,
60  ip integer,
61  status integer,
62  dse integer,
63  dla integer,
64  lat integer
65  );""")
66 
67 #
68 # Create and insert event object to a database so that user could
69 # do more analysis with simple database commands.
70 #
71 def process_event(param_dict):
72  event_attr = param_dict["attr"]
73  sample = param_dict["sample"]
74  raw_buf = param_dict["raw_buf"]
75  comm = param_dict["comm"]
76  name = param_dict["ev_name"]
77 
78  # Symbol and dso info are not always resolved
79  if (param_dict.has_key("dso")):
80  dso = param_dict["dso"]
81  else:
82  dso = "Unknown_dso"
83 
84  if (param_dict.has_key("symbol")):
85  symbol = param_dict["symbol"]
86  else:
87  symbol = "Unknown_symbol"
88 
89  # Create the event object and insert it to the right table in database
90  event = create_event(name, comm, dso, symbol, raw_buf)
91  insert_db(event)
92 
93 def insert_db(event):
94  if event.ev_type == EVTYPE_GENERIC:
95  con.execute("insert into gen_events values(?, ?, ?, ?)",
96  (event.name, event.symbol, event.comm, event.dso))
97  elif event.ev_type == EVTYPE_PEBS_LL:
98  event.ip &= 0x7fffffffffffffff
99  event.dla &= 0x7fffffffffffffff
100  con.execute("insert into pebs_ll values (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)",
101  (event.name, event.symbol, event.comm, event.dso, event.flags,
102  event.ip, event.status, event.dse, event.dla, event.lat))
103 
104 def trace_end():
105  print "In trace_end:\n"
106  # We show the basic info for the 2 type of event classes
108  show_pebs_ll()
109  con.close()
110 
111 #
112 # As the event number may be very big, so we can't use linear way
113 # to show the histogram in real number, but use a log2 algorithm.
114 #
115 
116 def num2sym(num):
117  # Each number will have at least one '#'
118  snum = '#' * (int)(math.log(num, 2) + 1)
119  return snum
120 
122 
123  # Check the total record number in the table
124  count = con.execute("select count(*) from gen_events")
125  for t in count:
126  print "There is %d records in gen_events table" % t[0]
127  if t[0] == 0:
128  return
129 
130  print "Statistics about the general events grouped by thread/symbol/dso: \n"
131 
132  # Group by thread
133  commq = con.execute("select comm, count(comm) from gen_events group by comm order by -count(comm)")
134  print "\n%16s %8s %16s\n%s" % ("comm", "number", "histogram", "="*42)
135  for row in commq:
136  print "%16s %8d %s" % (row[0], row[1], num2sym(row[1]))
137 
138  # Group by symbol
139  print "\n%32s %8s %16s\n%s" % ("symbol", "number", "histogram", "="*58)
140  symbolq = con.execute("select symbol, count(symbol) from gen_events group by symbol order by -count(symbol)")
141  for row in symbolq:
142  print "%32s %8d %s" % (row[0], row[1], num2sym(row[1]))
143 
144  # Group by dso
145  print "\n%40s %8s %16s\n%s" % ("dso", "number", "histogram", "="*74)
146  dsoq = con.execute("select dso, count(dso) from gen_events group by dso order by -count(dso)")
147  for row in dsoq:
148  print "%40s %8d %s" % (row[0], row[1], num2sym(row[1]))
149 
150 #
151 # This function just shows the basic info, and we could do more with the
152 # data in the tables, like checking the function parameters when some
153 # big latency events happen.
154 #
156 
157  count = con.execute("select count(*) from pebs_ll")
158  for t in count:
159  print "There is %d records in pebs_ll table" % t[0]
160  if t[0] == 0:
161  return
162 
163  print "Statistics about the PEBS Load Latency events grouped by thread/symbol/dse/latency: \n"
164 
165  # Group by thread
166  commq = con.execute("select comm, count(comm) from pebs_ll group by comm order by -count(comm)")
167  print "\n%16s %8s %16s\n%s" % ("comm", "number", "histogram", "="*42)
168  for row in commq:
169  print "%16s %8d %s" % (row[0], row[1], num2sym(row[1]))
170 
171  # Group by symbol
172  print "\n%32s %8s %16s\n%s" % ("symbol", "number", "histogram", "="*58)
173  symbolq = con.execute("select symbol, count(symbol) from pebs_ll group by symbol order by -count(symbol)")
174  for row in symbolq:
175  print "%32s %8d %s" % (row[0], row[1], num2sym(row[1]))
176 
177  # Group by dse
178  dseq = con.execute("select dse, count(dse) from pebs_ll group by dse order by -count(dse)")
179  print "\n%32s %8s %16s\n%s" % ("dse", "number", "histogram", "="*58)
180  for row in dseq:
181  print "%32s %8d %s" % (row[0], row[1], num2sym(row[1]))
182 
183  # Group by latency
184  latq = con.execute("select lat, count(lat) from pebs_ll group by lat order by lat")
185  print "\n%32s %8s %16s\n%s" % ("latency", "number", "histogram", "="*58)
186  for row in latq:
187  print "%32s %8d %s" % (row[0], row[1], num2sym(row[1]))
188 
189 def trace_unhandled(event_name, context, event_fields_dict):
190  print ' '.join(['%s=%s'%(k,str(v))for k,v in sorted(event_fields_dict.items())])
def create_event(name, comm, dso, symbol, raw_buf)
Definition: EventClass.py:25
static int str(yyscan_t scanner, int token)
def trace_unhandled(event_name, context, event_fields_dict)