Linux Perf
builtin-sched.c
Go to the documentation of this file.
1 // SPDX-License-Identifier: GPL-2.0
2 #include "builtin.h"
3 #include "perf.h"
4 
5 #include "util/util.h"
6 #include "util/evlist.h"
7 #include "util/cache.h"
8 #include "util/evsel.h"
9 #include "util/symbol.h"
10 #include "util/thread.h"
11 #include "util/header.h"
12 #include "util/session.h"
13 #include "util/tool.h"
14 #include "util/cloexec.h"
15 #include "util/thread_map.h"
16 #include "util/color.h"
17 #include "util/stat.h"
18 #include "util/callchain.h"
19 #include "util/time-utils.h"
20 
21 #include <subcmd/parse-options.h>
22 #include "util/trace-event.h"
23 
24 #include "util/debug.h"
25 
26 #include <linux/kernel.h>
27 #include <linux/log2.h>
28 #include <sys/prctl.h>
29 #include <sys/resource.h>
30 #include <inttypes.h>
31 
32 #include <errno.h>
33 #include <semaphore.h>
34 #include <pthread.h>
35 #include <math.h>
36 #include <api/fs/fs.h>
37 #include <linux/time64.h>
38 
39 #include "sane_ctype.h"
40 
41 #define PR_SET_NAME 15 /* Set process name */
42 #define MAX_CPUS 4096
43 #define COMM_LEN 20
44 #define SYM_LEN 129
45 #define MAX_PID 1024000
46 
47 struct sched_atom;
48 
49 struct task_desc {
50  unsigned long nr;
51  unsigned long pid;
52  char comm[COMM_LEN];
53 
54  unsigned long nr_events;
55  unsigned long curr_event;
56  struct sched_atom **atoms;
57 
58  pthread_t thread;
59  sem_t sleep_sem;
60 
63 
64  u64 cpu_usage;
65 };
66 
72 };
73 
74 struct sched_atom {
75  enum sched_event_type type;
77  u64 timestamp;
78  u64 duration;
79  unsigned long nr;
80  sem_t *wait_sem;
81  struct task_desc *wakee;
82 };
83 
84 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
85 
86 /* task state bitmask, copied from include/linux/sched.h */
87 #define TASK_RUNNING 0
88 #define TASK_INTERRUPTIBLE 1
89 #define TASK_UNINTERRUPTIBLE 2
90 #define __TASK_STOPPED 4
91 #define __TASK_TRACED 8
92 /* in tsk->exit_state */
93 #define EXIT_DEAD 16
94 #define EXIT_ZOMBIE 32
95 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
96 /* in tsk->state again */
97 #define TASK_DEAD 64
98 #define TASK_WAKEKILL 128
99 #define TASK_WAKING 256
100 #define TASK_PARKED 512
101 
107 };
108 
109 struct work_atom {
110  struct list_head list;
115  u64 runtime;
116 };
117 
118 struct work_atoms {
119  struct list_head work_list;
120  struct thread *thread;
121  struct rb_node node;
122  u64 max_lat;
125  u64 nb_atoms;
128 };
129 
130 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
131 
132 struct perf_sched;
133 
135  int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
136  struct perf_sample *sample, struct machine *machine);
137 
138  int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
139  struct perf_sample *sample, struct machine *machine);
140 
141  int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
142  struct perf_sample *sample, struct machine *machine);
143 
144  /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
145  int (*fork_event)(struct perf_sched *sched, union perf_event *event,
146  struct machine *machine);
147 
148  int (*migrate_task_event)(struct perf_sched *sched,
149  struct perf_evsel *evsel,
150  struct perf_sample *sample,
151  struct machine *machine);
152 };
153 
154 #define COLOR_PIDS PERF_COLOR_BLUE
155 #define COLOR_CPUS PERF_COLOR_BG_RED
156 
158  DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
159  int *comp_cpus;
160  bool comp;
162  const char *color_pids_str;
164  const char *color_cpus_str;
165  struct cpu_map *cpus;
166  const char *cpus_str;
167 };
168 
169 struct perf_sched {
170  struct perf_tool tool;
171  const char *sort_order;
172  unsigned long nr_tasks;
174  struct task_desc **tasks;
176  pthread_mutex_t start_work_mutex;
177  pthread_mutex_t work_done_wait_mutex;
179 /*
180  * Track the current task - that way we can know whether there's any
181  * weird events, such as a task being switched away that is not current.
182  */
183  int max_cpu;
184  u32 curr_pid[MAX_CPUS];
185  struct thread *curr_thread[MAX_CPUS];
188  unsigned int replay_repeat;
189  unsigned long nr_run_events;
190  unsigned long nr_sleep_events;
191  unsigned long nr_wakeup_events;
192  unsigned long nr_sleep_corrections;
193  unsigned long nr_run_events_optimized;
194  unsigned long targetless_wakeups;
195  unsigned long multitarget_wakeups;
196  unsigned long nr_runs;
197  unsigned long nr_timestamps;
198  unsigned long nr_unordered_timestamps;
199  unsigned long nr_context_switch_bugs;
200  unsigned long nr_events;
201  unsigned long nr_lost_chunks;
202  unsigned long nr_lost_events;
212  u64 run_avg;
215  u64 cpu_last_switched[MAX_CPUS];
216  struct rb_root atom_root, sorted_atom_root, merged_atom_root;
217  struct list_head sort_list, cmp_pid;
218  bool force;
221 
222  /* options for timehist command */
223  bool summary;
225  bool idle_hist;
227  unsigned int max_stack;
230  bool show_next;
234  const char *time_str;
236  struct perf_time_interval hist_time;
237 };
238 
239 /* per thread run time data */
241  u64 last_time; /* time of previous sched in/out event */
242  u64 dt_run; /* run time */
243  u64 dt_sleep; /* time between CPU access by sleep (off cpu) */
244  u64 dt_iowait; /* time between CPU access by iowait (off cpu) */
245  u64 dt_preempt; /* time between CPU access by preempt (off cpu) */
246  u64 dt_delay; /* time between wakeup and sched-in */
247  u64 ready_to_run; /* time of wakeup */
248 
249  struct stats run_stats;
255 
257 
258  char shortname[3];
260 
262 };
263 
264 /* per event run time data */
266  u64 *last_time; /* time this event was last seen per cpu */
267  u32 ncpu; /* highest cpu slot allocated */
268 };
269 
270 /* per cpu idle time data */
272  struct thread_runtime tr;
274  struct rb_root sorted_root;
275  struct callchain_root callchain;
276  struct callchain_cursor cursor;
277 };
278 
279 /* track idle times per cpu */
280 static struct thread **idle_threads;
281 static int idle_max_cpu;
282 static char idle_comm[] = "<idle>";
283 
284 static u64 get_nsecs(void)
285 {
286  struct timespec ts;
287 
288  clock_gettime(CLOCK_MONOTONIC, &ts);
289 
290  return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
291 }
292 
293 static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
294 {
295  u64 T0 = get_nsecs(), T1;
296 
297  do {
298  T1 = get_nsecs();
299  } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
300 }
301 
302 static void sleep_nsecs(u64 nsecs)
303 {
304  struct timespec ts;
305 
306  ts.tv_nsec = nsecs % 999999999;
307  ts.tv_sec = nsecs / 999999999;
308 
309  nanosleep(&ts, NULL);
310 }
311 
313 {
314  u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
315  int i;
316 
317  for (i = 0; i < 10; i++) {
318  T0 = get_nsecs();
319  burn_nsecs(sched, 0);
320  T1 = get_nsecs();
321  delta = T1-T0;
322  min_delta = min(min_delta, delta);
323  }
324  sched->run_measurement_overhead = min_delta;
325 
326  printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
327 }
328 
330 {
331  u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
332  int i;
333 
334  for (i = 0; i < 10; i++) {
335  T0 = get_nsecs();
336  sleep_nsecs(10000);
337  T1 = get_nsecs();
338  delta = T1-T0;
339  min_delta = min(min_delta, delta);
340  }
341  min_delta -= 10000;
342  sched->sleep_measurement_overhead = min_delta;
343 
344  printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
345 }
346 
347 static struct sched_atom *
349 {
350  struct sched_atom *event = zalloc(sizeof(*event));
351  unsigned long idx = task->nr_events;
352  size_t size;
353 
354  event->timestamp = timestamp;
355  event->nr = idx;
356 
357  task->nr_events++;
358  size = sizeof(struct sched_atom *) * task->nr_events;
359  task->atoms = realloc(task->atoms, size);
360  BUG_ON(!task->atoms);
361 
362  task->atoms[idx] = event;
363 
364  return event;
365 }
366 
367 static struct sched_atom *last_event(struct task_desc *task)
368 {
369  if (!task->nr_events)
370  return NULL;
371 
372  return task->atoms[task->nr_events - 1];
373 }
374 
375 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
376  u64 timestamp, u64 duration)
377 {
378  struct sched_atom *event, *curr_event = last_event(task);
379 
380  /*
381  * optimize an existing RUN event by merging this one
382  * to it:
383  */
384  if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
385  sched->nr_run_events_optimized++;
386  curr_event->duration += duration;
387  return;
388  }
389 
390  event = get_new_event(task, timestamp);
391 
392  event->type = SCHED_EVENT_RUN;
393  event->duration = duration;
394 
395  sched->nr_run_events++;
396 }
397 
398 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
399  u64 timestamp, struct task_desc *wakee)
400 {
401  struct sched_atom *event, *wakee_event;
402 
403  event = get_new_event(task, timestamp);
404  event->type = SCHED_EVENT_WAKEUP;
405  event->wakee = wakee;
406 
407  wakee_event = last_event(wakee);
408  if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
409  sched->targetless_wakeups++;
410  return;
411  }
412  if (wakee_event->wait_sem) {
413  sched->multitarget_wakeups++;
414  return;
415  }
416 
417  wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
418  sem_init(wakee_event->wait_sem, 0, 0);
419  wakee_event->specific_wait = 1;
420  event->wait_sem = wakee_event->wait_sem;
421 
422  sched->nr_wakeup_events++;
423 }
424 
425 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
426  u64 timestamp, u64 task_state __maybe_unused)
427 {
428  struct sched_atom *event = get_new_event(task, timestamp);
429 
430  event->type = SCHED_EVENT_SLEEP;
431 
432  sched->nr_sleep_events++;
433 }
434 
435 static struct task_desc *register_pid(struct perf_sched *sched,
436  unsigned long pid, const char *comm)
437 {
438  struct task_desc *task;
439  static int pid_max;
440 
441  if (sched->pid_to_task == NULL) {
442  if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
443  pid_max = MAX_PID;
444  BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
445  }
446  if (pid >= (unsigned long)pid_max) {
447  BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
448  sizeof(struct task_desc *))) == NULL);
449  while (pid >= (unsigned long)pid_max)
450  sched->pid_to_task[pid_max++] = NULL;
451  }
452 
453  task = sched->pid_to_task[pid];
454 
455  if (task)
456  return task;
457 
458  task = zalloc(sizeof(*task));
459  task->pid = pid;
460  task->nr = sched->nr_tasks;
461  strcpy(task->comm, comm);
462  /*
463  * every task starts in sleeping state - this gets ignored
464  * if there's no wakeup pointing to this sleep state:
465  */
466  add_sched_event_sleep(sched, task, 0, 0);
467 
468  sched->pid_to_task[pid] = task;
469  sched->nr_tasks++;
470  sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
471  BUG_ON(!sched->tasks);
472  sched->tasks[task->nr] = task;
473 
474  if (verbose > 0)
475  printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
476 
477  return task;
478 }
479 
480 
481 static void print_task_traces(struct perf_sched *sched)
482 {
483  struct task_desc *task;
484  unsigned long i;
485 
486  for (i = 0; i < sched->nr_tasks; i++) {
487  task = sched->tasks[i];
488  printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
489  task->nr, task->comm, task->pid, task->nr_events);
490  }
491 }
492 
493 static void add_cross_task_wakeups(struct perf_sched *sched)
494 {
495  struct task_desc *task1, *task2;
496  unsigned long i, j;
497 
498  for (i = 0; i < sched->nr_tasks; i++) {
499  task1 = sched->tasks[i];
500  j = i + 1;
501  if (j == sched->nr_tasks)
502  j = 0;
503  task2 = sched->tasks[j];
504  add_sched_event_wakeup(sched, task1, 0, task2);
505  }
506 }
507 
508 static void perf_sched__process_event(struct perf_sched *sched,
509  struct sched_atom *atom)
510 {
511  int ret = 0;
512 
513  switch (atom->type) {
514  case SCHED_EVENT_RUN:
515  burn_nsecs(sched, atom->duration);
516  break;
517  case SCHED_EVENT_SLEEP:
518  if (atom->wait_sem)
519  ret = sem_wait(atom->wait_sem);
520  BUG_ON(ret);
521  break;
522  case SCHED_EVENT_WAKEUP:
523  if (atom->wait_sem)
524  ret = sem_post(atom->wait_sem);
525  BUG_ON(ret);
526  break;
528  break;
529  default:
530  BUG_ON(1);
531  }
532 }
533 
535 {
536  struct rusage ru;
537  u64 sum;
538  int err;
539 
540  err = getrusage(RUSAGE_SELF, &ru);
541  BUG_ON(err);
542 
543  sum = ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
544  sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
545 
546  return sum;
547 }
548 
549 static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
550 {
551  struct perf_event_attr attr;
552  char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
553  int fd;
554  struct rlimit limit;
555  bool need_privilege = false;
556 
557  memset(&attr, 0, sizeof(attr));
558 
559  attr.type = PERF_TYPE_SOFTWARE;
560  attr.config = PERF_COUNT_SW_TASK_CLOCK;
561 
562 force_again:
563  fd = sys_perf_event_open(&attr, 0, -1, -1,
565 
566  if (fd < 0) {
567  if (errno == EMFILE) {
568  if (sched->force) {
569  BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
570  limit.rlim_cur += sched->nr_tasks - cur_task;
571  if (limit.rlim_cur > limit.rlim_max) {
572  limit.rlim_max = limit.rlim_cur;
573  need_privilege = true;
574  }
575  if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
576  if (need_privilege && errno == EPERM)
577  strcpy(info, "Need privilege\n");
578  } else
579  goto force_again;
580  } else
581  strcpy(info, "Have a try with -f option\n");
582  }
583  pr_err("Error: sys_perf_event_open() syscall returned "
584  "with %d (%s)\n%s", fd,
585  str_error_r(errno, sbuf, sizeof(sbuf)), info);
586  exit(EXIT_FAILURE);
587  }
588  return fd;
589 }
590 
591 static u64 get_cpu_usage_nsec_self(int fd)
592 {
593  u64 runtime;
594  int ret;
595 
596  ret = read(fd, &runtime, sizeof(runtime));
597  BUG_ON(ret != sizeof(runtime));
598 
599  return runtime;
600 }
601 
603  struct task_desc *task;
604  struct perf_sched *sched;
605  int fd;
606 };
607 
608 static void *thread_func(void *ctx)
609 {
610  struct sched_thread_parms *parms = ctx;
611  struct task_desc *this_task = parms->task;
612  struct perf_sched *sched = parms->sched;
613  u64 cpu_usage_0, cpu_usage_1;
614  unsigned long i, ret;
615  char comm2[22];
616  int fd = parms->fd;
617 
618  zfree(&parms);
619 
620  sprintf(comm2, ":%s", this_task->comm);
621  prctl(PR_SET_NAME, comm2);
622  if (fd < 0)
623  return NULL;
624 again:
625  ret = sem_post(&this_task->ready_for_work);
626  BUG_ON(ret);
627  ret = pthread_mutex_lock(&sched->start_work_mutex);
628  BUG_ON(ret);
629  ret = pthread_mutex_unlock(&sched->start_work_mutex);
630  BUG_ON(ret);
631 
632  cpu_usage_0 = get_cpu_usage_nsec_self(fd);
633 
634  for (i = 0; i < this_task->nr_events; i++) {
635  this_task->curr_event = i;
636  perf_sched__process_event(sched, this_task->atoms[i]);
637  }
638 
639  cpu_usage_1 = get_cpu_usage_nsec_self(fd);
640  this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
641  ret = sem_post(&this_task->work_done_sem);
642  BUG_ON(ret);
643 
644  ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
645  BUG_ON(ret);
646  ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
647  BUG_ON(ret);
648 
649  goto again;
650 }
651 
652 static void create_tasks(struct perf_sched *sched)
653 {
654  struct task_desc *task;
655  pthread_attr_t attr;
656  unsigned long i;
657  int err;
658 
659  err = pthread_attr_init(&attr);
660  BUG_ON(err);
661  err = pthread_attr_setstacksize(&attr,
662  (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
663  BUG_ON(err);
664  err = pthread_mutex_lock(&sched->start_work_mutex);
665  BUG_ON(err);
666  err = pthread_mutex_lock(&sched->work_done_wait_mutex);
667  BUG_ON(err);
668  for (i = 0; i < sched->nr_tasks; i++) {
669  struct sched_thread_parms *parms = malloc(sizeof(*parms));
670  BUG_ON(parms == NULL);
671  parms->task = task = sched->tasks[i];
672  parms->sched = sched;
673  parms->fd = self_open_counters(sched, i);
674  sem_init(&task->sleep_sem, 0, 0);
675  sem_init(&task->ready_for_work, 0, 0);
676  sem_init(&task->work_done_sem, 0, 0);
677  task->curr_event = 0;
678  err = pthread_create(&task->thread, &attr, thread_func, parms);
679  BUG_ON(err);
680  }
681 }
682 
683 static void wait_for_tasks(struct perf_sched *sched)
684 {
685  u64 cpu_usage_0, cpu_usage_1;
686  struct task_desc *task;
687  unsigned long i, ret;
688 
689  sched->start_time = get_nsecs();
690  sched->cpu_usage = 0;
691  pthread_mutex_unlock(&sched->work_done_wait_mutex);
692 
693  for (i = 0; i < sched->nr_tasks; i++) {
694  task = sched->tasks[i];
695  ret = sem_wait(&task->ready_for_work);
696  BUG_ON(ret);
697  sem_init(&task->ready_for_work, 0, 0);
698  }
699  ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
700  BUG_ON(ret);
701 
702  cpu_usage_0 = get_cpu_usage_nsec_parent();
703 
704  pthread_mutex_unlock(&sched->start_work_mutex);
705 
706  for (i = 0; i < sched->nr_tasks; i++) {
707  task = sched->tasks[i];
708  ret = sem_wait(&task->work_done_sem);
709  BUG_ON(ret);
710  sem_init(&task->work_done_sem, 0, 0);
711  sched->cpu_usage += task->cpu_usage;
712  task->cpu_usage = 0;
713  }
714 
715  cpu_usage_1 = get_cpu_usage_nsec_parent();
716  if (!sched->runavg_cpu_usage)
717  sched->runavg_cpu_usage = sched->cpu_usage;
718  sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
719 
720  sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
721  if (!sched->runavg_parent_cpu_usage)
723  sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
724  sched->parent_cpu_usage)/sched->replay_repeat;
725 
726  ret = pthread_mutex_lock(&sched->start_work_mutex);
727  BUG_ON(ret);
728 
729  for (i = 0; i < sched->nr_tasks; i++) {
730  task = sched->tasks[i];
731  sem_init(&task->sleep_sem, 0, 0);
732  task->curr_event = 0;
733  }
734 }
735 
736 static void run_one_test(struct perf_sched *sched)
737 {
738  u64 T0, T1, delta, avg_delta, fluct;
739 
740  T0 = get_nsecs();
741  wait_for_tasks(sched);
742  T1 = get_nsecs();
743 
744  delta = T1 - T0;
745  sched->sum_runtime += delta;
746  sched->nr_runs++;
747 
748  avg_delta = sched->sum_runtime / sched->nr_runs;
749  if (delta < avg_delta)
750  fluct = avg_delta - delta;
751  else
752  fluct = delta - avg_delta;
753  sched->sum_fluct += fluct;
754  if (!sched->run_avg)
755  sched->run_avg = delta;
756  sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
757 
758  printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
759 
760  printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
761 
762  printf("cpu: %0.2f / %0.2f",
763  (double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
764 
765 #if 0
766  /*
767  * rusage statistics done by the parent, these are less
768  * accurate than the sched->sum_exec_runtime based statistics:
769  */
770  printf(" [%0.2f / %0.2f]",
771  (double)sched->parent_cpu_usage / NSEC_PER_MSEC,
772  (double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
773 #endif
774 
775  printf("\n");
776 
777  if (sched->nr_sleep_corrections)
778  printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
779  sched->nr_sleep_corrections = 0;
780 }
781 
782 static void test_calibrations(struct perf_sched *sched)
783 {
784  u64 T0, T1;
785 
786  T0 = get_nsecs();
787  burn_nsecs(sched, NSEC_PER_MSEC);
788  T1 = get_nsecs();
789 
790  printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
791 
792  T0 = get_nsecs();
793  sleep_nsecs(NSEC_PER_MSEC);
794  T1 = get_nsecs();
795 
796  printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
797 }
798 
799 static int
801  struct perf_evsel *evsel, struct perf_sample *sample,
802  struct machine *machine __maybe_unused)
803 {
804  const char *comm = perf_evsel__strval(evsel, sample, "comm");
805  const u32 pid = perf_evsel__intval(evsel, sample, "pid");
806  struct task_desc *waker, *wakee;
807 
808  if (verbose > 0) {
809  printf("sched_wakeup event %p\n", evsel);
810 
811  printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
812  }
813 
814  waker = register_pid(sched, sample->tid, "<unknown>");
815  wakee = register_pid(sched, pid, comm);
816 
817  add_sched_event_wakeup(sched, waker, sample->time, wakee);
818  return 0;
819 }
820 
821 static int replay_switch_event(struct perf_sched *sched,
822  struct perf_evsel *evsel,
823  struct perf_sample *sample,
824  struct machine *machine __maybe_unused)
825 {
826  const char *prev_comm = perf_evsel__strval(evsel, sample, "prev_comm"),
827  *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
828  const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
829  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
830  const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
831  struct task_desc *prev, __maybe_unused *next;
832  u64 timestamp0, timestamp = sample->time;
833  int cpu = sample->cpu;
834  s64 delta;
835 
836  if (verbose > 0)
837  printf("sched_switch event %p\n", evsel);
838 
839  if (cpu >= MAX_CPUS || cpu < 0)
840  return 0;
841 
842  timestamp0 = sched->cpu_last_switched[cpu];
843  if (timestamp0)
844  delta = timestamp - timestamp0;
845  else
846  delta = 0;
847 
848  if (delta < 0) {
849  pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
850  return -1;
851  }
852 
853  pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
854  prev_comm, prev_pid, next_comm, next_pid, delta);
855 
856  prev = register_pid(sched, prev_pid, prev_comm);
857  next = register_pid(sched, next_pid, next_comm);
858 
859  sched->cpu_last_switched[cpu] = timestamp;
860 
861  add_sched_event_run(sched, prev, timestamp, delta);
862  add_sched_event_sleep(sched, prev, timestamp, prev_state);
863 
864  return 0;
865 }
866 
867 static int replay_fork_event(struct perf_sched *sched,
868  union perf_event *event,
869  struct machine *machine)
870 {
871  struct thread *child, *parent;
872 
873  child = machine__findnew_thread(machine, event->fork.pid,
874  event->fork.tid);
875  parent = machine__findnew_thread(machine, event->fork.ppid,
876  event->fork.ptid);
877 
878  if (child == NULL || parent == NULL) {
879  pr_debug("thread does not exist on fork event: child %p, parent %p\n",
880  child, parent);
881  goto out_put;
882  }
883 
884  if (verbose > 0) {
885  printf("fork event\n");
886  printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
887  printf("... child: %s/%d\n", thread__comm_str(child), child->tid);
888  }
889 
890  register_pid(sched, parent->tid, thread__comm_str(parent));
891  register_pid(sched, child->tid, thread__comm_str(child));
892 out_put:
893  thread__put(child);
894  thread__put(parent);
895  return 0;
896 }
897 
898 struct sort_dimension {
899  const char *name;
900  sort_fn_t cmp;
901  struct list_head list;
902 };
903 
904 /*
905  * handle runtime stats saved per thread
906  */
908 {
909  struct thread_runtime *r;
910 
911  r = zalloc(sizeof(struct thread_runtime));
912  if (!r)
913  return NULL;
914 
915  init_stats(&r->run_stats);
916  thread__set_priv(thread, r);
917 
918  return r;
919 }
920 
922 {
923  struct thread_runtime *tr;
924 
925  tr = thread__priv(thread);
926  if (tr == NULL) {
927  tr = thread__init_runtime(thread);
928  if (tr == NULL)
929  pr_debug("Failed to malloc memory for runtime data.\n");
930  }
931 
932  return tr;
933 }
934 
935 static int
936 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
937 {
938  struct sort_dimension *sort;
939  int ret = 0;
940 
941  BUG_ON(list_empty(list));
942 
943  list_for_each_entry(sort, list, list) {
944  ret = sort->cmp(l, r);
945  if (ret)
946  return ret;
947  }
948 
949  return ret;
950 }
951 
952 static struct work_atoms *
953 thread_atoms_search(struct rb_root *root, struct thread *thread,
954  struct list_head *sort_list)
955 {
956  struct rb_node *node = root->rb_node;
957  struct work_atoms key = { .thread = thread };
958 
959  while (node) {
960  struct work_atoms *atoms;
961  int cmp;
962 
963  atoms = container_of(node, struct work_atoms, node);
964 
965  cmp = thread_lat_cmp(sort_list, &key, atoms);
966  if (cmp > 0)
967  node = node->rb_left;
968  else if (cmp < 0)
969  node = node->rb_right;
970  else {
971  BUG_ON(thread != atoms->thread);
972  return atoms;
973  }
974  }
975  return NULL;
976 }
977 
978 static void
979 __thread_latency_insert(struct rb_root *root, struct work_atoms *data,
980  struct list_head *sort_list)
981 {
982  struct rb_node **new = &(root->rb_node), *parent = NULL;
983 
984  while (*new) {
985  struct work_atoms *this;
986  int cmp;
987 
988  this = container_of(*new, struct work_atoms, node);
989  parent = *new;
990 
991  cmp = thread_lat_cmp(sort_list, data, this);
992 
993  if (cmp > 0)
994  new = &((*new)->rb_left);
995  else
996  new = &((*new)->rb_right);
997  }
998 
999  rb_link_node(&data->node, parent, new);
1000  rb_insert_color(&data->node, root);
1001 }
1002 
1003 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1004 {
1005  struct work_atoms *atoms = zalloc(sizeof(*atoms));
1006  if (!atoms) {
1007  pr_err("No memory at %s\n", __func__);
1008  return -1;
1009  }
1010 
1011  atoms->thread = thread__get(thread);
1012  INIT_LIST_HEAD(&atoms->work_list);
1013  __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1014  return 0;
1015 }
1016 
1017 static char sched_out_state(u64 prev_state)
1018 {
1019  const char *str = TASK_STATE_TO_CHAR_STR;
1020 
1021  return str[prev_state];
1022 }
1023 
1024 static int
1026  char run_state,
1027  u64 timestamp)
1028 {
1029  struct work_atom *atom = zalloc(sizeof(*atom));
1030  if (!atom) {
1031  pr_err("Non memory at %s", __func__);
1032  return -1;
1033  }
1034 
1035  atom->sched_out_time = timestamp;
1036 
1037  if (run_state == 'R') {
1038  atom->state = THREAD_WAIT_CPU;
1039  atom->wake_up_time = atom->sched_out_time;
1040  }
1041 
1042  list_add_tail(&atom->list, &atoms->work_list);
1043  return 0;
1044 }
1045 
1046 static void
1048  u64 timestamp __maybe_unused)
1049 {
1050  struct work_atom *atom;
1051 
1052  BUG_ON(list_empty(&atoms->work_list));
1053 
1054  atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1055 
1056  atom->runtime += delta;
1057  atoms->total_runtime += delta;
1058 }
1059 
1060 static void
1061 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1062 {
1063  struct work_atom *atom;
1064  u64 delta;
1065 
1066  if (list_empty(&atoms->work_list))
1067  return;
1068 
1069  atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1070 
1071  if (atom->state != THREAD_WAIT_CPU)
1072  return;
1073 
1074  if (timestamp < atom->wake_up_time) {
1075  atom->state = THREAD_IGNORE;
1076  return;
1077  }
1078 
1079  atom->state = THREAD_SCHED_IN;
1080  atom->sched_in_time = timestamp;
1081 
1082  delta = atom->sched_in_time - atom->wake_up_time;
1083  atoms->total_lat += delta;
1084  if (delta > atoms->max_lat) {
1085  atoms->max_lat = delta;
1086  atoms->max_lat_at = timestamp;
1087  }
1088  atoms->nb_atoms++;
1089 }
1090 
1091 static int latency_switch_event(struct perf_sched *sched,
1092  struct perf_evsel *evsel,
1093  struct perf_sample *sample,
1094  struct machine *machine)
1095 {
1096  const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1097  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1098  const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
1099  struct work_atoms *out_events, *in_events;
1100  struct thread *sched_out, *sched_in;
1101  u64 timestamp0, timestamp = sample->time;
1102  int cpu = sample->cpu, err = -1;
1103  s64 delta;
1104 
1105  BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1106 
1107  timestamp0 = sched->cpu_last_switched[cpu];
1108  sched->cpu_last_switched[cpu] = timestamp;
1109  if (timestamp0)
1110  delta = timestamp - timestamp0;
1111  else
1112  delta = 0;
1113 
1114  if (delta < 0) {
1115  pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1116  return -1;
1117  }
1118 
1119  sched_out = machine__findnew_thread(machine, -1, prev_pid);
1120  sched_in = machine__findnew_thread(machine, -1, next_pid);
1121  if (sched_out == NULL || sched_in == NULL)
1122  goto out_put;
1123 
1124  out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1125  if (!out_events) {
1126  if (thread_atoms_insert(sched, sched_out))
1127  goto out_put;
1128  out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1129  if (!out_events) {
1130  pr_err("out-event: Internal tree error");
1131  goto out_put;
1132  }
1133  }
1134  if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1135  return -1;
1136 
1137  in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1138  if (!in_events) {
1139  if (thread_atoms_insert(sched, sched_in))
1140  goto out_put;
1141  in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1142  if (!in_events) {
1143  pr_err("in-event: Internal tree error");
1144  goto out_put;
1145  }
1146  /*
1147  * Take came in we have not heard about yet,
1148  * add in an initial atom in runnable state:
1149  */
1150  if (add_sched_out_event(in_events, 'R', timestamp))
1151  goto out_put;
1152  }
1153  add_sched_in_event(in_events, timestamp);
1154  err = 0;
1155 out_put:
1156  thread__put(sched_out);
1157  thread__put(sched_in);
1158  return err;
1159 }
1160 
1161 static int latency_runtime_event(struct perf_sched *sched,
1162  struct perf_evsel *evsel,
1163  struct perf_sample *sample,
1164  struct machine *machine)
1165 {
1166  const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1167  const u64 runtime = perf_evsel__intval(evsel, sample, "runtime");
1168  struct thread *thread = machine__findnew_thread(machine, -1, pid);
1169  struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1170  u64 timestamp = sample->time;
1171  int cpu = sample->cpu, err = -1;
1172 
1173  if (thread == NULL)
1174  return -1;
1175 
1176  BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1177  if (!atoms) {
1178  if (thread_atoms_insert(sched, thread))
1179  goto out_put;
1180  atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1181  if (!atoms) {
1182  pr_err("in-event: Internal tree error");
1183  goto out_put;
1184  }
1185  if (add_sched_out_event(atoms, 'R', timestamp))
1186  goto out_put;
1187  }
1188 
1189  add_runtime_event(atoms, runtime, timestamp);
1190  err = 0;
1191 out_put:
1192  thread__put(thread);
1193  return err;
1194 }
1195 
1196 static int latency_wakeup_event(struct perf_sched *sched,
1197  struct perf_evsel *evsel,
1198  struct perf_sample *sample,
1199  struct machine *machine)
1200 {
1201  const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1202  struct work_atoms *atoms;
1203  struct work_atom *atom;
1204  struct thread *wakee;
1205  u64 timestamp = sample->time;
1206  int err = -1;
1207 
1208  wakee = machine__findnew_thread(machine, -1, pid);
1209  if (wakee == NULL)
1210  return -1;
1211  atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1212  if (!atoms) {
1213  if (thread_atoms_insert(sched, wakee))
1214  goto out_put;
1215  atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1216  if (!atoms) {
1217  pr_err("wakeup-event: Internal tree error");
1218  goto out_put;
1219  }
1220  if (add_sched_out_event(atoms, 'S', timestamp))
1221  goto out_put;
1222  }
1223 
1224  BUG_ON(list_empty(&atoms->work_list));
1225 
1226  atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1227 
1228  /*
1229  * As we do not guarantee the wakeup event happens when
1230  * task is out of run queue, also may happen when task is
1231  * on run queue and wakeup only change ->state to TASK_RUNNING,
1232  * then we should not set the ->wake_up_time when wake up a
1233  * task which is on run queue.
1234  *
1235  * You WILL be missing events if you've recorded only
1236  * one CPU, or are only looking at only one, so don't
1237  * skip in this case.
1238  */
1239  if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1240  goto out_ok;
1241 
1242  sched->nr_timestamps++;
1243  if (atom->sched_out_time > timestamp) {
1244  sched->nr_unordered_timestamps++;
1245  goto out_ok;
1246  }
1247 
1248  atom->state = THREAD_WAIT_CPU;
1249  atom->wake_up_time = timestamp;
1250 out_ok:
1251  err = 0;
1252 out_put:
1253  thread__put(wakee);
1254  return err;
1255 }
1256 
1257 static int latency_migrate_task_event(struct perf_sched *sched,
1258  struct perf_evsel *evsel,
1259  struct perf_sample *sample,
1260  struct machine *machine)
1261 {
1262  const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1263  u64 timestamp = sample->time;
1264  struct work_atoms *atoms;
1265  struct work_atom *atom;
1266  struct thread *migrant;
1267  int err = -1;
1268 
1269  /*
1270  * Only need to worry about migration when profiling one CPU.
1271  */
1272  if (sched->profile_cpu == -1)
1273  return 0;
1274 
1275  migrant = machine__findnew_thread(machine, -1, pid);
1276  if (migrant == NULL)
1277  return -1;
1278  atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1279  if (!atoms) {
1280  if (thread_atoms_insert(sched, migrant))
1281  goto out_put;
1282  register_pid(sched, migrant->tid, thread__comm_str(migrant));
1283  atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1284  if (!atoms) {
1285  pr_err("migration-event: Internal tree error");
1286  goto out_put;
1287  }
1288  if (add_sched_out_event(atoms, 'R', timestamp))
1289  goto out_put;
1290  }
1291 
1292  BUG_ON(list_empty(&atoms->work_list));
1293 
1294  atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1295  atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1296 
1297  sched->nr_timestamps++;
1298 
1299  if (atom->sched_out_time > timestamp)
1300  sched->nr_unordered_timestamps++;
1301  err = 0;
1302 out_put:
1303  thread__put(migrant);
1304  return err;
1305 }
1306 
1307 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1308 {
1309  int i;
1310  int ret;
1311  u64 avg;
1312  char max_lat_at[32];
1313 
1314  if (!work_list->nb_atoms)
1315  return;
1316  /*
1317  * Ignore idle threads:
1318  */
1319  if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1320  return;
1321 
1322  sched->all_runtime += work_list->total_runtime;
1323  sched->all_count += work_list->nb_atoms;
1324 
1325  if (work_list->num_merged > 1)
1326  ret = printf(" %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
1327  else
1328  ret = printf(" %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1329 
1330  for (i = 0; i < 24 - ret; i++)
1331  printf(" ");
1332 
1333  avg = work_list->total_lat / work_list->nb_atoms;
1334  timestamp__scnprintf_usec(work_list->max_lat_at, max_lat_at, sizeof(max_lat_at));
1335 
1336  printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13s s\n",
1337  (double)work_list->total_runtime / NSEC_PER_MSEC,
1338  work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1339  (double)work_list->max_lat / NSEC_PER_MSEC,
1340  max_lat_at);
1341 }
1342 
1343 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1344 {
1345  if (l->thread == r->thread)
1346  return 0;
1347  if (l->thread->tid < r->thread->tid)
1348  return -1;
1349  if (l->thread->tid > r->thread->tid)
1350  return 1;
1351  return (int)(l->thread - r->thread);
1352 }
1353 
1354 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1355 {
1356  u64 avgl, avgr;
1357 
1358  if (!l->nb_atoms)
1359  return -1;
1360 
1361  if (!r->nb_atoms)
1362  return 1;
1363 
1364  avgl = l->total_lat / l->nb_atoms;
1365  avgr = r->total_lat / r->nb_atoms;
1366 
1367  if (avgl < avgr)
1368  return -1;
1369  if (avgl > avgr)
1370  return 1;
1371 
1372  return 0;
1373 }
1374 
1375 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1376 {
1377  if (l->max_lat < r->max_lat)
1378  return -1;
1379  if (l->max_lat > r->max_lat)
1380  return 1;
1381 
1382  return 0;
1383 }
1384 
1385 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1386 {
1387  if (l->nb_atoms < r->nb_atoms)
1388  return -1;
1389  if (l->nb_atoms > r->nb_atoms)
1390  return 1;
1391 
1392  return 0;
1393 }
1394 
1395 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1396 {
1397  if (l->total_runtime < r->total_runtime)
1398  return -1;
1399  if (l->total_runtime > r->total_runtime)
1400  return 1;
1401 
1402  return 0;
1403 }
1404 
1405 static int sort_dimension__add(const char *tok, struct list_head *list)
1406 {
1407  size_t i;
1408  static struct sort_dimension avg_sort_dimension = {
1409  .name = "avg",
1410  .cmp = avg_cmp,
1411  };
1412  static struct sort_dimension max_sort_dimension = {
1413  .name = "max",
1414  .cmp = max_cmp,
1415  };
1416  static struct sort_dimension pid_sort_dimension = {
1417  .name = "pid",
1418  .cmp = pid_cmp,
1419  };
1420  static struct sort_dimension runtime_sort_dimension = {
1421  .name = "runtime",
1422  .cmp = runtime_cmp,
1423  };
1424  static struct sort_dimension switch_sort_dimension = {
1425  .name = "switch",
1426  .cmp = switch_cmp,
1427  };
1428  struct sort_dimension *available_sorts[] = {
1429  &pid_sort_dimension,
1430  &avg_sort_dimension,
1431  &max_sort_dimension,
1432  &switch_sort_dimension,
1433  &runtime_sort_dimension,
1434  };
1435 
1436  for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1437  if (!strcmp(available_sorts[i]->name, tok)) {
1438  list_add_tail(&available_sorts[i]->list, list);
1439 
1440  return 0;
1441  }
1442  }
1443 
1444  return -1;
1445 }
1446 
1447 static void perf_sched__sort_lat(struct perf_sched *sched)
1448 {
1449  struct rb_node *node;
1450  struct rb_root *root = &sched->atom_root;
1451 again:
1452  for (;;) {
1453  struct work_atoms *data;
1454  node = rb_first(root);
1455  if (!node)
1456  break;
1457 
1458  rb_erase(node, root);
1459  data = rb_entry(node, struct work_atoms, node);
1460  __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1461  }
1462  if (root == &sched->atom_root) {
1463  root = &sched->merged_atom_root;
1464  goto again;
1465  }
1466 }
1467 
1469  struct perf_evsel *evsel,
1470  struct perf_sample *sample,
1471  struct machine *machine)
1472 {
1473  struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1474 
1475  if (sched->tp_handler->wakeup_event)
1476  return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1477 
1478  return 0;
1479 }
1480 
1481 union map_priv {
1482  void *ptr;
1483  bool color;
1484 };
1485 
1486 static bool thread__has_color(struct thread *thread)
1487 {
1488  union map_priv priv = {
1489  .ptr = thread__priv(thread),
1490  };
1491 
1492  return priv.color;
1493 }
1494 
1495 static struct thread*
1496 map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1497 {
1498  struct thread *thread = machine__findnew_thread(machine, pid, tid);
1499  union map_priv priv = {
1500  .color = false,
1501  };
1502 
1503  if (!sched->map.color_pids || !thread || thread__priv(thread))
1504  return thread;
1505 
1506  if (thread_map__has(sched->map.color_pids, tid))
1507  priv.color = true;
1508 
1509  thread__set_priv(thread, priv.ptr);
1510  return thread;
1511 }
1512 
1513 static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
1514  struct perf_sample *sample, struct machine *machine)
1515 {
1516  const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1517  struct thread *sched_in;
1518  struct thread_runtime *tr;
1519  int new_shortname;
1520  u64 timestamp0, timestamp = sample->time;
1521  s64 delta;
1522  int i, this_cpu = sample->cpu;
1523  int cpus_nr;
1524  bool new_cpu = false;
1525  const char *color = PERF_COLOR_NORMAL;
1526  char stimestamp[32];
1527 
1528  BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1529 
1530  if (this_cpu > sched->max_cpu)
1531  sched->max_cpu = this_cpu;
1532 
1533  if (sched->map.comp) {
1534  cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1535  if (!test_and_set_bit(this_cpu, sched->map.comp_cpus_mask)) {
1536  sched->map.comp_cpus[cpus_nr++] = this_cpu;
1537  new_cpu = true;
1538  }
1539  } else
1540  cpus_nr = sched->max_cpu;
1541 
1542  timestamp0 = sched->cpu_last_switched[this_cpu];
1543  sched->cpu_last_switched[this_cpu] = timestamp;
1544  if (timestamp0)
1545  delta = timestamp - timestamp0;
1546  else
1547  delta = 0;
1548 
1549  if (delta < 0) {
1550  pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1551  return -1;
1552  }
1553 
1554  sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1555  if (sched_in == NULL)
1556  return -1;
1557 
1558  tr = thread__get_runtime(sched_in);
1559  if (tr == NULL) {
1560  thread__put(sched_in);
1561  return -1;
1562  }
1563 
1564  sched->curr_thread[this_cpu] = thread__get(sched_in);
1565 
1566  printf(" ");
1567 
1568  new_shortname = 0;
1569  if (!tr->shortname[0]) {
1570  if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1571  /*
1572  * Don't allocate a letter-number for swapper:0
1573  * as a shortname. Instead, we use '.' for it.
1574  */
1575  tr->shortname[0] = '.';
1576  tr->shortname[1] = ' ';
1577  } else {
1578  tr->shortname[0] = sched->next_shortname1;
1579  tr->shortname[1] = sched->next_shortname2;
1580 
1581  if (sched->next_shortname1 < 'Z') {
1582  sched->next_shortname1++;
1583  } else {
1584  sched->next_shortname1 = 'A';
1585  if (sched->next_shortname2 < '9')
1586  sched->next_shortname2++;
1587  else
1588  sched->next_shortname2 = '0';
1589  }
1590  }
1591  new_shortname = 1;
1592  }
1593 
1594  for (i = 0; i < cpus_nr; i++) {
1595  int cpu = sched->map.comp ? sched->map.comp_cpus[i] : i;
1596  struct thread *curr_thread = sched->curr_thread[cpu];
1597  struct thread_runtime *curr_tr;
1598  const char *pid_color = color;
1599  const char *cpu_color = color;
1600 
1601  if (curr_thread && thread__has_color(curr_thread))
1602  pid_color = COLOR_PIDS;
1603 
1604  if (sched->map.cpus && !cpu_map__has(sched->map.cpus, cpu))
1605  continue;
1606 
1607  if (sched->map.color_cpus && cpu_map__has(sched->map.color_cpus, cpu))
1608  cpu_color = COLOR_CPUS;
1609 
1610  if (cpu != this_cpu)
1611  color_fprintf(stdout, color, " ");
1612  else
1613  color_fprintf(stdout, cpu_color, "*");
1614 
1615  if (sched->curr_thread[cpu]) {
1616  curr_tr = thread__get_runtime(sched->curr_thread[cpu]);
1617  if (curr_tr == NULL) {
1618  thread__put(sched_in);
1619  return -1;
1620  }
1621  color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1622  } else
1623  color_fprintf(stdout, color, " ");
1624  }
1625 
1626  if (sched->map.cpus && !cpu_map__has(sched->map.cpus, this_cpu))
1627  goto out;
1628 
1629  timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1630  color_fprintf(stdout, color, " %12s secs ", stimestamp);
1631  if (new_shortname || tr->comm_changed || (verbose > 0 && sched_in->tid)) {
1632  const char *pid_color = color;
1633 
1634  if (thread__has_color(sched_in))
1635  pid_color = COLOR_PIDS;
1636 
1637  color_fprintf(stdout, pid_color, "%s => %s:%d",
1638  tr->shortname, thread__comm_str(sched_in), sched_in->tid);
1639  tr->comm_changed = false;
1640  }
1641 
1642  if (sched->map.comp && new_cpu)
1643  color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1644 
1645 out:
1646  color_fprintf(stdout, color, "\n");
1647 
1648  thread__put(sched_in);
1649 
1650  return 0;
1651 }
1652 
1654  struct perf_evsel *evsel,
1655  struct perf_sample *sample,
1656  struct machine *machine)
1657 {
1658  struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1659  int this_cpu = sample->cpu, err = 0;
1660  u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1661  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1662 
1663  if (sched->curr_pid[this_cpu] != (u32)-1) {
1664  /*
1665  * Are we trying to switch away a PID that is
1666  * not current?
1667  */
1668  if (sched->curr_pid[this_cpu] != prev_pid)
1669  sched->nr_context_switch_bugs++;
1670  }
1671 
1672  if (sched->tp_handler->switch_event)
1673  err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1674 
1675  sched->curr_pid[this_cpu] = next_pid;
1676  return err;
1677 }
1678 
1680  struct perf_evsel *evsel,
1681  struct perf_sample *sample,
1682  struct machine *machine)
1683 {
1684  struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1685 
1686  if (sched->tp_handler->runtime_event)
1687  return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1688 
1689  return 0;
1690 }
1691 
1693  union perf_event *event,
1694  struct perf_sample *sample,
1695  struct machine *machine)
1696 {
1697  struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1698 
1699  /* run the fork event through the perf machineruy */
1700  perf_event__process_fork(tool, event, sample, machine);
1701 
1702  /* and then run additional processing needed for this command */
1703  if (sched->tp_handler->fork_event)
1704  return sched->tp_handler->fork_event(sched, event, machine);
1705 
1706  return 0;
1707 }
1708 
1710  struct perf_evsel *evsel,
1711  struct perf_sample *sample,
1712  struct machine *machine)
1713 {
1714  struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1715 
1716  if (sched->tp_handler->migrate_task_event)
1717  return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1718 
1719  return 0;
1720 }
1721 
1722 typedef int (*tracepoint_handler)(struct perf_tool *tool,
1723  struct perf_evsel *evsel,
1724  struct perf_sample *sample,
1725  struct machine *machine);
1726 
1727 static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1728  union perf_event *event __maybe_unused,
1729  struct perf_sample *sample,
1730  struct perf_evsel *evsel,
1731  struct machine *machine)
1732 {
1733  int err = 0;
1734 
1735  if (evsel->handler != NULL) {
1736  tracepoint_handler f = evsel->handler;
1737  err = f(tool, evsel, sample, machine);
1738  }
1739 
1740  return err;
1741 }
1742 
1743 static int perf_sched__process_comm(struct perf_tool *tool __maybe_unused,
1744  union perf_event *event,
1745  struct perf_sample *sample,
1746  struct machine *machine)
1747 {
1748  struct thread *thread;
1749  struct thread_runtime *tr;
1750  int err;
1751 
1752  err = perf_event__process_comm(tool, event, sample, machine);
1753  if (err)
1754  return err;
1755 
1756  thread = machine__find_thread(machine, sample->pid, sample->tid);
1757  if (!thread) {
1758  pr_err("Internal error: can't find thread\n");
1759  return -1;
1760  }
1761 
1762  tr = thread__get_runtime(thread);
1763  if (tr == NULL) {
1764  thread__put(thread);
1765  return -1;
1766  }
1767 
1768  tr->comm_changed = true;
1769  thread__put(thread);
1770 
1771  return 0;
1772 }
1773 
1774 static int perf_sched__read_events(struct perf_sched *sched)
1775 {
1776  const struct perf_evsel_str_handler handlers[] = {
1777  { "sched:sched_switch", process_sched_switch_event, },
1778  { "sched:sched_stat_runtime", process_sched_runtime_event, },
1779  { "sched:sched_wakeup", process_sched_wakeup_event, },
1780  { "sched:sched_wakeup_new", process_sched_wakeup_event, },
1781  { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1782  };
1783  struct perf_session *session;
1784  struct perf_data data = {
1785  .file = {
1786  .path = input_name,
1787  },
1788  .mode = PERF_DATA_MODE_READ,
1789  .force = sched->force,
1790  };
1791  int rc = -1;
1792 
1793  session = perf_session__new(&data, false, &sched->tool);
1794  if (session == NULL) {
1795  pr_debug("No Memory for session\n");
1796  return -1;
1797  }
1798 
1799  symbol__init(&session->header.env);
1800 
1801  if (perf_session__set_tracepoints_handlers(session, handlers))
1802  goto out_delete;
1803 
1804  if (perf_session__has_traces(session, "record -R")) {
1805  int err = perf_session__process_events(session);
1806  if (err) {
1807  pr_err("Failed to process events, error %d", err);
1808  goto out_delete;
1809  }
1810 
1811  sched->nr_events = session->evlist->stats.nr_events[0];
1812  sched->nr_lost_events = session->evlist->stats.total_lost;
1813  sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1814  }
1815 
1816  rc = 0;
1817 out_delete:
1818  perf_session__delete(session);
1819  return rc;
1820 }
1821 
1822 /*
1823  * scheduling times are printed as msec.usec
1824  */
1825 static inline void print_sched_time(unsigned long long nsecs, int width)
1826 {
1827  unsigned long msecs;
1828  unsigned long usecs;
1829 
1830  msecs = nsecs / NSEC_PER_MSEC;
1831  nsecs -= msecs * NSEC_PER_MSEC;
1832  usecs = nsecs / NSEC_PER_USEC;
1833  printf("%*lu.%03lu ", width, msecs, usecs);
1834 }
1835 
1836 /*
1837  * returns runtime data for event, allocating memory for it the
1838  * first time it is used.
1839  */
1840 static struct evsel_runtime *perf_evsel__get_runtime(struct perf_evsel *evsel)
1841 {
1842  struct evsel_runtime *r = evsel->priv;
1843 
1844  if (r == NULL) {
1845  r = zalloc(sizeof(struct evsel_runtime));
1846  evsel->priv = r;
1847  }
1848 
1849  return r;
1850 }
1851 
1852 /*
1853  * save last time event was seen per cpu
1854  */
1855 static void perf_evsel__save_time(struct perf_evsel *evsel,
1856  u64 timestamp, u32 cpu)
1857 {
1858  struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1859 
1860  if (r == NULL)
1861  return;
1862 
1863  if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1864  int i, n = __roundup_pow_of_two(cpu+1);
1865  void *p = r->last_time;
1866 
1867  p = realloc(r->last_time, n * sizeof(u64));
1868  if (!p)
1869  return;
1870 
1871  r->last_time = p;
1872  for (i = r->ncpu; i < n; ++i)
1873  r->last_time[i] = (u64) 0;
1874 
1875  r->ncpu = n;
1876  }
1877 
1878  r->last_time[cpu] = timestamp;
1879 }
1880 
1881 /* returns last time this event was seen on the given cpu */
1882 static u64 perf_evsel__get_time(struct perf_evsel *evsel, u32 cpu)
1883 {
1884  struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1885 
1886  if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
1887  return 0;
1888 
1889  return r->last_time[cpu];
1890 }
1891 
1892 static int comm_width = 30;
1893 
1894 static char *timehist_get_commstr(struct thread *thread)
1895 {
1896  static char str[32];
1897  const char *comm = thread__comm_str(thread);
1898  pid_t tid = thread->tid;
1899  pid_t pid = thread->pid_;
1900  int n;
1901 
1902  if (pid == 0)
1903  n = scnprintf(str, sizeof(str), "%s", comm);
1904 
1905  else if (tid != pid)
1906  n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
1907 
1908  else
1909  n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
1910 
1911  if (n > comm_width)
1912  comm_width = n;
1913 
1914  return str;
1915 }
1916 
1917 static void timehist_header(struct perf_sched *sched)
1918 {
1919  u32 ncpus = sched->max_cpu + 1;
1920  u32 i, j;
1921 
1922  printf("%15s %6s ", "time", "cpu");
1923 
1924  if (sched->show_cpu_visual) {
1925  printf(" ");
1926  for (i = 0, j = 0; i < ncpus; ++i) {
1927  printf("%x", j++);
1928  if (j > 15)
1929  j = 0;
1930  }
1931  printf(" ");
1932  }
1933 
1934  printf(" %-*s %9s %9s %9s", comm_width,
1935  "task name", "wait time", "sch delay", "run time");
1936 
1937  if (sched->show_state)
1938  printf(" %s", "state");
1939 
1940  printf("\n");
1941 
1942  /*
1943  * units row
1944  */
1945  printf("%15s %-6s ", "", "");
1946 
1947  if (sched->show_cpu_visual)
1948  printf(" %*s ", ncpus, "");
1949 
1950  printf(" %-*s %9s %9s %9s", comm_width,
1951  "[tid/pid]", "(msec)", "(msec)", "(msec)");
1952 
1953  if (sched->show_state)
1954  printf(" %5s", "");
1955 
1956  printf("\n");
1957 
1958  /*
1959  * separator
1960  */
1961  printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
1962 
1963  if (sched->show_cpu_visual)
1964  printf(" %.*s ", ncpus, graph_dotted_line);
1965 
1966  printf(" %.*s %.9s %.9s %.9s", comm_width,
1969 
1970  if (sched->show_state)
1971  printf(" %.5s", graph_dotted_line);
1972 
1973  printf("\n");
1974 }
1975 
1976 static char task_state_char(struct thread *thread, int state)
1977 {
1978  static const char state_to_char[] = TASK_STATE_TO_CHAR_STR;
1979  unsigned bit = state ? ffs(state) : 0;
1980 
1981  /* 'I' for idle */
1982  if (thread->tid == 0)
1983  return 'I';
1984 
1985  return bit < sizeof(state_to_char) - 1 ? state_to_char[bit] : '?';
1986 }
1987 
1988 static void timehist_print_sample(struct perf_sched *sched,
1989  struct perf_evsel *evsel,
1990  struct perf_sample *sample,
1991  struct addr_location *al,
1992  struct thread *thread,
1993  u64 t, int state)
1994 {
1995  struct thread_runtime *tr = thread__priv(thread);
1996  const char *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
1997  const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1998  u32 max_cpus = sched->max_cpu + 1;
1999  char tstr[64];
2000  char nstr[30];
2001  u64 wait_time;
2002 
2003  timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2004  printf("%15s [%04d] ", tstr, sample->cpu);
2005 
2006  if (sched->show_cpu_visual) {
2007  u32 i;
2008  char c;
2009 
2010  printf(" ");
2011  for (i = 0; i < max_cpus; ++i) {
2012  /* flag idle times with 'i'; others are sched events */
2013  if (i == sample->cpu)
2014  c = (thread->tid == 0) ? 'i' : 's';
2015  else
2016  c = ' ';
2017  printf("%c", c);
2018  }
2019  printf(" ");
2020  }
2021 
2022  printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2023 
2024  wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2025  print_sched_time(wait_time, 6);
2026 
2027  print_sched_time(tr->dt_delay, 6);
2028  print_sched_time(tr->dt_run, 6);
2029 
2030  if (sched->show_state)
2031  printf(" %5c ", task_state_char(thread, state));
2032 
2033  if (sched->show_next) {
2034  snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2035  printf(" %-*s", comm_width, nstr);
2036  }
2037 
2038  if (sched->show_wakeups && !sched->show_next)
2039  printf(" %-*s", comm_width, "");
2040 
2041  if (thread->tid == 0)
2042  goto out;
2043 
2044  if (sched->show_callchain)
2045  printf(" ");
2046 
2047  sample__fprintf_sym(sample, al, 0,
2051  &callchain_cursor, stdout);
2052 
2053 out:
2054  printf("\n");
2055 }
2056 
2057 /*
2058  * Explanation of delta-time stats:
2059  *
2060  * t = time of current schedule out event
2061  * tprev = time of previous sched out event
2062  * also time of schedule-in event for current task
2063  * last_time = time of last sched change event for current task
2064  * (i.e, time process was last scheduled out)
2065  * ready_to_run = time of wakeup for current task
2066  *
2067  * -----|------------|------------|------------|------
2068  * last ready tprev t
2069  * time to run
2070  *
2071  * |-------- dt_wait --------|
2072  * |- dt_delay -|-- dt_run --|
2073  *
2074  * dt_run = run time of current task
2075  * dt_wait = time between last schedule out event for task and tprev
2076  * represents time spent off the cpu
2077  * dt_delay = time between wakeup and schedule-in of task
2078  */
2079 
2081  u64 t, u64 tprev)
2082 {
2083  r->dt_delay = 0;
2084  r->dt_sleep = 0;
2085  r->dt_iowait = 0;
2086  r->dt_preempt = 0;
2087  r->dt_run = 0;
2088 
2089  if (tprev) {
2090  r->dt_run = t - tprev;
2091  if (r->ready_to_run) {
2092  if (r->ready_to_run > tprev)
2093  pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2094  else
2095  r->dt_delay = tprev - r->ready_to_run;
2096  }
2097 
2098  if (r->last_time > tprev)
2099  pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2100  else if (r->last_time) {
2101  u64 dt_wait = tprev - r->last_time;
2102 
2103  if (r->last_state == TASK_RUNNING)
2104  r->dt_preempt = dt_wait;
2105  else if (r->last_state == TASK_UNINTERRUPTIBLE)
2106  r->dt_iowait = dt_wait;
2107  else
2108  r->dt_sleep = dt_wait;
2109  }
2110  }
2111 
2112  update_stats(&r->run_stats, r->dt_run);
2113 
2114  r->total_run_time += r->dt_run;
2115  r->total_delay_time += r->dt_delay;
2116  r->total_sleep_time += r->dt_sleep;
2117  r->total_iowait_time += r->dt_iowait;
2118  r->total_preempt_time += r->dt_preempt;
2119 }
2120 
2121 static bool is_idle_sample(struct perf_sample *sample,
2122  struct perf_evsel *evsel)
2123 {
2124  /* pid 0 == swapper == idle task */
2125  if (strcmp(perf_evsel__name(evsel), "sched:sched_switch") == 0)
2126  return perf_evsel__intval(evsel, sample, "prev_pid") == 0;
2127 
2128  return sample->pid == 0;
2129 }
2130 
2131 static void save_task_callchain(struct perf_sched *sched,
2132  struct perf_sample *sample,
2133  struct perf_evsel *evsel,
2134  struct machine *machine)
2135 {
2136  struct callchain_cursor *cursor = &callchain_cursor;
2137  struct thread *thread;
2138 
2139  /* want main thread for process - has maps */
2140  thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2141  if (thread == NULL) {
2142  pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2143  return;
2144  }
2145 
2146  if (!sched->show_callchain || sample->callchain == NULL)
2147  return;
2148 
2149  if (thread__resolve_callchain(thread, cursor, evsel, sample,
2150  NULL, NULL, sched->max_stack + 2) != 0) {
2151  if (verbose > 0)
2152  pr_err("Failed to resolve callchain. Skipping\n");
2153 
2154  return;
2155  }
2156 
2157  callchain_cursor_commit(cursor);
2158 
2159  while (true) {
2160  struct callchain_cursor_node *node;
2161  struct symbol *sym;
2162 
2163  node = callchain_cursor_current(cursor);
2164  if (node == NULL)
2165  break;
2166 
2167  sym = node->sym;
2168  if (sym) {
2169  if (!strcmp(sym->name, "schedule") ||
2170  !strcmp(sym->name, "__schedule") ||
2171  !strcmp(sym->name, "preempt_schedule"))
2172  sym->ignore = 1;
2173  }
2174 
2175  callchain_cursor_advance(cursor);
2176  }
2177 }
2178 
2179 static int init_idle_thread(struct thread *thread)
2180 {
2181  struct idle_thread_runtime *itr;
2182 
2183  thread__set_comm(thread, idle_comm, 0);
2184 
2185  itr = zalloc(sizeof(*itr));
2186  if (itr == NULL)
2187  return -ENOMEM;
2188 
2189  init_stats(&itr->tr.run_stats);
2190  callchain_init(&itr->callchain);
2192  thread__set_priv(thread, itr);
2193 
2194  return 0;
2195 }
2196 
2197 /*
2198  * Track idle stats per cpu by maintaining a local thread
2199  * struct for the idle task on each cpu.
2200  */
2201 static int init_idle_threads(int ncpu)
2202 {
2203  int i, ret;
2204 
2205  idle_threads = zalloc(ncpu * sizeof(struct thread *));
2206  if (!idle_threads)
2207  return -ENOMEM;
2208 
2209  idle_max_cpu = ncpu;
2210 
2211  /* allocate the actual thread struct if needed */
2212  for (i = 0; i < ncpu; ++i) {
2213  idle_threads[i] = thread__new(0, 0);
2214  if (idle_threads[i] == NULL)
2215  return -ENOMEM;
2216 
2217  ret = init_idle_thread(idle_threads[i]);
2218  if (ret < 0)
2219  return ret;
2220  }
2221 
2222  return 0;
2223 }
2224 
2225 static void free_idle_threads(void)
2226 {
2227  int i;
2228 
2229  if (idle_threads == NULL)
2230  return;
2231 
2232  for (i = 0; i < idle_max_cpu; ++i) {
2233  if ((idle_threads[i]))
2234  thread__delete(idle_threads[i]);
2235  }
2236 
2237  free(idle_threads);
2238 }
2239 
2240 static struct thread *get_idle_thread(int cpu)
2241 {
2242  /*
2243  * expand/allocate array of pointers to local thread
2244  * structs if needed
2245  */
2246  if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2247  int i, j = __roundup_pow_of_two(cpu+1);
2248  void *p;
2249 
2250  p = realloc(idle_threads, j * sizeof(struct thread *));
2251  if (!p)
2252  return NULL;
2253 
2254  idle_threads = (struct thread **) p;
2255  for (i = idle_max_cpu; i < j; ++i)
2256  idle_threads[i] = NULL;
2257 
2258  idle_max_cpu = j;
2259  }
2260 
2261  /* allocate a new thread struct if needed */
2262  if (idle_threads[cpu] == NULL) {
2263  idle_threads[cpu] = thread__new(0, 0);
2264 
2265  if (idle_threads[cpu]) {
2266  if (init_idle_thread(idle_threads[cpu]) < 0)
2267  return NULL;
2268  }
2269  }
2270 
2271  return idle_threads[cpu];
2272 }
2273 
2274 static void save_idle_callchain(struct perf_sched *sched,
2275  struct idle_thread_runtime *itr,
2276  struct perf_sample *sample)
2277 {
2278  if (!sched->show_callchain || sample->callchain == NULL)
2279  return;
2280 
2282 }
2283 
2284 static struct thread *timehist_get_thread(struct perf_sched *sched,
2285  struct perf_sample *sample,
2286  struct machine *machine,
2287  struct perf_evsel *evsel)
2288 {
2289  struct thread *thread;
2290 
2291  if (is_idle_sample(sample, evsel)) {
2292  thread = get_idle_thread(sample->cpu);
2293  if (thread == NULL)
2294  pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2295 
2296  } else {
2297  /* there were samples with tid 0 but non-zero pid */
2298  thread = machine__findnew_thread(machine, sample->pid,
2299  sample->tid ?: sample->pid);
2300  if (thread == NULL) {
2301  pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2302  sample->tid);
2303  }
2304 
2305  save_task_callchain(sched, sample, evsel, machine);
2306  if (sched->idle_hist) {
2307  struct thread *idle;
2308  struct idle_thread_runtime *itr;
2309 
2310  idle = get_idle_thread(sample->cpu);
2311  if (idle == NULL) {
2312  pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2313  return NULL;
2314  }
2315 
2316  itr = thread__priv(idle);
2317  if (itr == NULL)
2318  return NULL;
2319 
2320  itr->last_thread = thread;
2321 
2322  /* copy task callchain when entering to idle */
2323  if (perf_evsel__intval(evsel, sample, "next_pid") == 0)
2324  save_idle_callchain(sched, itr, sample);
2325  }
2326  }
2327 
2328  return thread;
2329 }
2330 
2331 static bool timehist_skip_sample(struct perf_sched *sched,
2332  struct thread *thread,
2333  struct perf_evsel *evsel,
2334  struct perf_sample *sample)
2335 {
2336  bool rc = false;
2337 
2338  if (thread__is_filtered(thread)) {
2339  rc = true;
2340  sched->skipped_samples++;
2341  }
2342 
2343  if (sched->idle_hist) {
2344  if (strcmp(perf_evsel__name(evsel), "sched:sched_switch"))
2345  rc = true;
2346  else if (perf_evsel__intval(evsel, sample, "prev_pid") != 0 &&
2347  perf_evsel__intval(evsel, sample, "next_pid") != 0)
2348  rc = true;
2349  }
2350 
2351  return rc;
2352 }
2353 
2354 static void timehist_print_wakeup_event(struct perf_sched *sched,
2355  struct perf_evsel *evsel,
2356  struct perf_sample *sample,
2357  struct machine *machine,
2358  struct thread *awakened)
2359 {
2360  struct thread *thread;
2361  char tstr[64];
2362 
2363  thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2364  if (thread == NULL)
2365  return;
2366 
2367  /* show wakeup unless both awakee and awaker are filtered */
2368  if (timehist_skip_sample(sched, thread, evsel, sample) &&
2369  timehist_skip_sample(sched, awakened, evsel, sample)) {
2370  return;
2371  }
2372 
2373  timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2374  printf("%15s [%04d] ", tstr, sample->cpu);
2375  if (sched->show_cpu_visual)
2376  printf(" %*s ", sched->max_cpu + 1, "");
2377 
2378  printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2379 
2380  /* dt spacer */
2381  printf(" %9s %9s %9s ", "", "", "");
2382 
2383  printf("awakened: %s", timehist_get_commstr(awakened));
2384 
2385  printf("\n");
2386 }
2387 
2388 static int timehist_sched_wakeup_event(struct perf_tool *tool,
2389  union perf_event *event __maybe_unused,
2390  struct perf_evsel *evsel,
2391  struct perf_sample *sample,
2392  struct machine *machine)
2393 {
2394  struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2395  struct thread *thread;
2396  struct thread_runtime *tr = NULL;
2397  /* want pid of awakened task not pid in sample */
2398  const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2399 
2400  thread = machine__findnew_thread(machine, 0, pid);
2401  if (thread == NULL)
2402  return -1;
2403 
2404  tr = thread__get_runtime(thread);
2405  if (tr == NULL)
2406  return -1;
2407 
2408  if (tr->ready_to_run == 0)
2409  tr->ready_to_run = sample->time;
2410 
2411  /* show wakeups if requested */
2412  if (sched->show_wakeups &&
2413  !perf_time__skip_sample(&sched->ptime, sample->time))
2414  timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2415 
2416  return 0;
2417 }
2418 
2419 static void timehist_print_migration_event(struct perf_sched *sched,
2420  struct perf_evsel *evsel,
2421  struct perf_sample *sample,
2422  struct machine *machine,
2423  struct thread *migrated)
2424 {
2425  struct thread *thread;
2426  char tstr[64];
2427  u32 max_cpus = sched->max_cpu + 1;
2428  u32 ocpu, dcpu;
2429 
2430  if (sched->summary_only)
2431  return;
2432 
2433  max_cpus = sched->max_cpu + 1;
2434  ocpu = perf_evsel__intval(evsel, sample, "orig_cpu");
2435  dcpu = perf_evsel__intval(evsel, sample, "dest_cpu");
2436 
2437  thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2438  if (thread == NULL)
2439  return;
2440 
2441  if (timehist_skip_sample(sched, thread, evsel, sample) &&
2442  timehist_skip_sample(sched, migrated, evsel, sample)) {
2443  return;
2444  }
2445 
2446  timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2447  printf("%15s [%04d] ", tstr, sample->cpu);
2448 
2449  if (sched->show_cpu_visual) {
2450  u32 i;
2451  char c;
2452 
2453  printf(" ");
2454  for (i = 0; i < max_cpus; ++i) {
2455  c = (i == sample->cpu) ? 'm' : ' ';
2456  printf("%c", c);
2457  }
2458  printf(" ");
2459  }
2460 
2461  printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2462 
2463  /* dt spacer */
2464  printf(" %9s %9s %9s ", "", "", "");
2465 
2466  printf("migrated: %s", timehist_get_commstr(migrated));
2467  printf(" cpu %d => %d", ocpu, dcpu);
2468 
2469  printf("\n");
2470 }
2471 
2472 static int timehist_migrate_task_event(struct perf_tool *tool,
2473  union perf_event *event __maybe_unused,
2474  struct perf_evsel *evsel,
2475  struct perf_sample *sample,
2476  struct machine *machine)
2477 {
2478  struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2479  struct thread *thread;
2480  struct thread_runtime *tr = NULL;
2481  /* want pid of migrated task not pid in sample */
2482  const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2483 
2484  thread = machine__findnew_thread(machine, 0, pid);
2485  if (thread == NULL)
2486  return -1;
2487 
2488  tr = thread__get_runtime(thread);
2489  if (tr == NULL)
2490  return -1;
2491 
2492  tr->migrations++;
2493 
2494  /* show migrations if requested */
2495  timehist_print_migration_event(sched, evsel, sample, machine, thread);
2496 
2497  return 0;
2498 }
2499 
2500 static int timehist_sched_change_event(struct perf_tool *tool,
2501  union perf_event *event,
2502  struct perf_evsel *evsel,
2503  struct perf_sample *sample,
2504  struct machine *machine)
2505 {
2506  struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2507  struct perf_time_interval *ptime = &sched->ptime;
2508  struct addr_location al;
2509  struct thread *thread;
2510  struct thread_runtime *tr = NULL;
2511  u64 tprev, t = sample->time;
2512  int rc = 0;
2513  int state = perf_evsel__intval(evsel, sample, "prev_state");
2514 
2515 
2516  if (machine__resolve(machine, &al, sample) < 0) {
2517  pr_err("problem processing %d event. skipping it\n",
2518  event->header.type);
2519  rc = -1;
2520  goto out;
2521  }
2522 
2523  thread = timehist_get_thread(sched, sample, machine, evsel);
2524  if (thread == NULL) {
2525  rc = -1;
2526  goto out;
2527  }
2528 
2529  if (timehist_skip_sample(sched, thread, evsel, sample))
2530  goto out;
2531 
2532  tr = thread__get_runtime(thread);
2533  if (tr == NULL) {
2534  rc = -1;
2535  goto out;
2536  }
2537 
2538  tprev = perf_evsel__get_time(evsel, sample->cpu);
2539 
2540  /*
2541  * If start time given:
2542  * - sample time is under window user cares about - skip sample
2543  * - tprev is under window user cares about - reset to start of window
2544  */
2545  if (ptime->start && ptime->start > t)
2546  goto out;
2547 
2548  if (tprev && ptime->start > tprev)
2549  tprev = ptime->start;
2550 
2551  /*
2552  * If end time given:
2553  * - previous sched event is out of window - we are done
2554  * - sample time is beyond window user cares about - reset it
2555  * to close out stats for time window interest
2556  */
2557  if (ptime->end) {
2558  if (tprev > ptime->end)
2559  goto out;
2560 
2561  if (t > ptime->end)
2562  t = ptime->end;
2563  }
2564 
2565  if (!sched->idle_hist || thread->tid == 0) {
2566  timehist_update_runtime_stats(tr, t, tprev);
2567 
2568  if (sched->idle_hist) {
2569  struct idle_thread_runtime *itr = (void *)tr;
2570  struct thread_runtime *last_tr;
2571 
2572  BUG_ON(thread->tid != 0);
2573 
2574  if (itr->last_thread == NULL)
2575  goto out;
2576 
2577  /* add current idle time as last thread's runtime */
2578  last_tr = thread__get_runtime(itr->last_thread);
2579  if (last_tr == NULL)
2580  goto out;
2581 
2582  timehist_update_runtime_stats(last_tr, t, tprev);
2583  /*
2584  * remove delta time of last thread as it's not updated
2585  * and otherwise it will show an invalid value next
2586  * time. we only care total run time and run stat.
2587  */
2588  last_tr->dt_run = 0;
2589  last_tr->dt_delay = 0;
2590  last_tr->dt_sleep = 0;
2591  last_tr->dt_iowait = 0;
2592  last_tr->dt_preempt = 0;
2593 
2594  if (itr->cursor.nr)
2595  callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2596 
2597  itr->last_thread = NULL;
2598  }
2599  }
2600 
2601  if (!sched->summary_only)
2602  timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2603 
2604 out:
2605  if (sched->hist_time.start == 0 && t >= ptime->start)
2606  sched->hist_time.start = t;
2607  if (ptime->end == 0 || t <= ptime->end)
2608  sched->hist_time.end = t;
2609 
2610  if (tr) {
2611  /* time of this sched_switch event becomes last time task seen */
2612  tr->last_time = sample->time;
2613 
2614  /* last state is used to determine where to account wait time */
2615  tr->last_state = state;
2616 
2617  /* sched out event for task so reset ready to run time */
2618  tr->ready_to_run = 0;
2619  }
2620 
2621  perf_evsel__save_time(evsel, sample->time, sample->cpu);
2622 
2623  return rc;
2624 }
2625 
2626 static int timehist_sched_switch_event(struct perf_tool *tool,
2627  union perf_event *event,
2628  struct perf_evsel *evsel,
2629  struct perf_sample *sample,
2630  struct machine *machine __maybe_unused)
2631 {
2632  return timehist_sched_change_event(tool, event, evsel, sample, machine);
2633 }
2634 
2635 static int process_lost(struct perf_tool *tool __maybe_unused,
2636  union perf_event *event,
2637  struct perf_sample *sample,
2638  struct machine *machine __maybe_unused)
2639 {
2640  char tstr[64];
2641 
2642  timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2643  printf("%15s ", tstr);
2644  printf("lost %" PRIu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2645 
2646  return 0;
2647 }
2648 
2649 
2650 static void print_thread_runtime(struct thread *t,
2651  struct thread_runtime *r)
2652 {
2653  double mean = avg_stats(&r->run_stats);
2654  float stddev;
2655 
2656  printf("%*s %5d %9" PRIu64 " ",
2658  (u64) r->run_stats.n);
2659 
2661  stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2663  printf(" ");
2664  print_sched_time((u64) mean, 6);
2665  printf(" ");
2667  printf(" ");
2668  printf("%5.2f", stddev);
2669  printf(" %5" PRIu64, r->migrations);
2670  printf("\n");
2671 }
2672 
2673 static void print_thread_waittime(struct thread *t,
2674  struct thread_runtime *r)
2675 {
2676  printf("%*s %5d %9" PRIu64 " ",
2678  (u64) r->run_stats.n);
2679 
2682  printf(" ");
2684  printf(" ");
2686  printf(" ");
2688  printf("\n");
2689 }
2690 
2696 };
2697 
2698 static int __show_thread_runtime(struct thread *t, void *priv)
2699 {
2700  struct total_run_stats *stats = priv;
2701  struct thread_runtime *r;
2702 
2703  if (thread__is_filtered(t))
2704  return 0;
2705 
2706  r = thread__priv(t);
2707  if (r && r->run_stats.n) {
2708  stats->task_count++;
2709  stats->sched_count += r->run_stats.n;
2710  stats->total_run_time += r->total_run_time;
2711 
2712  if (stats->sched->show_state)
2713  print_thread_waittime(t, r);
2714  else
2715  print_thread_runtime(t, r);
2716  }
2717 
2718  return 0;
2719 }
2720 
2721 static int show_thread_runtime(struct thread *t, void *priv)
2722 {
2723  if (t->dead)
2724  return 0;
2725 
2726  return __show_thread_runtime(t, priv);
2727 }
2728 
2729 static int show_deadthread_runtime(struct thread *t, void *priv)
2730 {
2731  if (!t->dead)
2732  return 0;
2733 
2734  return __show_thread_runtime(t, priv);
2735 }
2736 
2737 static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2738 {
2739  const char *sep = " <- ";
2740  struct callchain_list *chain;
2741  size_t ret = 0;
2742  char bf[1024];
2743  bool first;
2744 
2745  if (node == NULL)
2746  return 0;
2747 
2748  ret = callchain__fprintf_folded(fp, node->parent);
2749  first = (ret == 0);
2750 
2751  list_for_each_entry(chain, &node->val, list) {
2752  if (chain->ip >= PERF_CONTEXT_MAX)
2753  continue;
2754  if (chain->ms.sym && chain->ms.sym->ignore)
2755  continue;
2756  ret += fprintf(fp, "%s%s", first ? "" : sep,
2757  callchain_list__sym_name(chain, bf, sizeof(bf),
2758  false));
2759  first = false;
2760  }
2761 
2762  return ret;
2763 }
2764 
2765 static size_t timehist_print_idlehist_callchain(struct rb_root *root)
2766 {
2767  size_t ret = 0;
2768  FILE *fp = stdout;
2769  struct callchain_node *chain;
2770  struct rb_node *rb_node = rb_first(root);
2771 
2772  printf(" %16s %8s %s\n", "Idle time (msec)", "Count", "Callchains");
2773  printf(" %.16s %.8s %.50s\n", graph_dotted_line, graph_dotted_line,
2775 
2776  while (rb_node) {
2777  chain = rb_entry(rb_node, struct callchain_node, rb_node);
2778  rb_node = rb_next(rb_node);
2779 
2780  ret += fprintf(fp, " ");
2781  print_sched_time(chain->hit, 12);
2782  ret += 16; /* print_sched_time returns 2nd arg + 4 */
2783  ret += fprintf(fp, " %8d ", chain->count);
2784  ret += callchain__fprintf_folded(fp, chain);
2785  ret += fprintf(fp, "\n");
2786  }
2787 
2788  return ret;
2789 }
2790 
2791 static void timehist_print_summary(struct perf_sched *sched,
2792  struct perf_session *session)
2793 {
2794  struct machine *m = &session->machines.host;
2795  struct total_run_stats totals;
2796  u64 task_count;
2797  struct thread *t;
2798  struct thread_runtime *r;
2799  int i;
2800  u64 hist_time = sched->hist_time.end - sched->hist_time.start;
2801 
2802  memset(&totals, 0, sizeof(totals));
2803  totals.sched = sched;
2804 
2805  if (sched->idle_hist) {
2806  printf("\nIdle-time summary\n");
2807  printf("%*s parent sched-out ", comm_width, "comm");
2808  printf(" idle-time min-idle avg-idle max-idle stddev migrations\n");
2809  } else if (sched->show_state) {
2810  printf("\nWait-time summary\n");
2811  printf("%*s parent sched-in ", comm_width, "comm");
2812  printf(" run-time sleep iowait preempt delay\n");
2813  } else {
2814  printf("\nRuntime summary\n");
2815  printf("%*s parent sched-in ", comm_width, "comm");
2816  printf(" run-time min-run avg-run max-run stddev migrations\n");
2817  }
2818  printf("%*s (count) ", comm_width, "");
2819  printf(" (msec) (msec) (msec) (msec) %s\n",
2820  sched->show_state ? "(msec)" : "%");
2821  printf("%.117s\n", graph_dotted_line);
2822 
2824  task_count = totals.task_count;
2825  if (!task_count)
2826  printf("<no still running tasks>\n");
2827 
2828  printf("\nTerminated tasks:\n");
2830  if (task_count == totals.task_count)
2831  printf("<no terminated tasks>\n");
2832 
2833  /* CPU idle stats not tracked when samples were skipped */
2834  if (sched->skipped_samples && !sched->idle_hist)
2835  return;
2836 
2837  printf("\nIdle stats:\n");
2838  for (i = 0; i < idle_max_cpu; ++i) {
2839  t = idle_threads[i];
2840  if (!t)
2841  continue;
2842 
2843  r = thread__priv(t);
2844  if (r && r->run_stats.n) {
2845  totals.sched_count += r->run_stats.n;
2846  printf(" CPU %2d idle for ", i);
2848  printf(" msec (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
2849  } else
2850  printf(" CPU %2d idle entire time window\n", i);
2851  }
2852 
2853  if (sched->idle_hist && sched->show_callchain) {
2856 
2858 
2859  printf("\nIdle stats by callchain:\n");
2860  for (i = 0; i < idle_max_cpu; ++i) {
2861  struct idle_thread_runtime *itr;
2862 
2863  t = idle_threads[i];
2864  if (!t)
2865  continue;
2866 
2867  itr = thread__priv(t);
2868  if (itr == NULL)
2869  continue;
2870 
2872  0, &callchain_param);
2873 
2874  printf(" CPU %2d:", i);
2876  printf(" msec\n");
2878  printf("\n");
2879  }
2880  }
2881 
2882  printf("\n"
2883  " Total number of unique tasks: %" PRIu64 "\n"
2884  "Total number of context switches: %" PRIu64 "\n",
2885  totals.task_count, totals.sched_count);
2886 
2887  printf(" Total run time (msec): ");
2888  print_sched_time(totals.total_run_time, 2);
2889  printf("\n");
2890 
2891  printf(" Total scheduling time (msec): ");
2892  print_sched_time(hist_time, 2);
2893  printf(" (x %d)\n", sched->max_cpu);
2894 }
2895 
2896 typedef int (*sched_handler)(struct perf_tool *tool,
2897  union perf_event *event,
2898  struct perf_evsel *evsel,
2899  struct perf_sample *sample,
2900  struct machine *machine);
2901 
2903  union perf_event *event,
2904  struct perf_sample *sample,
2905  struct perf_evsel *evsel,
2906  struct machine *machine)
2907 {
2908  struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2909  int err = 0;
2910  int this_cpu = sample->cpu;
2911 
2912  if (this_cpu > sched->max_cpu)
2913  sched->max_cpu = this_cpu;
2914 
2915  if (evsel->handler != NULL) {
2916  sched_handler f = evsel->handler;
2917 
2918  err = f(tool, event, evsel, sample, machine);
2919  }
2920 
2921  return err;
2922 }
2923 
2924 static int timehist_check_attr(struct perf_sched *sched,
2925  struct perf_evlist *evlist)
2926 {
2927  struct perf_evsel *evsel;
2928  struct evsel_runtime *er;
2929 
2930  list_for_each_entry(evsel, &evlist->entries, node) {
2931  er = perf_evsel__get_runtime(evsel);
2932  if (er == NULL) {
2933  pr_err("Failed to allocate memory for evsel runtime data\n");
2934  return -1;
2935  }
2936 
2937  if (sched->show_callchain && !evsel__has_callchain(evsel)) {
2938  pr_info("Samples do not have callchains.\n");
2939  sched->show_callchain = 0;
2941  }
2942  }
2943 
2944  return 0;
2945 }
2946 
2947 static int perf_sched__timehist(struct perf_sched *sched)
2948 {
2949  const struct perf_evsel_str_handler handlers[] = {
2950  { "sched:sched_switch", timehist_sched_switch_event, },
2951  { "sched:sched_wakeup", timehist_sched_wakeup_event, },
2952  { "sched:sched_wakeup_new", timehist_sched_wakeup_event, },
2953  };
2954  const struct perf_evsel_str_handler migrate_handlers[] = {
2955  { "sched:sched_migrate_task", timehist_migrate_task_event, },
2956  };
2957  struct perf_data data = {
2958  .file = {
2959  .path = input_name,
2960  },
2961  .mode = PERF_DATA_MODE_READ,
2962  .force = sched->force,
2963  };
2964 
2965  struct perf_session *session;
2966  struct perf_evlist *evlist;
2967  int err = -1;
2968 
2969  /*
2970  * event handlers for timehist option
2971  */
2977  sched->tool.lost = process_lost;
2981 
2982  sched->tool.ordered_events = true;
2983  sched->tool.ordering_requires_timestamps = true;
2984 
2986 
2987  session = perf_session__new(&data, false, &sched->tool);
2988  if (session == NULL)
2989  return -ENOMEM;
2990 
2991  evlist = session->evlist;
2992 
2993  symbol__init(&session->header.env);
2994 
2995  if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
2996  pr_err("Invalid time string\n");
2997  return -EINVAL;
2998  }
2999 
3000  if (timehist_check_attr(sched, evlist) != 0)
3001  goto out;
3002 
3003  setup_pager();
3004 
3005  /* setup per-evsel handlers */
3006  if (perf_session__set_tracepoints_handlers(session, handlers))
3007  goto out;
3008 
3009  /* sched_switch event at a minimum needs to exist */
3011  "sched:sched_switch")) {
3012  pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3013  goto out;
3014  }
3015 
3016  if (sched->show_migrations &&
3017  perf_session__set_tracepoints_handlers(session, migrate_handlers))
3018  goto out;
3019 
3020  /* pre-allocate struct for per-CPU idle stats */
3021  sched->max_cpu = session->header.env.nr_cpus_online;
3022  if (sched->max_cpu == 0)
3023  sched->max_cpu = 4;
3024  if (init_idle_threads(sched->max_cpu))
3025  goto out;
3026 
3027  /* summary_only implies summary option, but don't overwrite summary if set */
3028  if (sched->summary_only)
3029  sched->summary = sched->summary_only;
3030 
3031  if (!sched->summary_only)
3032  timehist_header(sched);
3033 
3034  err = perf_session__process_events(session);
3035  if (err) {
3036  pr_err("Failed to process events, error %d", err);
3037  goto out;
3038  }
3039 
3040  sched->nr_events = evlist->stats.nr_events[0];
3041  sched->nr_lost_events = evlist->stats.total_lost;
3042  sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3043 
3044  if (sched->summary)
3045  timehist_print_summary(sched, session);
3046 
3047 out:
3049  perf_session__delete(session);
3050 
3051  return err;
3052 }
3053 
3054 
3055 static void print_bad_events(struct perf_sched *sched)
3056 {
3057  if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3058  printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3059  (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3060  sched->nr_unordered_timestamps, sched->nr_timestamps);
3061  }
3062  if (sched->nr_lost_events && sched->nr_events) {
3063  printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3064  (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3065  sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3066  }
3067  if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3068  printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
3069  (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3070  sched->nr_context_switch_bugs, sched->nr_timestamps);
3071  if (sched->nr_lost_events)
3072  printf(" (due to lost events?)");
3073  printf("\n");
3074  }
3075 }
3076 
3077 static void __merge_work_atoms(struct rb_root *root, struct work_atoms *data)
3078 {
3079  struct rb_node **new = &(root->rb_node), *parent = NULL;
3080  struct work_atoms *this;
3081  const char *comm = thread__comm_str(data->thread), *this_comm;
3082 
3083  while (*new) {
3084  int cmp;
3085 
3086  this = container_of(*new, struct work_atoms, node);
3087  parent = *new;
3088 
3089  this_comm = thread__comm_str(this->thread);
3090  cmp = strcmp(comm, this_comm);
3091  if (cmp > 0) {
3092  new = &((*new)->rb_left);
3093  } else if (cmp < 0) {
3094  new = &((*new)->rb_right);
3095  } else {
3096  this->num_merged++;
3097  this->total_runtime += data->total_runtime;
3098  this->nb_atoms += data->nb_atoms;
3099  this->total_lat += data->total_lat;
3100  list_splice(&data->work_list, &this->work_list);
3101  if (this->max_lat < data->max_lat) {
3102  this->max_lat = data->max_lat;
3103  this->max_lat_at = data->max_lat_at;
3104  }
3105  zfree(&data);
3106  return;
3107  }
3108  }
3109 
3110  data->num_merged++;
3111  rb_link_node(&data->node, parent, new);
3112  rb_insert_color(&data->node, root);
3113 }
3114 
3115 static void perf_sched__merge_lat(struct perf_sched *sched)
3116 {
3117  struct work_atoms *data;
3118  struct rb_node *node;
3119 
3120  if (sched->skip_merge)
3121  return;
3122 
3123  while ((node = rb_first(&sched->atom_root))) {
3124  rb_erase(node, &sched->atom_root);
3125  data = rb_entry(node, struct work_atoms, node);
3126  __merge_work_atoms(&sched->merged_atom_root, data);
3127  }
3128 }
3129 
3130 static int perf_sched__lat(struct perf_sched *sched)
3131 {
3132  struct rb_node *next;
3133 
3134  setup_pager();
3135 
3136  if (perf_sched__read_events(sched))
3137  return -1;
3138 
3139  perf_sched__merge_lat(sched);
3140  perf_sched__sort_lat(sched);
3141 
3142  printf("\n -----------------------------------------------------------------------------------------------------------------\n");
3143  printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n");
3144  printf(" -----------------------------------------------------------------------------------------------------------------\n");
3145 
3146  next = rb_first(&sched->sorted_atom_root);
3147 
3148  while (next) {
3149  struct work_atoms *work_list;
3150 
3151  work_list = rb_entry(next, struct work_atoms, node);
3152  output_lat_thread(sched, work_list);
3153  next = rb_next(next);
3154  thread__zput(work_list->thread);
3155  }
3156 
3157  printf(" -----------------------------------------------------------------------------------------------------------------\n");
3158  printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n",
3159  (double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3160 
3161  printf(" ---------------------------------------------------\n");
3162 
3163  print_bad_events(sched);
3164  printf("\n");
3165 
3166  return 0;
3167 }
3168 
3169 static int setup_map_cpus(struct perf_sched *sched)
3170 {
3171  struct cpu_map *map;
3172 
3173  sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF);
3174 
3175  if (sched->map.comp) {
3176  sched->map.comp_cpus = zalloc(sched->max_cpu * sizeof(int));
3177  if (!sched->map.comp_cpus)
3178  return -1;
3179  }
3180 
3181  if (!sched->map.cpus_str)
3182  return 0;
3183 
3184  map = cpu_map__new(sched->map.cpus_str);
3185  if (!map) {
3186  pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3187  return -1;
3188  }
3189 
3190  sched->map.cpus = map;
3191  return 0;
3192 }
3193 
3194 static int setup_color_pids(struct perf_sched *sched)
3195 {
3196  struct thread_map *map;
3197 
3198  if (!sched->map.color_pids_str)
3199  return 0;
3200 
3202  if (!map) {
3203  pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3204  return -1;
3205  }
3206 
3207  sched->map.color_pids = map;
3208  return 0;
3209 }
3210 
3211 static int setup_color_cpus(struct perf_sched *sched)
3212 {
3213  struct cpu_map *map;
3214 
3215  if (!sched->map.color_cpus_str)
3216  return 0;
3217 
3218  map = cpu_map__new(sched->map.color_cpus_str);
3219  if (!map) {
3220  pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3221  return -1;
3222  }
3223 
3224  sched->map.color_cpus = map;
3225  return 0;
3226 }
3227 
3228 static int perf_sched__map(struct perf_sched *sched)
3229 {
3230  if (setup_map_cpus(sched))
3231  return -1;
3232 
3233  if (setup_color_pids(sched))
3234  return -1;
3235 
3236  if (setup_color_cpus(sched))
3237  return -1;
3238 
3239  setup_pager();
3240  if (perf_sched__read_events(sched))
3241  return -1;
3242  print_bad_events(sched);
3243  return 0;
3244 }
3245 
3246 static int perf_sched__replay(struct perf_sched *sched)
3247 {
3248  unsigned long i;
3249 
3252 
3253  test_calibrations(sched);
3254 
3255  if (perf_sched__read_events(sched))
3256  return -1;
3257 
3258  printf("nr_run_events: %ld\n", sched->nr_run_events);
3259  printf("nr_sleep_events: %ld\n", sched->nr_sleep_events);
3260  printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events);
3261 
3262  if (sched->targetless_wakeups)
3263  printf("target-less wakeups: %ld\n", sched->targetless_wakeups);
3264  if (sched->multitarget_wakeups)
3265  printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3266  if (sched->nr_run_events_optimized)
3267  printf("run atoms optimized: %ld\n",
3268  sched->nr_run_events_optimized);
3269 
3270  print_task_traces(sched);
3271  add_cross_task_wakeups(sched);
3272 
3273  create_tasks(sched);
3274  printf("------------------------------------------------------------\n");
3275  for (i = 0; i < sched->replay_repeat; i++)
3276  run_one_test(sched);
3277 
3278  return 0;
3279 }
3280 
3281 static void setup_sorting(struct perf_sched *sched, const struct option *options,
3282  const char * const usage_msg[])
3283 {
3284  char *tmp, *tok, *str = strdup(sched->sort_order);
3285 
3286  for (tok = strtok_r(str, ", ", &tmp);
3287  tok; tok = strtok_r(NULL, ", ", &tmp)) {
3288  if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3289  usage_with_options_msg(usage_msg, options,
3290  "Unknown --sort key: `%s'", tok);
3291  }
3292  }
3293 
3294  free(str);
3295 
3296  sort_dimension__add("pid", &sched->cmp_pid);
3297 }
3298 
3299 static int __cmd_record(int argc, const char **argv)
3300 {
3301  unsigned int rec_argc, i, j;
3302  const char **rec_argv;
3303  const char * const record_args[] = {
3304  "record",
3305  "-a",
3306  "-R",
3307  "-m", "1024",
3308  "-c", "1",
3309  "-e", "sched:sched_switch",
3310  "-e", "sched:sched_stat_wait",
3311  "-e", "sched:sched_stat_sleep",
3312  "-e", "sched:sched_stat_iowait",
3313  "-e", "sched:sched_stat_runtime",
3314  "-e", "sched:sched_process_fork",
3315  "-e", "sched:sched_wakeup",
3316  "-e", "sched:sched_wakeup_new",
3317  "-e", "sched:sched_migrate_task",
3318  };
3319 
3320  rec_argc = ARRAY_SIZE(record_args) + argc - 1;
3321  rec_argv = calloc(rec_argc + 1, sizeof(char *));
3322 
3323  if (rec_argv == NULL)
3324  return -ENOMEM;
3325 
3326  for (i = 0; i < ARRAY_SIZE(record_args); i++)
3327  rec_argv[i] = strdup(record_args[i]);
3328 
3329  for (j = 1; j < (unsigned int)argc; j++, i++)
3330  rec_argv[i] = argv[j];
3331 
3332  BUG_ON(i != rec_argc);
3333 
3334  return cmd_record(i, rec_argv);
3335 }
3336 
3337 int cmd_sched(int argc, const char **argv)
3338 {
3339  const char default_sort_order[] = "avg, max, switch, runtime";
3340  struct perf_sched sched = {
3341  .tool = {
3343  .comm = perf_sched__process_comm,
3344  .namespaces = perf_event__process_namespaces,
3345  .lost = perf_event__process_lost,
3347  .ordered_events = true,
3348  },
3349  .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid),
3350  .sort_list = LIST_HEAD_INIT(sched.sort_list),
3351  .start_work_mutex = PTHREAD_MUTEX_INITIALIZER,
3352  .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
3353  .sort_order = default_sort_order,
3354  .replay_repeat = 10,
3355  .profile_cpu = -1,
3356  .next_shortname1 = 'A',
3357  .next_shortname2 = '0',
3358  .skip_merge = 0,
3359  .show_callchain = 1,
3360  .max_stack = 5,
3361  };
3362  const struct option sched_options[] = {
3363  OPT_STRING('i', "input", &input_name, "file",
3364  "input file name"),
3365  OPT_INCR('v', "verbose", &verbose,
3366  "be more verbose (show symbol address, etc)"),
3367  OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3368  "dump raw trace in ASCII"),
3369  OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3370  OPT_END()
3371  };
3372  const struct option latency_options[] = {
3373  OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3374  "sort by key(s): runtime, switch, avg, max"),
3375  OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3376  "CPU to profile on"),
3377  OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3378  "latency stats per pid instead of per comm"),
3379  OPT_PARENT(sched_options)
3380  };
3381  const struct option replay_options[] = {
3382  OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3383  "repeat the workload replay N times (-1: infinite)"),
3384  OPT_PARENT(sched_options)
3385  };
3386  const struct option map_options[] = {
3387  OPT_BOOLEAN(0, "compact", &sched.map.comp,
3388  "map output in compact mode"),
3389  OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3390  "highlight given pids in map"),
3391  OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3392  "highlight given CPUs in map"),
3393  OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3394  "display given CPUs in map"),
3395  OPT_PARENT(sched_options)
3396  };
3397  const struct option timehist_options[] = {
3398  OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3399  "file", "vmlinux pathname"),
3400  OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3401  "file", "kallsyms pathname"),
3402  OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3403  "Display call chains if present (default on)"),
3404  OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3405  "Maximum number of functions to display backtrace."),
3406  OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3407  "Look for files with symbols relative to this directory"),
3408  OPT_BOOLEAN('s', "summary", &sched.summary_only,
3409  "Show only syscall summary with statistics"),
3410  OPT_BOOLEAN('S', "with-summary", &sched.summary,
3411  "Show all syscalls and summary with statistics"),
3412  OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3413  OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3414  OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3415  OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3416  OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3417  OPT_STRING(0, "time", &sched.time_str, "str",
3418  "Time span for analysis (start,stop)"),
3419  OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3420  OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3421  "analyze events only for given process id(s)"),
3422  OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3423  "analyze events only for given thread id(s)"),
3424  OPT_PARENT(sched_options)
3425  };
3426 
3427  const char * const latency_usage[] = {
3428  "perf sched latency [<options>]",
3429  NULL
3430  };
3431  const char * const replay_usage[] = {
3432  "perf sched replay [<options>]",
3433  NULL
3434  };
3435  const char * const map_usage[] = {
3436  "perf sched map [<options>]",
3437  NULL
3438  };
3439  const char * const timehist_usage[] = {
3440  "perf sched timehist [<options>]",
3441  NULL
3442  };
3443  const char *const sched_subcommands[] = { "record", "latency", "map",
3444  "replay", "script",
3445  "timehist", NULL };
3446  const char *sched_usage[] = {
3447  NULL,
3448  NULL
3449  };
3450  struct trace_sched_handler lat_ops = {
3452  .switch_event = latency_switch_event,
3453  .runtime_event = latency_runtime_event,
3454  .migrate_task_event = latency_migrate_task_event,
3455  };
3456  struct trace_sched_handler map_ops = {
3458  };
3459  struct trace_sched_handler replay_ops = {
3461  .switch_event = replay_switch_event,
3462  .fork_event = replay_fork_event,
3463  };
3464  unsigned int i;
3465 
3466  for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
3467  sched.curr_pid[i] = -1;
3468 
3469  argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3470  sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3471  if (!argc)
3472  usage_with_options(sched_usage, sched_options);
3473 
3474  /*
3475  * Aliased to 'perf script' for now:
3476  */
3477  if (!strcmp(argv[0], "script"))
3478  return cmd_script(argc, argv);
3479 
3480  if (!strncmp(argv[0], "rec", 3)) {
3481  return __cmd_record(argc, argv);
3482  } else if (!strncmp(argv[0], "lat", 3)) {
3483  sched.tp_handler = &lat_ops;
3484  if (argc > 1) {
3485  argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3486  if (argc)
3487  usage_with_options(latency_usage, latency_options);
3488  }
3489  setup_sorting(&sched, latency_options, latency_usage);
3490  return perf_sched__lat(&sched);
3491  } else if (!strcmp(argv[0], "map")) {
3492  if (argc) {
3493  argc = parse_options(argc, argv, map_options, map_usage, 0);
3494  if (argc)
3495  usage_with_options(map_usage, map_options);
3496  }
3497  sched.tp_handler = &map_ops;
3498  setup_sorting(&sched, latency_options, latency_usage);
3499  return perf_sched__map(&sched);
3500  } else if (!strncmp(argv[0], "rep", 3)) {
3501  sched.tp_handler = &replay_ops;
3502  if (argc) {
3503  argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3504  if (argc)
3505  usage_with_options(replay_usage, replay_options);
3506  }
3507  return perf_sched__replay(&sched);
3508  } else if (!strcmp(argv[0], "timehist")) {
3509  if (argc) {
3510  argc = parse_options(argc, argv, timehist_options,
3511  timehist_usage, 0);
3512  if (argc)
3513  usage_with_options(timehist_usage, timehist_options);
3514  }
3515  if ((sched.show_wakeups || sched.show_next) &&
3516  sched.summary_only) {
3517  pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3518  parse_options_usage(timehist_usage, timehist_options, "s", true);
3519  if (sched.show_wakeups)
3520  parse_options_usage(NULL, timehist_options, "w", true);
3521  if (sched.show_next)
3522  parse_options_usage(NULL, timehist_options, "n", true);
3523  return -EINVAL;
3524  }
3525 
3526  return perf_sched__timehist(&sched);
3527  } else {
3528  usage_with_options(sched_usage, sched_options);
3529  }
3530 
3531  return 0;
3532 }
pthread_mutex_t work_done_wait_mutex
static void setup_sorting(struct perf_sched *sched, const struct option *options, const char *const usage_msg[])
struct list_head val
Definition: callchain.h:57
static bool thread__is_filtered(struct thread *thread)
Definition: thread.h:114
struct thread_map * thread_map__new_by_tid_str(const char *tid_str)
Definition: thread_map.c:277
int perf_event__process_attr(struct perf_tool *tool __maybe_unused, union perf_event *event, struct perf_evlist **pevlist)
Definition: header.c:3721
sem_t * wait_sem
Definition: builtin-sched.c:80
def avg(total, n)
Definition: Util.py:19
struct list_head list
Definition: callchain.h:128
u64 runavg_parent_cpu_usage
int color_fprintf(FILE *fp, const char *color, const char *fmt,...)
Definition: color.c:123
static int setup_color_pids(struct perf_sched *sched)
event_op lost
Definition: tool.h:47
Definition: mem2node.c:7
static int perf_timehist__process_sample(struct perf_tool *tool, union perf_event *event, struct perf_sample *sample, struct perf_evsel *evsel, struct machine *machine)
static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel, struct perf_sample *sample, struct machine *machine)
static struct thread * timehist_get_thread(struct perf_sched *sched, struct perf_sample *sample, struct machine *machine, struct perf_evsel *evsel)
const struct trace_sched_handler * tp_handler
static char idle_comm[]
static int perf_sched__lat(struct perf_sched *sched)
struct thread * curr_thread[MAX_CPUS]
static int process_sched_migrate_task_event(struct perf_tool *tool, struct perf_evsel *evsel, struct perf_sample *sample, struct machine *machine)
double avg_stats(struct stats *stats)
Definition: stat.c:26
static struct task_desc * register_pid(struct perf_sched *sched, unsigned long pid, const char *comm)
struct perf_evlist * evlist
Definition: session.h:25
unsigned long nr_events
Definition: builtin-sched.c:54
pthread_t thread
Definition: builtin-sched.c:58
bool summary_only
static int replay_wakeup_event(struct perf_sched *sched, struct perf_evsel *evsel, struct perf_sample *sample, struct machine *machine __maybe_unused)
struct list_head list
#define EVSEL__PRINT_ONELINE
Definition: evsel.h:426
const char * time_str
#define TASK_RUNNING
Definition: builtin-sched.c:87
static int replay_switch_event(struct perf_sched *sched, struct perf_evsel *evsel, struct perf_sample *sample, struct machine *machine __maybe_unused)
static int show_thread_runtime(struct thread *t, void *priv)
int callchain_cursor__copy(struct callchain_cursor *dst, struct callchain_cursor *src)
Definition: callchain.c:1544
sem_t sleep_sem
Definition: builtin-sched.c:59
int machine__resolve(struct machine *machine, struct addr_location *al, struct perf_sample *sample)
Definition: event.c:1601
static void print_thread_runtime(struct thread *t, struct thread_runtime *r)
static void timehist_header(struct perf_sched *sched)
const char * vmlinux_name
Definition: symbol.h:123
unsigned long nr_timestamps
struct rb_node node
struct callchain_root callchain
static u64 get_nsecs(void)
pid_t pid_
Definition: thread.h:24
unsigned long multitarget_wakeups
int specific_wait
Definition: builtin-sched.c:76
static void run_one_test(struct perf_sched *sched)
static void perf_sched__process_event(struct perf_sched *sched, struct sched_atom *atom)
size_t size
Definition: evsel.c:60
u32 tid
Definition: event.h:53
static int perf_sched__map(struct perf_sched *sched)
bool show_callchain
struct task_desc ** tasks
int cmd_record(int argc, const char **argv)
bool dead
Definition: thread.h:31
static int process_sched_runtime_event(struct perf_tool *tool, struct perf_evsel *evsel, struct perf_sample *sample, struct machine *machine)
unsigned int max_stack
unsigned long nr_runs
struct machine host
Definition: machine.h:136
static int comm_width
static void callchain_cursor_reset(struct callchain_cursor *cursor)
Definition: callchain.h:194
static void timehist_print_migration_event(struct perf_sched *sched, struct perf_evsel *evsel, struct perf_sample *sample, struct machine *machine, struct thread *migrated)
static void test_calibrations(struct perf_sched *sched)
bool show_migrations
#define thread__zput(thread)
Definition: thread.h:64
struct symbol * sym
Definition: symbol.h:181
const char name[20]
Definition: builtin-kmem.c:428
int(* migrate_task_event)(struct perf_sched *sched, struct perf_evsel *evsel, struct perf_sample *sample, struct machine *machine)
int perf_event__process_mmap(struct perf_tool *tool __maybe_unused, union perf_event *event, struct perf_sample *sample, struct machine *machine)
Definition: event.c:1385
u32 pid
Definition: event.h:52
const char * graph_dotted_line
Definition: ctype.c:38
static struct perf_time_interval ptime
Definition: builtin-kmem.c:77
Definition: genelf.c:61
__thread struct callchain_cursor callchain_cursor
Definition: callchain.c:53
pid_t ppid
Definition: thread.h:26
static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
dictionary data
Definition: stat-cpi.py:4
#define TASK_STATE_TO_CHAR_STR
Definition: builtin-sched.c:84
static int add_sched_out_event(struct work_atoms *atoms, char run_state, u64 timestamp)
static bool is_idle_sample(struct perf_sample *sample, struct perf_evsel *evsel)
struct ip_callchain * callchain
Definition: event.h:211
struct callchain_cursor cursor
int int err
Definition: 5sec.c:44
char * callchain_list__sym_name(struct callchain_list *cl, char *bf, size_t bfsize, bool show_dso)
Definition: callchain.c:1139
struct symbol * sym
Definition: callchain.h:140
struct rb_root root
Definition: block-range.c:6
int nr_cpus_online
Definition: env.h:41
static struct sched_atom * last_event(struct task_desc *task)
int sample__fprintf_sym(struct perf_sample *sample, struct addr_location *al, int left_alignment, unsigned int print_opts, struct callchain_cursor *cursor, FILE *fp)
static struct evsel_runtime * perf_evsel__get_runtime(struct perf_evsel *evsel)
static void perf_sched__sort_lat(struct perf_sched *sched)
struct perf_data_file file
Definition: data.h:18
int machine__for_each_thread(struct machine *machine, int(*fn)(struct thread *thread, void *p), void *priv)
Definition: machine.c:2345
event_op2 tracing_data
Definition: tool.h:62
const char * tid_list_str
Definition: symbol.h:131
thread_state
static struct thread_runtime * thread__init_runtime(struct thread *thread)
unsigned long curr_event
Definition: builtin-sched.c:55
enum chain_value value
Definition: callchain.h:107
struct perf_env env
Definition: header.h:82
unsigned long nr_sleep_events
struct task_desc * wakee
Definition: builtin-sched.c:81
static struct work_atoms * thread_atoms_search(struct rb_root *root, struct thread *thread, struct list_head *sort_list)
unsigned long nr_sleep_corrections
static void * thread_func(void *ctx)
u64 total_lost
Definition: event.h:402
static struct thread * map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
int perf_event__process_comm(struct perf_tool *tool __maybe_unused, union perf_event *event, struct perf_sample *sample, struct machine *machine)
Definition: event.c:1273
static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task, u64 timestamp, u64 task_state __maybe_unused)
int perf_event__process_exit(struct perf_tool *tool __maybe_unused, union perf_event *event, struct perf_sample *sample, struct machine *machine)
Definition: event.c:1416
static void callchain_cursor_commit(struct callchain_cursor *cursor)
Definition: callchain.h:212
static int sys_perf_event_open(struct perf_event_attr *attr, pid_t pid, int cpu, int group_fd, unsigned long flags)
Definition: perf-sys.h:58
Definition: cpumap.h:12
int timestamp__scnprintf_usec(u64 timestamp, char *buf, size_t sz)
Definition: time-utils.c:399
static void timehist_print_wakeup_event(struct perf_sched *sched, struct perf_evsel *evsel, struct perf_sample *sample, struct machine *machine, struct thread *awakened)
int perf_event__process_fork(struct perf_tool *tool __maybe_unused, union perf_event *event, struct perf_sample *sample, struct machine *machine)
Definition: event.c:1408
static u64 perf_evsel__get_time(struct perf_evsel *evsel, u32 cpu)
static void timehist_print_summary(struct perf_sched *sched, struct perf_session *session)
static int perf_sched__read_events(struct perf_sched *sched)
int(* fork_event)(struct perf_sched *sched, union perf_event *event, struct machine *machine)
static void save_task_callchain(struct perf_sched *sched, struct perf_sample *sample, struct perf_evsel *evsel, struct machine *machine)
double stddev_stats(struct stats *stats)
Definition: stat.c:47
u64 runavg_cpu_usage
static void print_sched_time(unsigned long long nsecs, int width)
bool perf_time__skip_sample(struct perf_time_interval *ptime, u64 timestamp)
Definition: time-utils.c:356
int perf_event__process_build_id(struct perf_tool *tool __maybe_unused, union perf_event *event, struct perf_session *session)
Definition: header.c:3922
struct perf_time_interval ptime
#define PR_SET_NAME
Definition: builtin-sched.c:41
static u64 get_cpu_usage_nsec_parent(void)
bool perf_session__has_traces(struct perf_session *session, const char *msg)
Definition: session.c:1963
void thread__delete(struct thread *thread)
Definition: thread.c:76
#define pr_err(fmt,...)
Definition: json.h:21
x86 movsq based memset() in arch/x86/lib/memset_64.S") MEMSET_FN(memset_erms
int cmd_script(int argc, const char **argv)
#define TASK_UNINTERRUPTIBLE
Definition: builtin-sched.c:89
static void perf_evsel__save_time(struct perf_evsel *evsel, u64 timestamp, u32 cpu)
static int latency_wakeup_event(struct perf_sched *sched, struct perf_evsel *evsel, struct perf_sample *sample, struct machine *machine)
void perf_session__delete(struct perf_session *session)
Definition: session.c:187
#define min(x, y)
Definition: jevents.h:15
const char * sort_order
unsigned long nr_context_switch_bugs
void * ptr
Definition: comm.h:11
static void init_stats(struct stats *stats)
Definition: stat.h:103
struct sched_atom ** atoms
Definition: builtin-sched.c:56
#define COMM_LEN
Definition: builtin-sched.c:43
#define PERF_COLOR_NORMAL
Definition: color.h:10
u64 min
Definition: stat.h:12
static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
static int idle_max_cpu
enum chain_mode mode
Definition: callchain.h:98
void * malloc(YYSIZE_T)
struct task_desc ** pid_to_task
static void create_tasks(struct perf_sched *sched)
const char * cpus_str
static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
struct cpu_map * cpus
sort_fn_t cmp
Definition: builtin-kmem.c:429
struct stats run_stats
int(* sched_handler)(struct perf_tool *tool, union perf_event *event, struct perf_evsel *evsel, struct perf_sample *sample, struct machine *machine)
#define EVSEL__PRINT_CALLCHAIN_ARROW
Definition: evsel.h:429
unsigned int count
Definition: callchain.h:64
struct thread * machine__find_thread(struct machine *machine, pid_t pid, pid_t tid)
Definition: machine.c:504
#define MAX_PID
Definition: builtin-sched.c:45
Definition: thread.h:18
const char * symfs
Definition: symbol.h:148
static int process_lost(struct perf_tool *tool __maybe_unused, union perf_event *event, struct perf_sample *sample, struct machine *machine __maybe_unused)
const char * name
static int sort_dimension__add(const char *tok, struct list_head *list)
u64 sched_out_time
const char * thread__comm_str(const struct thread *thread)
Definition: thread.c:258
char comm[COMM_LEN]
Definition: builtin-sched.c:52
struct rb_root sorted_root
#define MAX_CPUS
Definition: builtin-sched.c:42
unsigned long nr_tasks
#define pr_debug(fmt,...)
Definition: json.h:27
static bool timehist_skip_sample(struct perf_sched *sched, struct thread *thread, struct perf_evsel *evsel, struct perf_sample *sample)
static char * timehist_get_commstr(struct thread *thread)
Definition: tool.h:44
u64 sched_in_time
void update_stats(struct stats *stats, u64 val)
Definition: stat.c:10
static struct perf_session * session
Definition: builtin-lock.c:34
struct thread * thread
struct thread * last_thread
static bool thread__has_color(struct thread *thread)
static int replay_fork_event(struct perf_sched *sched, union perf_event *event, struct machine *machine)
static void callchain_cursor_advance(struct callchain_cursor *cursor)
Definition: callchain.h:228
static void timehist_print_sample(struct perf_sched *sched, struct perf_evsel *evsel, struct perf_sample *sample, struct addr_location *al, struct thread *thread, u64 t, int state)
int cpu
Definition: thread.h:27
const char * default_sort_order
Definition: sort.c:21
static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task, u64 timestamp, struct task_desc *wakee)
static char * perf_evsel__strval(struct perf_evsel *evsel, struct perf_sample *sample, const char *name)
Definition: evsel.h:292
static void wait_for_tasks(struct perf_sched *sched)
u64 parent_cpu_usage
static void print_thread_waittime(struct thread *t, struct thread_runtime *r)
struct callchain_node * parent
Definition: callchain.h:56
struct task_desc * task
static int max_cmp(struct work_atoms *l, struct work_atoms *r)
static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
static void calibrate_run_measurement_overhead(struct perf_sched *sched)
event_op exit
Definition: tool.h:47
static DECLARE_BITMAP(cpu_bitmap, MAX_NR_CPUS)
sort_chain_func_t sort
Definition: callchain.h:102
static struct perf_tool tool
Definition: builtin-diff.c:362
const char * name
sem_t ready_for_work
Definition: builtin-sched.c:61
u32 pid
Definition: event.h:193
pid_t tid
Definition: thread.h:25
u32 tid
Definition: event.h:193
static char task_state_char(struct thread *thread, int state)
static int str(yyscan_t scanner, int token)
static int timehist_sched_switch_event(struct perf_tool *tool, union perf_event *event, struct perf_evsel *evsel, struct perf_sample *sample, struct machine *machine __maybe_unused)
bool thread_map__has(struct thread_map *threads, pid_t pid)
Definition: thread_map.c:457
char name[0]
Definition: symbol.h:66
unsigned long targetless_wakeups
const char * input_name
Definition: perf.c:40
int cmd_sched(int argc, const char **argv)
double rel_stddev_stats(double stddev, double avg)
Definition: stat.c:60
unsigned long nr_run_events_optimized
static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task, u64 timestamp, u64 duration)
struct list_head work_list
static int setup_color_cpus(struct perf_sched *sched)
bool ordered_events
Definition: tool.h:76
u64 run_measurement_overhead
struct lost_event lost
Definition: event.h:630
unsigned long nr_wakeup_events
static int perf_sched__replay(struct perf_sched *sched)
static int show_deadthread_runtime(struct thread *t, void *priv)
const char * pid_list_str
Definition: symbol.h:131
int callchain_append(struct callchain_root *root, struct callchain_cursor *cursor, u64 period)
Definition: callchain.c:969
#define event
struct thread_map_data map[]
Definition: thread_map.h:18
static void add_cross_task_wakeups(struct perf_sched *sched)
struct fork_event fork
Definition: event.h:629
int(* wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel, struct perf_sample *sample, struct machine *machine)
u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample, const char *name)
Definition: evsel.c:2722
static void callchain_init(struct callchain_root *root)
Definition: callchain.h:160
static int perf_sched__process_comm(struct perf_tool *tool __maybe_unused, union perf_event *event, struct perf_sample *sample, struct machine *machine)
u32 cpu
Definition: event.h:201
u32 ptid
Definition: event.h:53
bool cpu_map__has(struct cpu_map *cpus, int cpu)
Definition: cpumap.c:616
int(* sort_fn_t)(struct work_atoms *, struct work_atoms *)
bool ordering_requires_timestamps
Definition: tool.h:77
static struct thread * get_idle_thread(int cpu)
Definition: data.h:17
struct perf_time_interval hist_time
static int process_sched_switch_event(struct perf_tool *tool, struct perf_evsel *evsel, struct perf_sample *sample, struct machine *machine)
#define COLOR_CPUS
static u64 get_cpu_usage_nsec_self(int fd)
int perf_event__process_tracing_data(struct perf_tool *tool __maybe_unused, union perf_event *event, struct perf_session *session)
Definition: header.c:3854
int map[]
Definition: cpumap.h:15
struct perf_sched_map map
struct perf_tool tool
unsigned long nr_run_events
#define NSEC_PER_SEC
Definition: jvmti_agent.c:101
u64 wake_up_time
static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
#define zfree(ptr)
Definition: util.h:25
const char * perf_evsel__name(struct perf_evsel *evsel)
Definition: evsel.c:577
u32 curr_pid[MAX_CPUS]
static void sleep_nsecs(u64 nsecs)
double n
Definition: stat.h:11
struct thread_runtime tr
struct rb_root atom_root sorted_atom_root merged_atom_root
struct perf_event_header header
Definition: event.h:624
struct perf_sched * sched
static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused, union perf_event *event __maybe_unused, struct perf_sample *sample, struct perf_evsel *evsel, struct machine *machine)
static int timehist_migrate_task_event(struct perf_tool *tool, union perf_event *event __maybe_unused, struct perf_evsel *evsel, struct perf_sample *sample, struct machine *machine)
static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
static struct sched_atom * get_new_event(struct task_desc *task, u64 timestamp)
static int thread__set_comm(struct thread *thread, const char *comm, u64 timestamp)
Definition: thread.h:77
unsigned long nr_events
unsigned long perf_event_open_cloexec_flag(void)
Definition: cloexec.c:93
static void timehist_update_runtime_stats(struct thread_runtime *r, u64 t, u64 tprev)
#define EVSEL__PRINT_SKIP_IGNORED
Definition: evsel.h:430
unsigned long nr_lost_chunks
u8 ignore
Definition: symbol.h:63
int(* runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel, struct perf_sample *sample, struct machine *machine)
struct perf_session * perf_session__new(struct perf_data *data, bool repipe, struct perf_tool *tool)
Definition: session.c:116
const char * kallsyms_name
Definition: symbol.h:123
#define COLOR_PIDS
void thread__put(struct thread *thread)
Definition: thread.c:119
static int thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
u64 max
Definition: stat.h:12
Definition: jevents.c:228
bool use_callchain
Definition: symbol.h:93
static int process_sched_wakeup_event(struct perf_tool *tool, struct perf_evsel *evsel, struct perf_sample *sample, struct machine *machine)
int perf_session__process_events(struct perf_session *session)
Definition: session.c:1945
static int __cmd_record(int argc, const char **argv)
char next_shortname2
Definition: stat.h:10
static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
static int latency_runtime_event(struct perf_sched *sched, struct perf_evsel *evsel, struct perf_sample *sample, struct machine *machine)
static int sym(yyscan_t scanner, int type, int config)
enum thread_state state
u64 time
Definition: event.h:194
static int timehist_sched_wakeup_event(struct perf_tool *tool, union perf_event *event __maybe_unused, struct perf_evsel *evsel, struct perf_sample *sample, struct machine *machine)
struct events_stats stats
Definition: evlist.h:50
struct perf_evsel * perf_evlist__find_tracepoint_by_name(struct perf_evlist *evlist, const char *name)
Definition: evlist.c:320
u64 cpu_last_switched[MAX_CPUS]
static unsigned int ncpus
Definition: futex-wake.c:45
unsigned long nr_lost_events
struct thread * thread__new(pid_t pid, pid_t tid)
Definition: thread.c:36
const char * color_pids_str
struct perf_header header
Definition: session.h:23
event_op comm
Definition: tool.h:47
bool dump_trace
Definition: debug.c:27
int symbol__init(struct perf_env *env)
Definition: symbol.c:2112
static unsigned int nsecs
Definition: futex-hash.c:32
static void perf_sched__merge_lat(struct perf_sched *sched)
void * priv
Definition: evsel.h:108
#define pr_info(fmt,...)
Definition: json.h:24
sched_event_type
Definition: builtin-sched.c:67
#define STRERR_BUFSIZE
Definition: debug.h:43
void free(void *)
static int init_idle_thread(struct thread *thread)
static void __thread_latency_insert(struct rb_root *root, struct work_atoms *data, struct list_head *sort_list)
static void free_idle_threads(void)
unsigned int replay_repeat
#define EVSEL__PRINT_SYM
Definition: evsel.h:423
u32 nr_events[PERF_RECORD_HEADER_MAX]
Definition: event.h:407
static void save_idle_callchain(struct perf_sched *sched, struct idle_thread_runtime *itr, struct perf_sample *sample)
static size_t timehist_print_idlehist_callchain(struct rb_root *root)
static struct thread_runtime * thread__get_runtime(struct thread *thread)
unsigned long pid
Definition: builtin-sched.c:51
static void add_runtime_event(struct work_atoms *atoms, u64 delta, u64 timestamp __maybe_unused)
int(* switch_event)(struct perf_sched *sched, struct perf_evsel *evsel, struct perf_sample *sample, struct machine *machine)
static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
static void print_task_traces(struct perf_sched *sched)
static void __merge_work_atoms(struct rb_root *root, struct work_atoms *data)
static FILE * f
Definition: intel-pt-log.c:30
enum sched_event_type type
Definition: builtin-sched.c:75
static void thread__set_priv(struct thread *thread, void *p)
Definition: thread.h:109
int perf_event__process_lost(struct perf_tool *tool __maybe_unused, union perf_event *event, struct perf_sample *sample, struct machine *machine)
Definition: event.c:1289
struct thread_map * color_pids
Definition: attr.py:1
int verbose
Definition: jevents.c:53
Definition: symbol.h:55
int thread__resolve_callchain(struct thread *thread, struct callchain_cursor *cursor, struct perf_evsel *evsel, struct perf_sample *sample, struct symbol **parent, struct addr_location *root_al, int max_stack)
Definition: machine.c:2308
static void add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
u64 sleep_measurement_overhead
char next_shortname1
bool show_cpu_visual
struct map_symbol ms
Definition: callchain.h:115
struct thread * thread__get(struct thread *thread)
Definition: thread.c:112
event_op fork
Definition: tool.h:47
unsigned long nr
Definition: builtin-sched.c:79
event_attr_op attr
Definition: tool.h:60
static int latency_switch_event(struct perf_sched *sched, struct perf_evsel *evsel, struct perf_sample *sample, struct machine *machine)
struct cpu_map * cpu_map__new(const char *cpu_list)
Definition: cpumap.c:125
#define perf_session__set_tracepoints_handlers(session, array)
Definition: session.h:112
static int perf_sched__process_fork_event(struct perf_tool *tool, union perf_event *event, struct perf_sample *sample, struct machine *machine)
const char * color_cpus_str
static bool evsel__has_callchain(const struct perf_evsel *evsel)
Definition: evsel.h:462
u64 lost
Definition: event.h:60
event_op mmap
Definition: tool.h:47
static int __show_thread_runtime(struct thread *t, void *priv)
u32 ppid
Definition: event.h:52
sem_t work_done_sem
Definition: builtin-sched.c:62
int perf_event__process_namespaces(struct perf_tool *tool __maybe_unused, union perf_event *event, struct perf_sample *sample, struct machine *machine)
Definition: event.c:1281
unsigned long nr
Definition: builtin-sched.c:50
static int setup_map_cpus(struct perf_sched *sched)
struct cpu_map * color_cpus
static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
int callchain_register_param(struct callchain_param *param)
Definition: callchain.c:494
static int timehist_check_attr(struct perf_sched *sched, struct perf_evlist *evlist)
event_op2 build_id
Definition: tool.h:64
static int perf_sched__timehist(struct perf_sched *sched)
struct list_head entries
Definition: evlist.h:28
const char * path
Definition: data.h:13
struct machines machines
Definition: session.h:24
u64 skipped_samples
static int init_idle_threads(int ncpu)
struct thread * machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
Definition: machine.c:492
int perf_time__parse_str(struct perf_time_interval *ptime, const char *ostr)
Definition: time-utils.c:91
static struct thread ** idle_threads
struct perf_sched * sched
bool show_wakeups
int(* tracepoint_handler)(struct perf_tool *tool, struct perf_evsel *evsel, struct perf_sample *sample, struct machine *machine)
static int timehist_sched_change_event(struct perf_tool *tool, union perf_event *event, struct perf_evsel *evsel, struct perf_sample *sample, struct machine *machine)
pthread_mutex_t start_work_mutex
static int latency_migrate_task_event(struct perf_sched *sched, struct perf_evsel *evsel, struct perf_sample *sample, struct machine *machine)
unsigned long nr_unordered_timestamps
struct timeval start end runtime
Definition: futex-hash.c:38
static struct callchain_cursor_node * callchain_cursor_current(struct callchain_cursor *cursor)
Definition: callchain.h:220
event_sample sample
Definition: tool.h:45
static void * thread__priv(struct thread *thread)
Definition: thread.h:104
void static void * zalloc(size_t size)
Definition: util.h:20
void * handler
Definition: evsel.h:111
static void print_bad_events(struct perf_sched *sched)
static char sched_out_state(u64 prev_state)
struct list_head sort_list cmp_pid