Hybrid SAT Solving by Continuous Optimization

Presented by Zhiwei Zhang

Joint work with Anastasios Kyrillidis, Anshumali Shrivastava, Moshe Vardi

Boolean SAT and MaxSAT

Boolean variables: $x_1, x_2 \dots \in \{0, 1\}$ Boolean constraints: $x_1 \vee \neg x_2, x_2 \oplus x_3, x_1 + x_2 + x_3 + x_4 + x_5 \ge 2, \cdots$ Boolean formula: e.g. $\varphi = (x_1 \vee \neg x_2) \wedge (x_2 \oplus \neg x_3) \wedge (x_2 + x_3 + x_4 \ge 2)$ x_1 $x_2 \ x_3 \ x_4$ x_5 SATisfiability: finding an assignment that satisfies all constraints MaxSAT is fiability: finding an assignment that satisfies as many constraints as possible c_3 C_2 X_3 X_4 X_2

Discrete Optimization

Software Verification

Motion planning

Probabilistic inference

Machine Learning

2/18

CNF and SAT Solvers

• Conjunctive Normal Form (AND of ORs)

e.g. $\varphi = (x_1 \lor x_2) \land (x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4)$

• Modern CNF Solvers

CDCL-based SAT solvers: branching on variables with unit propogation, backtracking and clause learning

(discrete) local search SAT solvers: Objective function: $f_{\varphi}(x) = \#$ of constraints satisfied by x

(Greedy) Local Search Randomly generate a complete assignment $x \in \{0,1\}^n$ while there are unsatisfied constraints flip the value of the "best" variable to increase the # of satisfied constraints

The Success of Existing Solvers Rely on Properties of CNF Format

- CNF is the most preferable format currently
 - CDCL solvers:

 $x_{1} = T \quad (x_{1} \lor x_{2} \lor x_{3} \lor x_{4}) \text{ is satisfied}$ constraint simplification $(x_{1} \lor x_{2} \lor x_{3} \lor x_{4}) \text{ and } x_{1} = x_{2} = x_{3} = F \quad x_{4} = T$ unit propogation

• Discrete local search solvers:

 $(x_1 \lor x_2 \lor x_3 \lor x_4)$ is unsatisfied flipping one variable is enough

• non-CNF constraints are harder to handle $(x_1 + x_2 + x_3 + x_4 \ge 2)$ is unsatisfied \longrightarrow flipping one variable might not be enough

The capability to "flip" more than one bits is important

 $f_{\varphi}(x) = \# \text{ of constraints satisfied by } x$ $= c_1(x) + c_2(x) + c_3(x)$ = 1 + 0 + 0 = 1

$$F_{\varphi}(a) = \mathop{\mathbb{E}}_{x \in S_a} f_{\varphi}(x)$$
$$= \sum_{c} \mathop{\mathbb{P}}_{x \in S_a} [c(x) = 1]$$
$$= 0.6 + 0.1 + 0.8 = 1.5$$

"flipping" the value of variables to maximize f_{φ}

tuning the input probability of variables to maximize F_{arphi}

Reduce SAT to Continuous Optimization

"flipping" the value of variables to minimize f tuning the input probability of variables to minimize F $f_{\varphi}(x) = \#$ of constraints satisfied by x $F_{\varphi}(a) = \underset{x \in S_{a}}{\mathbb{E}} f_{\varphi}(x) = \sum_{c} \underset{x \in S_{a}}{\mathbb{P}} [c(x) = 1]$ Proposition φ is satisfiable $\bigoplus_{x \in \{0,1\}^{n}} f_{\varphi}(x) = \# constraints \bigoplus_{a \in [0,1]^{n}} F_{\varphi}(a) = \# constraints$

The Walsh-Fourier Expansion of Boolean Functions

• Walsh-Fourier transform:

Theorem

Every Boolean function c has a unique representation in multilinear polynomial that agrees with c on all Boolean assignments

How to compute expectation: by Walsh-Fourier expansion

 $F_{\varphi} = \left(\frac{1}{4}\right)$

8/18

Workflow of Our Gradient Ascend-Based Approach

Where Will We Converge to? The Geometry of Multilinear Polynomials

• Multilinear polynomials are non-convex and non-concave

• Locally, F_{φ} is always convex among some directions while concave on some other directions

In unconstrained setting, on every point $a \in \mathbb{R}^n$, there is always a direction that can increase the value of a multilinear polynomial

In the constrained setting where $a \in [-1, 1]^n$, this direction might be towards the boundary. Thus we may still encounter local maxima along the boundary

Where Will We Converge to? An "Almost" Discrete Assignment

Rounding preserves objective value after converging to a local maximum.

The Versatility of Our Approach

- Modern-SAT solvers are highly CNF-focused
- Other types of constraints are also important

XOR: $(x_2 \oplus \neg x_3)$ cardinality constraints: $(x_1 + x_2 + x_3 + x_4 \ge 2)$ pseudo-Boolean constraints: $(3x_1 - 4x_2 + x_3 + 6x_4 \ge 5)$

Theorem

Disjunctive clauses (CNF), XOR and cardinality constraints all have closed-form Walsh-Fourier expansions.

• Our approach treats different types of constraints uniformly as polynomials

Better Global Convergence--Adding Constraint Weights

 $F_{\varphi}(a) = \sum_{c} \mathbb{P}_{x \in S_{a}}[c(x) = 1] = \sum_{c} \operatorname{FE}_{c}(a) \quad \Longrightarrow \quad F_{\varphi,w}(a) = \sum_{c} w(c) \cdot \mathbb{P}_{x \in S_{a}}[c(x) = 1] = \sum_{c} w(c) \cdot \operatorname{FE}_{c}(a)$

• Different constraints have different relative importance Weightings change the landscape and attractive regions

Adaptative weighting: increase the weight of unsatisfied constraints

Walsh-Fourier expansions can not handle pseudo-Boolean constraints: e.g. $(3x_1 - 4x_2 + x_3 + 6x_4 \ge 5)$ Proposition Given the BDD with size S of a constraint, the output probability can be computed in O(S).

• We are able to handle coefficient-bounded pseudo-Boolean constraints.

Better Efficiency--Computing the Gradient by BDDs

Experimental Results

Solver	Avg. Score	# of best solutions
GradSAT (Our approach)	0.971	489
WalkSAT (discrete LS-based)	0.925	124
Mixing Method (SDP-based)	0.901	126
Loandra (SAT-based)	0.883	42

Results on 575 small-size instances from MaxSAT Competition

On random CNF-XOR and pseudo-Boolean benchmarks, our solver is better than discrete local-search-based solvers.

On large industrial instances: the cost for differentiation on the real domain is still too expensive

Summary: Hybrid SAT Solving by Continuous Optimization

• Our motivations are

handling constraints beyond CNFs

exploring the potential of continuous methods in SAT/MaxSAT solving

- We find
 - nice theoretical results interesting problems

for the continuous optimization approach

• Our method can:

act as a complement to existing SAT/MaxSAT solvers benefit from tractable structures of Boolean functions and techniques from continuous optimization

Challenges and Future Directions

• Full gradient is too expensive

compute imprecise gradient on large instances

• Balance between Continuous and Discrete Local Search

Fully Discrete Local Search

Fully Continuous Local Search

• Continuous optimizer as a layer of NN

• Our motivations are

handling constraints beyond CNFs

exploring the potential of continuous methods in SAT/MaxSAT solving

• We find

nice theoretical results interesting problems

for the continuous optimization approach

• Our method can:

act as a complement to existing SAT solvers

benefit from tractable structures of Boolean functions and techniques from continuous optimization

• In the future:

compute inprecise gradient on large instances balance between Continuous and Discrete as a layer of neural network

