Linux Perf
numa.c
Go to the documentation of this file.
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * numa.c
4  *
5  * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
6  */
7 
8 #include <inttypes.h>
9 /* For the CLR_() macros */
10 #include <pthread.h>
11 
12 #include "../perf.h"
13 #include "../builtin.h"
14 #include "../util/util.h"
15 #include <subcmd/parse-options.h>
16 #include "../util/cloexec.h"
17 
18 #include "bench.h"
19 
20 #include <errno.h>
21 #include <sched.h>
22 #include <stdio.h>
23 #include <assert.h>
24 #include <malloc.h>
25 #include <signal.h>
26 #include <stdlib.h>
27 #include <string.h>
28 #include <unistd.h>
29 #include <sys/mman.h>
30 #include <sys/time.h>
31 #include <sys/resource.h>
32 #include <sys/wait.h>
33 #include <sys/prctl.h>
34 #include <sys/types.h>
35 #include <linux/kernel.h>
36 #include <linux/time64.h>
37 
38 #include <numa.h>
39 #include <numaif.h>
40 
41 /*
42  * Regular printout to the terminal, supressed if -q is specified:
43  */
44 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
45 
46 /*
47  * Debug printf:
48  */
49 #undef dprintf
50 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
51 
52 struct thread_data {
53  int curr_cpu;
54  cpu_set_t bind_cpumask;
55  int bind_node;
58  int thread_nr;
59  int task_nr;
60  unsigned int loops_done;
61  u64 val;
65  double speed_gbs;
66  pthread_mutex_t *process_lock;
67 };
68 
69 /* Parameters set by options: */
70 
71 struct params {
72  /* Startup synchronization: */
74 
75  /* Task hierarchy: */
76  int nr_proc;
78 
79  /* Working set sizes: */
80  const char *mb_global_str;
81  const char *mb_proc_str;
82  const char *mb_proc_locked_str;
83  const char *mb_thread_str;
84 
85  double mb_global;
86  double mb_proc;
88  double mb_thread;
89 
90  /* Access patterns to the working set: */
91  bool data_reads;
96  u32 nr_loops;
97  u32 nr_secs;
99 
100  /* Working set initialization: */
101  bool init_zero;
103  bool init_cpu0;
104 
105  /* Misc options: */
107  int run_all;
108  int thp;
109 
114 
115  int nr_tasks;
117 
120 
122  int nr_cpus;
123  int nr_nodes;
124 
125  /* Affinity options -C and -N: */
128 };
129 
130 
131 /* Global, read-writable area, accessible to all processes and threads: */
132 
133 struct global_info {
134  u8 *data;
135 
136  pthread_mutex_t startup_mutex;
138 
139  pthread_mutex_t startup_done_mutex;
140 
141  pthread_mutex_t start_work_mutex;
143 
144  pthread_mutex_t stop_work_mutex;
146 
148 
149  /* Convergence latency measurement: */
151  bool stop_work;
152 
154 
155  struct params p;
156 };
157 
158 static struct global_info *g = NULL;
159 
160 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
161 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
162 
163 struct params p0;
164 
165 static const struct option options[] = {
166  OPT_INTEGER('p', "nr_proc" , &p0.nr_proc, "number of processes"),
167  OPT_INTEGER('t', "nr_threads" , &p0.nr_threads, "number of threads per process"),
168 
169  OPT_STRING('G', "mb_global" , &p0.mb_global_str, "MB", "global memory (MBs)"),
170  OPT_STRING('P', "mb_proc" , &p0.mb_proc_str, "MB", "process memory (MBs)"),
171  OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
172  OPT_STRING('T', "mb_thread" , &p0.mb_thread_str, "MB", "thread memory (MBs)"),
173 
174  OPT_UINTEGER('l', "nr_loops" , &p0.nr_loops, "max number of loops to run (default: unlimited)"),
175  OPT_UINTEGER('s', "nr_secs" , &p0.nr_secs, "max number of seconds to run (default: 5 secs)"),
176  OPT_UINTEGER('u', "usleep" , &p0.sleep_usecs, "usecs to sleep per loop iteration"),
177 
178  OPT_BOOLEAN('R', "data_reads" , &p0.data_reads, "access the data via reads (can be mixed with -W)"),
179  OPT_BOOLEAN('W', "data_writes" , &p0.data_writes, "access the data via writes (can be mixed with -R)"),
180  OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards, "access the data backwards as well"),
181  OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
182  OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk, "access the data with random (32bit LFSR) walk"),
183 
184 
185  OPT_BOOLEAN('z', "init_zero" , &p0.init_zero, "bzero the initial allocations"),
186  OPT_BOOLEAN('I', "init_random" , &p0.init_random, "randomize the contents of the initial allocations"),
187  OPT_BOOLEAN('0', "init_cpu0" , &p0.init_cpu0, "do the initial allocations on CPU#0"),
188  OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs, "perturb thread 0/0 every X secs, to test convergence stability"),
189 
190  OPT_INCR ('d', "show_details" , &p0.show_details, "Show details"),
191  OPT_INCR ('a', "all" , &p0.run_all, "Run all tests in the suite"),
192  OPT_INTEGER('H', "thp" , &p0.thp, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
193  OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, "
194  "convergence is reached when each process (all its threads) is running on a single NUMA node."),
195  OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"),
196  OPT_BOOLEAN('q', "quiet" , &p0.show_quiet, "quiet mode"),
197  OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
198 
199  /* Special option string parsing callbacks: */
200  OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
201  "bind the first N tasks to these specific cpus (the rest is unbound)",
203  OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
204  "bind the first N tasks to these specific memory nodes (the rest is unbound)",
206  OPT_END()
207 };
208 
209 static const char * const bench_numa_usage[] = {
210  "perf bench numa <options>",
211  NULL
212 };
213 
214 static const char * const numa_usage[] = {
215  "perf bench numa mem [<options>]",
216  NULL
217 };
218 
219 /*
220  * To get number of numa nodes present.
221  */
222 static int nr_numa_nodes(void)
223 {
224  int i, nr_nodes = 0;
225 
226  for (i = 0; i < g->p.nr_nodes; i++) {
227  if (numa_bitmask_isbitset(numa_nodes_ptr, i))
228  nr_nodes++;
229  }
230 
231  return nr_nodes;
232 }
233 
234 /*
235  * To check if given numa node is present.
236  */
237 static int is_node_present(int node)
238 {
239  return numa_bitmask_isbitset(numa_nodes_ptr, node);
240 }
241 
242 /*
243  * To check given numa node has cpus.
244  */
245 static bool node_has_cpus(int node)
246 {
247  struct bitmask *cpu = numa_allocate_cpumask();
248  unsigned int i;
249 
250  if (cpu && !numa_node_to_cpus(node, cpu)) {
251  for (i = 0; i < cpu->size; i++) {
252  if (numa_bitmask_isbitset(cpu, i))
253  return true;
254  }
255  }
256 
257  return false; /* lets fall back to nocpus safely */
258 }
259 
260 static cpu_set_t bind_to_cpu(int target_cpu)
261 {
262  cpu_set_t orig_mask, mask;
263  int ret;
264 
265  ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
266  BUG_ON(ret);
267 
268  CPU_ZERO(&mask);
269 
270  if (target_cpu == -1) {
271  int cpu;
272 
273  for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
274  CPU_SET(cpu, &mask);
275  } else {
276  BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
277  CPU_SET(target_cpu, &mask);
278  }
279 
280  ret = sched_setaffinity(0, sizeof(mask), &mask);
281  BUG_ON(ret);
282 
283  return orig_mask;
284 }
285 
286 static cpu_set_t bind_to_node(int target_node)
287 {
288  int cpus_per_node = g->p.nr_cpus / nr_numa_nodes();
289  cpu_set_t orig_mask, mask;
290  int cpu;
291  int ret;
292 
293  BUG_ON(cpus_per_node * nr_numa_nodes() != g->p.nr_cpus);
294  BUG_ON(!cpus_per_node);
295 
296  ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
297  BUG_ON(ret);
298 
299  CPU_ZERO(&mask);
300 
301  if (target_node == -1) {
302  for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
303  CPU_SET(cpu, &mask);
304  } else {
305  int cpu_start = (target_node + 0) * cpus_per_node;
306  int cpu_stop = (target_node + 1) * cpus_per_node;
307 
308  BUG_ON(cpu_stop > g->p.nr_cpus);
309 
310  for (cpu = cpu_start; cpu < cpu_stop; cpu++)
311  CPU_SET(cpu, &mask);
312  }
313 
314  ret = sched_setaffinity(0, sizeof(mask), &mask);
315  BUG_ON(ret);
316 
317  return orig_mask;
318 }
319 
320 static void bind_to_cpumask(cpu_set_t mask)
321 {
322  int ret;
323 
324  ret = sched_setaffinity(0, sizeof(mask), &mask);
325  BUG_ON(ret);
326 }
327 
328 static void mempol_restore(void)
329 {
330  int ret;
331 
332  ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
333 
334  BUG_ON(ret);
335 }
336 
337 static void bind_to_memnode(int node)
338 {
339  unsigned long nodemask;
340  int ret;
341 
342  if (node == -1)
343  return;
344 
345  BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)*8);
346  nodemask = 1L << node;
347 
348  ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
349  dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
350 
351  BUG_ON(ret);
352 }
353 
354 #define HPSIZE (2*1024*1024)
355 
356 #define set_taskname(fmt...) \
357 do { \
358  char name[20]; \
359  \
360  snprintf(name, 20, fmt); \
361  prctl(PR_SET_NAME, name); \
362 } while (0)
363 
364 static u8 *alloc_data(ssize_t bytes0, int map_flags,
365  int init_zero, int init_cpu0, int thp, int init_random)
366 {
367  cpu_set_t orig_mask;
368  ssize_t bytes;
369  u8 *buf;
370  int ret;
371 
372  if (!bytes0)
373  return NULL;
374 
375  /* Allocate and initialize all memory on CPU#0: */
376  if (init_cpu0) {
377  orig_mask = bind_to_node(0);
378  bind_to_memnode(0);
379  }
380 
381  bytes = bytes0 + HPSIZE;
382 
383  buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
384  BUG_ON(buf == (void *)-1);
385 
386  if (map_flags == MAP_PRIVATE) {
387  if (thp > 0) {
388  ret = madvise(buf, bytes, MADV_HUGEPAGE);
389  if (ret && !g->print_once) {
390  g->print_once = 1;
391  printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
392  }
393  }
394  if (thp < 0) {
395  ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
396  if (ret && !g->print_once) {
397  g->print_once = 1;
398  printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
399  }
400  }
401  }
402 
403  if (init_zero) {
404  bzero(buf, bytes);
405  } else {
406  /* Initialize random contents, different in each word: */
407  if (init_random) {
408  u64 *wbuf = (void *)buf;
409  long off = rand();
410  long i;
411 
412  for (i = 0; i < bytes/8; i++)
413  wbuf[i] = i + off;
414  }
415  }
416 
417  /* Align to 2MB boundary: */
418  buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
419 
420  /* Restore affinity: */
421  if (init_cpu0) {
422  bind_to_cpumask(orig_mask);
423  mempol_restore();
424  }
425 
426  return buf;
427 }
428 
429 static void free_data(void *data, ssize_t bytes)
430 {
431  int ret;
432 
433  if (!data)
434  return;
435 
436  ret = munmap(data, bytes);
437  BUG_ON(ret);
438 }
439 
440 /*
441  * Create a shared memory buffer that can be shared between processes, zeroed:
442  */
443 static void * zalloc_shared_data(ssize_t bytes)
444 {
445  return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0, g->p.thp, g->p.init_random);
446 }
447 
448 /*
449  * Create a shared memory buffer that can be shared between processes:
450  */
451 static void * setup_shared_data(ssize_t bytes)
452 {
453  return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0, g->p.thp, g->p.init_random);
454 }
455 
456 /*
457  * Allocate process-local memory - this will either be shared between
458  * threads of this process, or only be accessed by this thread:
459  */
460 static void * setup_private_data(ssize_t bytes)
461 {
462  return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0, g->p.thp, g->p.init_random);
463 }
464 
465 /*
466  * Return a process-shared (global) mutex:
467  */
468 static void init_global_mutex(pthread_mutex_t *mutex)
469 {
470  pthread_mutexattr_t attr;
471 
472  pthread_mutexattr_init(&attr);
473  pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
474  pthread_mutex_init(mutex, &attr);
475 }
476 
477 static int parse_cpu_list(const char *arg)
478 {
479  p0.cpu_list_str = strdup(arg);
480 
481  dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
482 
483  return 0;
484 }
485 
486 static int parse_setup_cpu_list(void)
487 {
488  struct thread_data *td;
489  char *str0, *str;
490  int t;
491 
492  if (!g->p.cpu_list_str)
493  return 0;
494 
495  dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
496 
497  str0 = str = strdup(g->p.cpu_list_str);
498  t = 0;
499 
500  BUG_ON(!str);
501 
502  tprintf("# binding tasks to CPUs:\n");
503  tprintf("# ");
504 
505  while (true) {
506  int bind_cpu, bind_cpu_0, bind_cpu_1;
507  char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
508  int bind_len;
509  int step;
510  int mul;
511 
512  tok = strsep(&str, ",");
513  if (!tok)
514  break;
515 
516  tok_end = strstr(tok, "-");
517 
518  dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
519  if (!tok_end) {
520  /* Single CPU specified: */
521  bind_cpu_0 = bind_cpu_1 = atol(tok);
522  } else {
523  /* CPU range specified (for example: "5-11"): */
524  bind_cpu_0 = atol(tok);
525  bind_cpu_1 = atol(tok_end + 1);
526  }
527 
528  step = 1;
529  tok_step = strstr(tok, "#");
530  if (tok_step) {
531  step = atol(tok_step + 1);
532  BUG_ON(step <= 0 || step >= g->p.nr_cpus);
533  }
534 
535  /*
536  * Mask length.
537  * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
538  * where the _4 means the next 4 CPUs are allowed.
539  */
540  bind_len = 1;
541  tok_len = strstr(tok, "_");
542  if (tok_len) {
543  bind_len = atol(tok_len + 1);
544  BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
545  }
546 
547  /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
548  mul = 1;
549  tok_mul = strstr(tok, "x");
550  if (tok_mul) {
551  mul = atol(tok_mul + 1);
552  BUG_ON(mul <= 0);
553  }
554 
555  dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
556 
557  if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
558  printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
559  return -1;
560  }
561 
562  BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
563  BUG_ON(bind_cpu_0 > bind_cpu_1);
564 
565  for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
566  int i;
567 
568  for (i = 0; i < mul; i++) {
569  int cpu;
570 
571  if (t >= g->p.nr_tasks) {
572  printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
573  goto out;
574  }
575  td = g->threads + t;
576 
577  if (t)
578  tprintf(",");
579  if (bind_len > 1) {
580  tprintf("%2d/%d", bind_cpu, bind_len);
581  } else {
582  tprintf("%2d", bind_cpu);
583  }
584 
585  CPU_ZERO(&td->bind_cpumask);
586  for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
587  BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
588  CPU_SET(cpu, &td->bind_cpumask);
589  }
590  t++;
591  }
592  }
593  }
594 out:
595 
596  tprintf("\n");
597 
598  if (t < g->p.nr_tasks)
599  printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
600 
601  free(str0);
602  return 0;
603 }
604 
605 static int parse_cpus_opt(const struct option *opt __maybe_unused,
606  const char *arg, int unset __maybe_unused)
607 {
608  if (!arg)
609  return -1;
610 
611  return parse_cpu_list(arg);
612 }
613 
614 static int parse_node_list(const char *arg)
615 {
616  p0.node_list_str = strdup(arg);
617 
618  dprintf("got NODE list: {%s}\n", p0.node_list_str);
619 
620  return 0;
621 }
622 
623 static int parse_setup_node_list(void)
624 {
625  struct thread_data *td;
626  char *str0, *str;
627  int t;
628 
629  if (!g->p.node_list_str)
630  return 0;
631 
632  dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
633 
634  str0 = str = strdup(g->p.node_list_str);
635  t = 0;
636 
637  BUG_ON(!str);
638 
639  tprintf("# binding tasks to NODEs:\n");
640  tprintf("# ");
641 
642  while (true) {
643  int bind_node, bind_node_0, bind_node_1;
644  char *tok, *tok_end, *tok_step, *tok_mul;
645  int step;
646  int mul;
647 
648  tok = strsep(&str, ",");
649  if (!tok)
650  break;
651 
652  tok_end = strstr(tok, "-");
653 
654  dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
655  if (!tok_end) {
656  /* Single NODE specified: */
657  bind_node_0 = bind_node_1 = atol(tok);
658  } else {
659  /* NODE range specified (for example: "5-11"): */
660  bind_node_0 = atol(tok);
661  bind_node_1 = atol(tok_end + 1);
662  }
663 
664  step = 1;
665  tok_step = strstr(tok, "#");
666  if (tok_step) {
667  step = atol(tok_step + 1);
668  BUG_ON(step <= 0 || step >= g->p.nr_nodes);
669  }
670 
671  /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
672  mul = 1;
673  tok_mul = strstr(tok, "x");
674  if (tok_mul) {
675  mul = atol(tok_mul + 1);
676  BUG_ON(mul <= 0);
677  }
678 
679  dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
680 
681  if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
682  printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
683  return -1;
684  }
685 
686  BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
687  BUG_ON(bind_node_0 > bind_node_1);
688 
689  for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
690  int i;
691 
692  for (i = 0; i < mul; i++) {
693  if (t >= g->p.nr_tasks || !node_has_cpus(bind_node)) {
694  printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
695  goto out;
696  }
697  td = g->threads + t;
698 
699  if (!t)
700  tprintf(" %2d", bind_node);
701  else
702  tprintf(",%2d", bind_node);
703 
704  td->bind_node = bind_node;
705  t++;
706  }
707  }
708  }
709 out:
710 
711  tprintf("\n");
712 
713  if (t < g->p.nr_tasks)
714  printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
715 
716  free(str0);
717  return 0;
718 }
719 
720 static int parse_nodes_opt(const struct option *opt __maybe_unused,
721  const char *arg, int unset __maybe_unused)
722 {
723  if (!arg)
724  return -1;
725 
726  return parse_node_list(arg);
727 
728  return 0;
729 }
730 
731 #define BIT(x) (1ul << x)
732 
733 static inline uint32_t lfsr_32(uint32_t lfsr)
734 {
735  const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
736  return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
737 }
738 
739 /*
740  * Make sure there's real data dependency to RAM (when read
741  * accesses are enabled), so the compiler, the CPU and the
742  * kernel (KSM, zero page, etc.) cannot optimize away RAM
743  * accesses:
744  */
745 static inline u64 access_data(u64 *data, u64 val)
746 {
747  if (g->p.data_reads)
748  val += *data;
749  if (g->p.data_writes)
750  *data = val + 1;
751  return val;
752 }
753 
754 /*
755  * The worker process does two types of work, a forwards going
756  * loop and a backwards going loop.
757  *
758  * We do this so that on multiprocessor systems we do not create
759  * a 'train' of processing, with highly synchronized processes,
760  * skewing the whole benchmark.
761  */
762 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
763 {
764  long words = bytes/sizeof(u64);
765  u64 *data = (void *)__data;
766  long chunk_0, chunk_1;
767  u64 *d0, *d, *d1;
768  long off;
769  long i;
770 
771  BUG_ON(!data && words);
772  BUG_ON(data && !words);
773 
774  if (!data)
775  return val;
776 
777  /* Very simple memset() work variant: */
778  if (g->p.data_zero_memset && !g->p.data_rand_walk) {
779  bzero(data, bytes);
780  return val;
781  }
782 
783  /* Spread out by PID/TID nr and by loop nr: */
784  chunk_0 = words/nr_max;
785  chunk_1 = words/g->p.nr_loops;
786  off = nr*chunk_0 + loop*chunk_1;
787 
788  while (off >= words)
789  off -= words;
790 
791  if (g->p.data_rand_walk) {
792  u32 lfsr = nr + loop + val;
793  int j;
794 
795  for (i = 0; i < words/1024; i++) {
796  long start, end;
797 
798  lfsr = lfsr_32(lfsr);
799 
800  start = lfsr % words;
801  end = min(start + 1024, words-1);
802 
803  if (g->p.data_zero_memset) {
804  bzero(data + start, (end-start) * sizeof(u64));
805  } else {
806  for (j = start; j < end; j++)
807  val = access_data(data + j, val);
808  }
809  }
810  } else if (!g->p.data_backwards || (nr + loop) & 1) {
811 
812  d0 = data + off;
813  d = data + off + 1;
814  d1 = data + words;
815 
816  /* Process data forwards: */
817  for (;;) {
818  if (unlikely(d >= d1))
819  d = data;
820  if (unlikely(d == d0))
821  break;
822 
823  val = access_data(d, val);
824 
825  d++;
826  }
827  } else {
828  /* Process data backwards: */
829 
830  d0 = data + off;
831  d = data + off - 1;
832  d1 = data + words;
833 
834  /* Process data forwards: */
835  for (;;) {
836  if (unlikely(d < data))
837  d = data + words-1;
838  if (unlikely(d == d0))
839  break;
840 
841  val = access_data(d, val);
842 
843  d--;
844  }
845  }
846 
847  return val;
848 }
849 
850 static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
851 {
852  unsigned int cpu;
853 
854  cpu = sched_getcpu();
855 
856  g->threads[task_nr].curr_cpu = cpu;
857  prctl(0, bytes_worked);
858 }
859 
860 #define MAX_NR_NODES 64
861 
862 /*
863  * Count the number of nodes a process's threads
864  * are spread out on.
865  *
866  * A count of 1 means that the process is compressed
867  * to a single node. A count of g->p.nr_nodes means it's
868  * spread out on the whole system.
869  */
871 {
872  char node_present[MAX_NR_NODES] = { 0, };
873  int nodes;
874  int n, t;
875 
876  for (t = 0; t < g->p.nr_threads; t++) {
877  struct thread_data *td;
878  int task_nr;
879  int node;
880 
881  task_nr = process_nr*g->p.nr_threads + t;
882  td = g->threads + task_nr;
883 
884  node = numa_node_of_cpu(td->curr_cpu);
885  if (node < 0) /* curr_cpu was likely still -1 */
886  return 0;
887 
888  node_present[node] = 1;
889  }
890 
891  nodes = 0;
892 
893  for (n = 0; n < MAX_NR_NODES; n++)
894  nodes += node_present[n];
895 
896  return nodes;
897 }
898 
899 /*
900  * Count the number of distinct process-threads a node contains.
901  *
902  * A count of 1 means that the node contains only a single
903  * process. If all nodes on the system contain at most one
904  * process then we are well-converged.
905  */
906 static int count_node_processes(int node)
907 {
908  int processes = 0;
909  int t, p;
910 
911  for (p = 0; p < g->p.nr_proc; p++) {
912  for (t = 0; t < g->p.nr_threads; t++) {
913  struct thread_data *td;
914  int task_nr;
915  int n;
916 
917  task_nr = p*g->p.nr_threads + t;
918  td = g->threads + task_nr;
919 
920  n = numa_node_of_cpu(td->curr_cpu);
921  if (n == node) {
922  processes++;
923  break;
924  }
925  }
926  }
927 
928  return processes;
929 }
930 
931 static void calc_convergence_compression(int *strong)
932 {
933  unsigned int nodes_min, nodes_max;
934  int p;
935 
936  nodes_min = -1;
937  nodes_max = 0;
938 
939  for (p = 0; p < g->p.nr_proc; p++) {
940  unsigned int nodes = count_process_nodes(p);
941 
942  if (!nodes) {
943  *strong = 0;
944  return;
945  }
946 
947  nodes_min = min(nodes, nodes_min);
948  nodes_max = max(nodes, nodes_max);
949  }
950 
951  /* Strong convergence: all threads compress on a single node: */
952  if (nodes_min == 1 && nodes_max == 1) {
953  *strong = 1;
954  } else {
955  *strong = 0;
956  tprintf(" {%d-%d}", nodes_min, nodes_max);
957  }
958 }
959 
960 static void calc_convergence(double runtime_ns_max, double *convergence)
961 {
962  unsigned int loops_done_min, loops_done_max;
963  int process_groups;
964  int nodes[MAX_NR_NODES];
965  int distance;
966  int nr_min;
967  int nr_max;
968  int strong;
969  int sum;
970  int nr;
971  int node;
972  int cpu;
973  int t;
974 
975  if (!g->p.show_convergence && !g->p.measure_convergence)
976  return;
977 
978  for (node = 0; node < g->p.nr_nodes; node++)
979  nodes[node] = 0;
980 
981  loops_done_min = -1;
982  loops_done_max = 0;
983 
984  for (t = 0; t < g->p.nr_tasks; t++) {
985  struct thread_data *td = g->threads + t;
986  unsigned int loops_done;
987 
988  cpu = td->curr_cpu;
989 
990  /* Not all threads have written it yet: */
991  if (cpu < 0)
992  continue;
993 
994  node = numa_node_of_cpu(cpu);
995 
996  nodes[node]++;
997 
998  loops_done = td->loops_done;
999  loops_done_min = min(loops_done, loops_done_min);
1000  loops_done_max = max(loops_done, loops_done_max);
1001  }
1002 
1003  nr_max = 0;
1004  nr_min = g->p.nr_tasks;
1005  sum = 0;
1006 
1007  for (node = 0; node < g->p.nr_nodes; node++) {
1008  if (!is_node_present(node))
1009  continue;
1010  nr = nodes[node];
1011  nr_min = min(nr, nr_min);
1012  nr_max = max(nr, nr_max);
1013  sum += nr;
1014  }
1015  BUG_ON(nr_min > nr_max);
1016 
1017  BUG_ON(sum > g->p.nr_tasks);
1018 
1019  if (0 && (sum < g->p.nr_tasks))
1020  return;
1021 
1022  /*
1023  * Count the number of distinct process groups present
1024  * on nodes - when we are converged this will decrease
1025  * to g->p.nr_proc:
1026  */
1027  process_groups = 0;
1028 
1029  for (node = 0; node < g->p.nr_nodes; node++) {
1030  int processes;
1031 
1032  if (!is_node_present(node))
1033  continue;
1034  processes = count_node_processes(node);
1035  nr = nodes[node];
1036  tprintf(" %2d/%-2d", nr, processes);
1037 
1038  process_groups += processes;
1039  }
1040 
1041  distance = nr_max - nr_min;
1042 
1043  tprintf(" [%2d/%-2d]", distance, process_groups);
1044 
1045  tprintf(" l:%3d-%-3d (%3d)",
1046  loops_done_min, loops_done_max, loops_done_max-loops_done_min);
1047 
1048  if (loops_done_min && loops_done_max) {
1049  double skew = 1.0 - (double)loops_done_min/loops_done_max;
1050 
1051  tprintf(" [%4.1f%%]", skew * 100.0);
1052  }
1053 
1055 
1056  if (strong && process_groups == g->p.nr_proc) {
1057  if (!*convergence) {
1058  *convergence = runtime_ns_max;
1059  tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
1060  if (g->p.measure_convergence) {
1061  g->all_converged = true;
1062  g->stop_work = true;
1063  }
1064  }
1065  } else {
1066  if (*convergence) {
1067  tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
1068  *convergence = 0;
1069  }
1070  tprintf("\n");
1071  }
1072 }
1073 
1074 static void show_summary(double runtime_ns_max, int l, double *convergence)
1075 {
1076  tprintf("\r # %5.1f%% [%.1f mins]",
1077  (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
1078 
1079  calc_convergence(runtime_ns_max, convergence);
1080 
1081  if (g->p.show_details >= 0)
1082  fflush(stdout);
1083 }
1084 
1085 static void *worker_thread(void *__tdata)
1086 {
1087  struct thread_data *td = __tdata;
1088  struct timeval start0, start, stop, diff;
1089  int process_nr = td->process_nr;
1090  int thread_nr = td->thread_nr;
1091  unsigned long last_perturbance;
1092  int task_nr = td->task_nr;
1093  int details = g->p.show_details;
1094  int first_task, last_task;
1095  double convergence = 0;
1096  u64 val = td->val;
1097  double runtime_ns_max;
1098  u8 *global_data;
1099  u8 *process_data;
1100  u8 *thread_data;
1101  u64 bytes_done;
1102  long work_done;
1103  u32 l;
1104  struct rusage rusage;
1105 
1108 
1109  set_taskname("thread %d/%d", process_nr, thread_nr);
1110 
1111  global_data = g->data;
1112  process_data = td->process_data;
1113  thread_data = setup_private_data(g->p.bytes_thread);
1114 
1115  bytes_done = 0;
1116 
1117  last_task = 0;
1118  if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1119  last_task = 1;
1120 
1121  first_task = 0;
1122  if (process_nr == 0 && thread_nr == 0)
1123  first_task = 1;
1124 
1125  if (details >= 2) {
1126  printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1127  process_nr, thread_nr, global_data, process_data, thread_data);
1128  }
1129 
1130  if (g->p.serialize_startup) {
1131  pthread_mutex_lock(&g->startup_mutex);
1132  g->nr_tasks_started++;
1133  pthread_mutex_unlock(&g->startup_mutex);
1134 
1135  /* Here we will wait for the main process to start us all at once: */
1136  pthread_mutex_lock(&g->start_work_mutex);
1137  g->nr_tasks_working++;
1138 
1139  /* Last one wake the main process: */
1140  if (g->nr_tasks_working == g->p.nr_tasks)
1141  pthread_mutex_unlock(&g->startup_done_mutex);
1142 
1143  pthread_mutex_unlock(&g->start_work_mutex);
1144  }
1145 
1146  gettimeofday(&start0, NULL);
1147 
1148  start = stop = start0;
1149  last_perturbance = start.tv_sec;
1150 
1151  for (l = 0; l < g->p.nr_loops; l++) {
1152  start = stop;
1153 
1154  if (g->stop_work)
1155  break;
1156 
1157  val += do_work(global_data, g->p.bytes_global, process_nr, g->p.nr_proc, l, val);
1158  val += do_work(process_data, g->p.bytes_process, thread_nr, g->p.nr_threads, l, val);
1159  val += do_work(thread_data, g->p.bytes_thread, 0, 1, l, val);
1160 
1161  if (g->p.sleep_usecs) {
1162  pthread_mutex_lock(td->process_lock);
1163  usleep(g->p.sleep_usecs);
1164  pthread_mutex_unlock(td->process_lock);
1165  }
1166  /*
1167  * Amount of work to be done under a process-global lock:
1168  */
1169  if (g->p.bytes_process_locked) {
1170  pthread_mutex_lock(td->process_lock);
1171  val += do_work(process_data, g->p.bytes_process_locked, thread_nr, g->p.nr_threads, l, val);
1172  pthread_mutex_unlock(td->process_lock);
1173  }
1174 
1175  work_done = g->p.bytes_global + g->p.bytes_process +
1177 
1178  update_curr_cpu(task_nr, work_done);
1179  bytes_done += work_done;
1180 
1181  if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1182  continue;
1183 
1184  td->loops_done = l;
1185 
1186  gettimeofday(&stop, NULL);
1187 
1188  /* Check whether our max runtime timed out: */
1189  if (g->p.nr_secs) {
1190  timersub(&stop, &start0, &diff);
1191  if ((u32)diff.tv_sec >= g->p.nr_secs) {
1192  g->stop_work = true;
1193  break;
1194  }
1195  }
1196 
1197  /* Update the summary at most once per second: */
1198  if (start.tv_sec == stop.tv_sec)
1199  continue;
1200 
1201  /*
1202  * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1203  * by migrating to CPU#0:
1204  */
1205  if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1206  cpu_set_t orig_mask;
1207  int target_cpu;
1208  int this_cpu;
1209 
1210  last_perturbance = stop.tv_sec;
1211 
1212  /*
1213  * Depending on where we are running, move into
1214  * the other half of the system, to create some
1215  * real disturbance:
1216  */
1217  this_cpu = g->threads[task_nr].curr_cpu;
1218  if (this_cpu < g->p.nr_cpus/2)
1219  target_cpu = g->p.nr_cpus-1;
1220  else
1221  target_cpu = 0;
1222 
1223  orig_mask = bind_to_cpu(target_cpu);
1224 
1225  /* Here we are running on the target CPU already */
1226  if (details >= 1)
1227  printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1228 
1229  bind_to_cpumask(orig_mask);
1230  }
1231 
1232  if (details >= 3) {
1233  timersub(&stop, &start, &diff);
1234  runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1235  runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1236 
1237  if (details >= 0) {
1238  printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1239  process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1240  }
1241  fflush(stdout);
1242  }
1243  if (!last_task)
1244  continue;
1245 
1246  timersub(&stop, &start0, &diff);
1247  runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1248  runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1249 
1250  show_summary(runtime_ns_max, l, &convergence);
1251  }
1252 
1253  gettimeofday(&stop, NULL);
1254  timersub(&stop, &start0, &diff);
1255  td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
1256  td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
1257  td->speed_gbs = bytes_done / (td->runtime_ns / NSEC_PER_SEC) / 1e9;
1258 
1259  getrusage(RUSAGE_THREAD, &rusage);
1260  td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
1261  td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
1262  td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
1263  td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
1264 
1265  free_data(thread_data, g->p.bytes_thread);
1266 
1267  pthread_mutex_lock(&g->stop_work_mutex);
1268  g->bytes_done += bytes_done;
1269  pthread_mutex_unlock(&g->stop_work_mutex);
1270 
1271  return NULL;
1272 }
1273 
1274 /*
1275  * A worker process starts a couple of threads:
1276  */
1277 static void worker_process(int process_nr)
1278 {
1279  pthread_mutex_t process_lock;
1280  struct thread_data *td;
1281  pthread_t *pthreads;
1282  u8 *process_data;
1283  int task_nr;
1284  int ret;
1285  int t;
1286 
1287  pthread_mutex_init(&process_lock, NULL);
1288  set_taskname("process %d", process_nr);
1289 
1290  /*
1291  * Pick up the memory policy and the CPU binding of our first thread,
1292  * so that we initialize memory accordingly:
1293  */
1294  task_nr = process_nr*g->p.nr_threads;
1295  td = g->threads + task_nr;
1296 
1299 
1300  pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1301  process_data = setup_private_data(g->p.bytes_process);
1302 
1303  if (g->p.show_details >= 3) {
1304  printf(" # process %2d global mem: %p, process mem: %p\n",
1305  process_nr, g->data, process_data);
1306  }
1307 
1308  for (t = 0; t < g->p.nr_threads; t++) {
1309  task_nr = process_nr*g->p.nr_threads + t;
1310  td = g->threads + task_nr;
1311 
1312  td->process_data = process_data;
1313  td->process_nr = process_nr;
1314  td->thread_nr = t;
1315  td->task_nr = task_nr;
1316  td->val = rand();
1317  td->curr_cpu = -1;
1318  td->process_lock = &process_lock;
1319 
1320  ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1321  BUG_ON(ret);
1322  }
1323 
1324  for (t = 0; t < g->p.nr_threads; t++) {
1325  ret = pthread_join(pthreads[t], NULL);
1326  BUG_ON(ret);
1327  }
1328 
1329  free_data(process_data, g->p.bytes_process);
1330  free(pthreads);
1331 }
1332 
1333 static void print_summary(void)
1334 {
1335  if (g->p.show_details < 0)
1336  return;
1337 
1338  printf("\n ###\n");
1339  printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1340  g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", nr_numa_nodes(), g->p.nr_cpus);
1341  printf(" # %5dx %5ldMB global shared mem operations\n",
1342  g->p.nr_loops, g->p.bytes_global/1024/1024);
1343  printf(" # %5dx %5ldMB process shared mem operations\n",
1344  g->p.nr_loops, g->p.bytes_process/1024/1024);
1345  printf(" # %5dx %5ldMB thread local mem operations\n",
1346  g->p.nr_loops, g->p.bytes_thread/1024/1024);
1347 
1348  printf(" ###\n");
1349 
1350  printf("\n ###\n"); fflush(stdout);
1351 }
1352 
1353 static void init_thread_data(void)
1354 {
1355  ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1356  int t;
1357 
1358  g->threads = zalloc_shared_data(size);
1359 
1360  for (t = 0; t < g->p.nr_tasks; t++) {
1361  struct thread_data *td = g->threads + t;
1362  int cpu;
1363 
1364  /* Allow all nodes by default: */
1365  td->bind_node = -1;
1366 
1367  /* Allow all CPUs by default: */
1368  CPU_ZERO(&td->bind_cpumask);
1369  for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1370  CPU_SET(cpu, &td->bind_cpumask);
1371  }
1372 }
1373 
1374 static void deinit_thread_data(void)
1375 {
1376  ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1377 
1378  free_data(g->threads, size);
1379 }
1380 
1381 static int init(void)
1382 {
1383  g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1384 
1385  /* Copy over options: */
1386  g->p = p0;
1387 
1388  g->p.nr_cpus = numa_num_configured_cpus();
1389 
1390  g->p.nr_nodes = numa_max_node() + 1;
1391 
1392  /* char array in count_process_nodes(): */
1393  BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
1394 
1395  if (g->p.show_quiet && !g->p.show_details)
1396  g->p.show_details = -1;
1397 
1398  /* Some memory should be specified: */
1399  if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1400  return -1;
1401 
1402  if (g->p.mb_global_str) {
1403  g->p.mb_global = atof(g->p.mb_global_str);
1404  BUG_ON(g->p.mb_global < 0);
1405  }
1406 
1407  if (g->p.mb_proc_str) {
1408  g->p.mb_proc = atof(g->p.mb_proc_str);
1409  BUG_ON(g->p.mb_proc < 0);
1410  }
1411 
1412  if (g->p.mb_proc_locked_str) {
1413  g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1414  BUG_ON(g->p.mb_proc_locked < 0);
1415  BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1416  }
1417 
1418  if (g->p.mb_thread_str) {
1419  g->p.mb_thread = atof(g->p.mb_thread_str);
1420  BUG_ON(g->p.mb_thread < 0);
1421  }
1422 
1423  BUG_ON(g->p.nr_threads <= 0);
1424  BUG_ON(g->p.nr_proc <= 0);
1425 
1426  g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1427 
1428  g->p.bytes_global = g->p.mb_global *1024L*1024L;
1429  g->p.bytes_process = g->p.mb_proc *1024L*1024L;
1430  g->p.bytes_process_locked = g->p.mb_proc_locked *1024L*1024L;
1431  g->p.bytes_thread = g->p.mb_thread *1024L*1024L;
1432 
1434 
1435  /* Startup serialization: */
1440 
1441  init_thread_data();
1442 
1443  tprintf("#\n");
1445  return -1;
1446  tprintf("#\n");
1447 
1448  print_summary();
1449 
1450  return 0;
1451 }
1452 
1453 static void deinit(void)
1454 {
1455  free_data(g->data, g->p.bytes_global);
1456  g->data = NULL;
1457 
1459 
1460  free_data(g, sizeof(*g));
1461  g = NULL;
1462 }
1463 
1464 /*
1465  * Print a short or long result, depending on the verbosity setting:
1466  */
1467 static void print_res(const char *name, double val,
1468  const char *txt_unit, const char *txt_short, const char *txt_long)
1469 {
1470  if (!name)
1471  name = "main,";
1472 
1473  if (!g->p.show_quiet)
1474  printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1475  else
1476  printf(" %14.3f %s\n", val, txt_long);
1477 }
1478 
1479 static int __bench_numa(const char *name)
1480 {
1481  struct timeval start, stop, diff;
1482  u64 runtime_ns_min, runtime_ns_sum;
1483  pid_t *pids, pid, wpid;
1484  double delta_runtime;
1485  double runtime_avg;
1486  double runtime_sec_max;
1487  double runtime_sec_min;
1488  int wait_stat;
1489  double bytes;
1490  int i, t, p;
1491 
1492  if (init())
1493  return -1;
1494 
1495  pids = zalloc(g->p.nr_proc * sizeof(*pids));
1496  pid = -1;
1497 
1498  /* All threads try to acquire it, this way we can wait for them to start up: */
1499  pthread_mutex_lock(&g->start_work_mutex);
1500 
1501  if (g->p.serialize_startup) {
1502  tprintf(" #\n");
1503  tprintf(" # Startup synchronization: ..."); fflush(stdout);
1504  }
1505 
1506  gettimeofday(&start, NULL);
1507 
1508  for (i = 0; i < g->p.nr_proc; i++) {
1509  pid = fork();
1510  dprintf(" # process %2d: PID %d\n", i, pid);
1511 
1512  BUG_ON(pid < 0);
1513  if (!pid) {
1514  /* Child process: */
1515  worker_process(i);
1516 
1517  exit(0);
1518  }
1519  pids[i] = pid;
1520 
1521  }
1522  /* Wait for all the threads to start up: */
1523  while (g->nr_tasks_started != g->p.nr_tasks)
1524  usleep(USEC_PER_MSEC);
1525 
1526  BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
1527 
1528  if (g->p.serialize_startup) {
1529  double startup_sec;
1530 
1531  pthread_mutex_lock(&g->startup_done_mutex);
1532 
1533  /* This will start all threads: */
1534  pthread_mutex_unlock(&g->start_work_mutex);
1535 
1536  /* This mutex is locked - the last started thread will wake us: */
1537  pthread_mutex_lock(&g->startup_done_mutex);
1538 
1539  gettimeofday(&stop, NULL);
1540 
1541  timersub(&stop, &start, &diff);
1542 
1543  startup_sec = diff.tv_sec * NSEC_PER_SEC;
1544  startup_sec += diff.tv_usec * NSEC_PER_USEC;
1545  startup_sec /= NSEC_PER_SEC;
1546 
1547  tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1548  tprintf(" #\n");
1549 
1550  start = stop;
1551  pthread_mutex_unlock(&g->startup_done_mutex);
1552  } else {
1553  gettimeofday(&start, NULL);
1554  }
1555 
1556  /* Parent process: */
1557 
1558 
1559  for (i = 0; i < g->p.nr_proc; i++) {
1560  wpid = waitpid(pids[i], &wait_stat, 0);
1561  BUG_ON(wpid < 0);
1562  BUG_ON(!WIFEXITED(wait_stat));
1563 
1564  }
1565 
1566  runtime_ns_sum = 0;
1567  runtime_ns_min = -1LL;
1568 
1569  for (t = 0; t < g->p.nr_tasks; t++) {
1570  u64 thread_runtime_ns = g->threads[t].runtime_ns;
1571 
1572  runtime_ns_sum += thread_runtime_ns;
1573  runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1574  }
1575 
1576  gettimeofday(&stop, NULL);
1577  timersub(&stop, &start, &diff);
1578 
1580 
1581  tprintf("\n ###\n");
1582  tprintf("\n");
1583 
1584  runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
1585  runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
1586  runtime_sec_max /= NSEC_PER_SEC;
1587 
1588  runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
1589 
1590  bytes = g->bytes_done;
1591  runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
1592 
1593  if (g->p.measure_convergence) {
1594  print_res(name, runtime_sec_max,
1595  "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1596  }
1597 
1598  print_res(name, runtime_sec_max,
1599  "secs,", "runtime-max/thread", "secs slowest (max) thread-runtime");
1600 
1601  print_res(name, runtime_sec_min,
1602  "secs,", "runtime-min/thread", "secs fastest (min) thread-runtime");
1603 
1604  print_res(name, runtime_avg,
1605  "secs,", "runtime-avg/thread", "secs average thread-runtime");
1606 
1607  delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1608  print_res(name, delta_runtime / runtime_sec_max * 100.0,
1609  "%,", "spread-runtime/thread", "% difference between max/avg runtime");
1610 
1611  print_res(name, bytes / g->p.nr_tasks / 1e9,
1612  "GB,", "data/thread", "GB data processed, per thread");
1613 
1614  print_res(name, bytes / 1e9,
1615  "GB,", "data-total", "GB data processed, total");
1616 
1617  print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
1618  "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1619 
1620  print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1621  "GB/sec,", "thread-speed", "GB/sec/thread speed");
1622 
1623  print_res(name, bytes / runtime_sec_max / 1e9,
1624  "GB/sec,", "total-speed", "GB/sec total speed");
1625 
1626  if (g->p.show_details >= 2) {
1627  char tname[14 + 2 * 10 + 1];
1628  struct thread_data *td;
1629  for (p = 0; p < g->p.nr_proc; p++) {
1630  for (t = 0; t < g->p.nr_threads; t++) {
1631  memset(tname, 0, sizeof(tname));
1632  td = g->threads + p*g->p.nr_threads + t;
1633  snprintf(tname, sizeof(tname), "process%d:thread%d", p, t);
1634  print_res(tname, td->speed_gbs,
1635  "GB/sec", "thread-speed", "GB/sec/thread speed");
1636  print_res(tname, td->system_time_ns / NSEC_PER_SEC,
1637  "secs", "thread-system-time", "system CPU time/thread");
1638  print_res(tname, td->user_time_ns / NSEC_PER_SEC,
1639  "secs", "thread-user-time", "user CPU time/thread");
1640  }
1641  }
1642  }
1643 
1644  free(pids);
1645 
1646  deinit();
1647 
1648  return 0;
1649 }
1650 
1651 #define MAX_ARGS 50
1652 
1653 static int command_size(const char **argv)
1654 {
1655  int size = 0;
1656 
1657  while (*argv) {
1658  size++;
1659  argv++;
1660  }
1661 
1662  BUG_ON(size >= MAX_ARGS);
1663 
1664  return size;
1665 }
1666 
1667 static void init_params(struct params *p, const char *name, int argc, const char **argv)
1668 {
1669  int i;
1670 
1671  printf("\n # Running %s \"perf bench numa", name);
1672 
1673  for (i = 0; i < argc; i++)
1674  printf(" %s", argv[i]);
1675 
1676  printf("\"\n");
1677 
1678  memset(p, 0, sizeof(*p));
1679 
1680  /* Initialize nonzero defaults: */
1681 
1682  p->serialize_startup = 1;
1683  p->data_reads = true;
1684  p->data_writes = true;
1685  p->data_backwards = true;
1686  p->data_rand_walk = true;
1687  p->nr_loops = -1;
1688  p->init_random = true;
1689  p->mb_global_str = "1";
1690  p->nr_proc = 1;
1691  p->nr_threads = 1;
1692  p->nr_secs = 5;
1693  p->run_all = argc == 1;
1694 }
1695 
1696 static int run_bench_numa(const char *name, const char **argv)
1697 {
1698  int argc = command_size(argv);
1699 
1700  init_params(&p0, name, argc, argv);
1701  argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1702  if (argc)
1703  goto err;
1704 
1705  if (__bench_numa(name))
1706  goto err;
1707 
1708  return 0;
1709 
1710 err:
1711  return -1;
1712 }
1713 
1714 #define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk"
1715 #define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1"
1716 
1717 #define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1"
1718 #define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1"
1719 
1720 #define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1"
1721 #define OPT_BW_NOTHP OPT_BW, "--thp", "-1"
1722 
1723 /*
1724  * The built-in test-suite executed by "perf bench numa -a".
1725  *
1726  * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1727  */
1728 static const char *tests[][MAX_ARGS] = {
1729  /* Basic single-stream NUMA bandwidth measurements: */
1730  { "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1731  "-C" , "0", "-M", "0", OPT_BW_RAM },
1732  { "RAM-bw-local-NOTHP,",
1733  "mem", "-p", "1", "-t", "1", "-P", "1024",
1734  "-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP },
1735  { "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1736  "-C" , "0", "-M", "1", OPT_BW_RAM },
1737 
1738  /* 2-stream NUMA bandwidth measurements: */
1739  { "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1740  "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1741  { "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1742  "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1743 
1744  /* Cross-stream NUMA bandwidth measurement: */
1745  { "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1746  "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1747 
1748  /* Convergence latency measurements: */
1749  { " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV },
1750  { " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV },
1751  { " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV },
1752  { " 2x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV },
1753  { " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV },
1754  { " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV },
1755  { " 4x4-convergence-NOTHP,",
1756  "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP },
1757  { " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV },
1758  { " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV },
1759  { " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV },
1760  { " 8x4-convergence-NOTHP,",
1761  "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP },
1762  { " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV },
1763  { " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV },
1764  { " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV },
1765  { "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV },
1766  { "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV },
1767 
1768  /* Various NUMA process/thread layout bandwidth measurements: */
1769  { " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW },
1770  { " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW },
1771  { " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW },
1772  { " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW },
1773  { " 8x1-bw-process-NOTHP,",
1774  "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP },
1775  { "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW },
1776 
1777  { " 4x1-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW },
1778  { " 8x1-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW },
1779  { "16x1-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW },
1780  { "32x1-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW },
1781 
1782  { " 2x3-bw-thread,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW },
1783  { " 4x4-bw-thread,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW },
1784  { " 4x6-bw-thread,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW },
1785  { " 4x8-bw-thread,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW },
1786  { " 4x8-bw-thread-NOTHP,",
1787  "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP },
1788  { " 3x3-bw-thread,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW },
1789  { " 5x5-bw-thread,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW },
1790 
1791  { "2x16-bw-thread,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW },
1792  { "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW },
1793 
1794  { "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW },
1795  { "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP },
1796  { "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW },
1797  { "numa01-bw-thread-NOTHP,",
1798  "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP },
1799 };
1800 
1801 static int bench_all(void)
1802 {
1803  int nr = ARRAY_SIZE(tests);
1804  int ret;
1805  int i;
1806 
1807  ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1808  BUG_ON(ret < 0);
1809 
1810  for (i = 0; i < nr; i++) {
1811  run_bench_numa(tests[i][0], tests[i] + 1);
1812  }
1813 
1814  printf("\n");
1815 
1816  return 0;
1817 }
1818 
1819 int bench_numa(int argc, const char **argv)
1820 {
1821  init_params(&p0, "main,", argc, argv);
1822  argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1823  if (argc)
1824  goto err;
1825 
1826  if (p0.run_all)
1827  return bench_all();
1828 
1829  if (__bench_numa(NULL))
1830  goto err;
1831 
1832  return 0;
1833 
1834 err:
1835  usage_with_options(numa_usage, options);
1836  return -1;
1837 }
static void deinit_thread_data(void)
Definition: numa.c:1374
static int count_node_processes(int node)
Definition: numa.c:906
bool data_reads
Definition: numa.c:91
Definition: mem2node.c:7
static void * zalloc_shared_data(ssize_t bytes)
Definition: numa.c:443
static int nr_numa_nodes(void)
Definition: numa.c:222
static void show_summary(double runtime_ns_max, int l, double *convergence)
Definition: numa.c:1074
static void worker_process(int process_nr)
Definition: numa.c:1277
static int parse_cpus_opt(const struct option *opt, const char *arg, int unset)
bool show_convergence
Definition: numa.c:118
#define OPT_BW
Definition: numa.c:1720
static void deinit(void)
Definition: numa.c:1453
struct thread_data * threads
Definition: numa.c:147
size_t size
Definition: evsel.c:60
static void init_thread_data(void)
Definition: numa.c:1353
static void init_global_mutex(pthread_mutex_t *mutex)
Definition: numa.c:468
int print_once
Definition: numa.c:153
#define MADV_HUGEPAGE
Definition: bench.h:22
int bind_node
Definition: numa.c:55
static cpu_set_t bind_to_node(int target_node)
Definition: numa.c:286
Definition: genelf.c:61
double mb_proc
Definition: numa.c:86
const char * mb_global_str
Definition: numa.c:80
dictionary data
Definition: stat-cpi.py:4
int int err
Definition: 5sec.c:44
#define BIT(x)
Definition: numa.c:731
double mb_global
Definition: numa.c:85
long bytes_process
Definition: numa.c:111
static void bind_to_memnode(int node)
Definition: numa.c:337
static int parse_setup_cpu_list(void)
Definition: numa.c:486
static cpu_set_t bind_to_cpu(int target_cpu)
Definition: numa.c:260
u64 system_time_ns
Definition: numa.c:63
#define OPT_CONV_NOTHP
Definition: numa.c:1718
int bench_format
static u64 access_data(u64 *data, u64 val)
Definition: numa.c:745
static int bench_all(void)
Definition: numa.c:1801
#define OPT_CONV
Definition: numa.c:1717
double mb_thread
Definition: numa.c:88
static bool node_has_cpus(int node)
Definition: numa.c:245
#define MADV_NOHUGEPAGE
Definition: bench.h:25
char * node_list_str
Definition: numa.c:127
#define OPT_BW_RAM
Definition: numa.c:1714
#define OPT_BW_RAM_NOTHP
Definition: numa.c:1715
bool data_zero_memset
Definition: numa.c:94
static int count_process_nodes(int process_nr)
Definition: numa.c:870
int nr_tasks_working
Definition: numa.c:142
bool show_quiet
Definition: numa.c:116
int curr_cpu
Definition: numa.c:53
static void calc_convergence_compression(int *strong)
Definition: numa.c:931
x86 movsq based memset() in arch/x86/lib/memset_64.S") MEMSET_FN(memset_erms
static const char * tests[][MAX_ARGS]
Definition: numa.c:1728
static void print_summary(void)
Definition: numa.c:1333
#define min(x, y)
Definition: jevents.h:15
static int is_node_present(int node)
Definition: numa.c:237
int thread_nr
Definition: numa.c:58
#define BENCH_FORMAT_DEFAULT
Definition: bench.h:42
static uint32_t lfsr_32(uint32_t lfsr)
Definition: numa.c:733
int thp
Definition: numa.c:108
if(!yyg->yy_init)
u8 * process_data
Definition: numa.c:56
const char * mb_proc_locked_str
Definition: numa.c:82
static void * setup_private_data(ssize_t bytes)
Definition: numa.c:460
const char * name
int run_all
Definition: numa.c:107
static struct global_info * g
Definition: numa.c:158
int nr_threads
Definition: numa.c:77
bool all_converged
Definition: numa.c:150
unsigned int loops_done
Definition: numa.c:60
bool serialize_startup
Definition: numa.c:73
int process_nr
Definition: numa.c:57
static int __bench_numa(const char *name)
Definition: numa.c:1479
static u8 * alloc_data(ssize_t bytes0, int map_flags, int init_zero, int init_cpu0, int thp, int init_random)
Definition: numa.c:364
static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
Definition: numa.c:850
const char * mb_proc_str
Definition: numa.c:81
bool data_writes
Definition: numa.c:92
static int parse_setup_node_list(void)
Definition: numa.c:623
bool data_rand_walk
Definition: numa.c:95
int nr_tasks
Definition: numa.c:115
bool stop_work
Definition: numa.c:151
bool init_zero
Definition: numa.c:101
#define tprintf(x...)
Definition: numa.c:44
static void * setup_shared_data(ssize_t bytes)
Definition: numa.c:451
static int str(yyscan_t scanner, int token)
static void mempol_restore(void)
Definition: numa.c:328
int nr_proc
Definition: numa.c:76
u8 * data
Definition: numa.c:134
pthread_mutex_t startup_done_mutex
Definition: numa.c:139
bool data_backwards
Definition: numa.c:93
pthread_mutex_t stop_work_mutex
Definition: numa.c:144
#define MAX_ARGS
Definition: numa.c:1651
char * cpu_list_str
Definition: numa.c:126
static void init_params(struct params *p, const char *name, int argc, const char **argv)
Definition: numa.c:1667
double mb_proc_locked
Definition: numa.c:87
int task_nr
Definition: numa.c:59
#define NSEC_PER_SEC
Definition: jvmti_agent.c:101
u32 nr_loops
Definition: numa.c:96
#define dprintf(x...)
Definition: numa.c:50
double speed_gbs
Definition: numa.c:65
int nr_nodes
Definition: numa.c:123
u32 pid
Definition: hists_common.c:15
static int init(void)
Definition: numa.c:1381
static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
Definition: numa.c:762
u64 start
Definition: hists_common.c:25
pthread_mutex_t startup_mutex
Definition: numa.c:136
int bench_numa(int argc, const char **argv)
Definition: numa.c:1819
u64 runtime_ns
Definition: numa.c:62
int nr_cpus
Definition: numa.c:122
bool init_cpu0
Definition: numa.c:103
pthread_mutex_t * process_lock
Definition: numa.c:66
int perturb_secs
Definition: numa.c:121
Definition: numa.c:71
static void calc_convergence(double runtime_ns_max, double *convergence)
Definition: numa.c:960
cpu_set_t bind_cpumask
Definition: numa.c:54
u32 sleep_usecs
Definition: numa.c:98
static void * worker_thread(void *__tdata)
Definition: numa.c:1085
static const char *const numa_usage[]
Definition: numa.c:214
void free(void *)
int __weak sched_getcpu(void)
Definition: cloexec.c:15
static int run_bench_numa(const char *name, const char **argv)
Definition: numa.c:1696
#define HPSIZE
Definition: numa.c:354
Definition: attr.py:1
int nr_tasks_started
Definition: numa.c:137
#define MAX_NR_NODES
Definition: numa.c:860
static void free_data(void *data, ssize_t bytes)
Definition: numa.c:429
#define OPT_BW_NOTHP
Definition: numa.c:1721
int show_details
Definition: numa.c:106
bool init_random
Definition: numa.c:102
const char * mb_thread_str
Definition: numa.c:83
u32 nr_secs
Definition: numa.c:97
static int parse_cpu_list(const char *arg)
Definition: numa.c:477
static int parse_node_list(const char *arg)
Definition: numa.c:614
struct params p0
Definition: numa.c:163
static void bind_to_cpumask(cpu_set_t mask)
Definition: numa.c:320
static int parse_nodes_opt(const struct option *opt, const char *arg, int unset)
static int command_size(const char **argv)
Definition: numa.c:1653
u64 val
Definition: numa.c:61
long bytes_thread
Definition: numa.c:113
static void print_res(const char *name, double val, const char *txt_unit, const char *txt_short, const char *txt_long)
Definition: numa.c:1467
u64 bytes_done
Definition: numa.c:145
struct params p
Definition: numa.c:155
bool measure_convergence
Definition: numa.c:119
static const char *const bench_numa_usage[]
Definition: numa.c:209
long bytes_global
Definition: numa.c:110
pthread_mutex_t start_work_mutex
Definition: numa.c:141
long bytes_process_locked
Definition: numa.c:112
#define set_taskname(fmt...)
Definition: numa.c:356
void static void * zalloc(size_t size)
Definition: util.h:20
u64 user_time_ns
Definition: numa.c:64