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Boolean SAT and MaxSAT

Boolean variables: xq,25--- € {0,1}
Boolean constraints: 1 V =22, x9 © 23, 1 + T2 + 3 + x4 + x5 > 2, - -

Boolean formula: e.g. ¢ = (x1 V 7x2) A (22 & —x3) A (22 + 23 + x4 > 2)
r1 o X3 T4 I5

SATisfiability: finding an assignment that satisfies all constraints

MaxSATisfiability: finding an assignment that satisfies
as many constraints as possible

Discrete Optimization  Software Verification = Motion planning Probabilistic inference Machine Learning



CNF and SAT Solvers

e Conjunctive Normal Form (AND of ORs)

e.g. o= (x1 V) A(xaV-x3)A(x2 VsV,

® Modern CNF Solvers

CDCL-based SAT solvers: branching on variables with unit propogation,
backtracking and clause learning

(discrete) local search SAT solvers: Objective function: f,(x) = # of constraints satisfied by x

(Greedy) Local Search

Randomly generate a complete assignment x € {0,1}"
while there are unsatisfied constraints

flip the value of the “best” variable to increase the # of satisfied constraints
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The Success of Existing Solvers Rely on Properties of CNF Format

® CNF is the most preferable format currently
® CDCL solvers:

r1 =1 ) (r;V 1oV 23V 1y issatisfied

constraint simplification

unit propogation

® Discrete local search solvers:

(x1V xo V 3V x4) is unsatisfied s Aipping one variable is enough
® non-CNF constraints are harder to handle
(331 + X9+ a3+ 234 > 2) is unsatisfied ===ssssss) flipping one variable might not be enough

The capability to “flip” more than one bits is important s



From Discrete to Continuous Local Search
a=0.2 06 01 0.8 0.7
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L P2 ds td &5 Ple; = 0] = 0.8
input probability

Plc; = 1] = 0.6 Bl — 11— 0.8
output probability 1 o Q c3 ]
1 €2 C3 Ple; =1] = 0.1
fo(x) = # of constraints satisfied by x Fyla) = E fo(x)
TES,
=ci1(x)+colx) + c3(x
1(z) + e2(z) + c3(z) CS P (@) = 1

=14+04+0=1 ~ LS.,

=06+014+08=1.5

“flipping” the value of variables to maximize f, tuning the input probability of variables to maximize F,
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Reduce SAT to Continuous Optimization

L1 o X3 T4 Ij

X1 o I3 T4 Ip

(O

Ci1 Co9 C3 Ci C2 C3

“flipping” the value of variables to minimize f tuning the input probability of variables to miminize F'

fo(x) = # of constraints satisfied by *  F,(a)= E fo(z) =) P [c(z)=1]

is satisfiable ﬁx E""{?fgliﬁ}n fo(x) = #constraints ﬁaggﬁn F,(a) = #constraints
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The Walsh-Fourier Expansion of Boolean Functions

e Walsh-Fourier transform:

Boolean functions ) Multilinear Polynomials
c:{1,-1}" — {0,1} FE.:{1,—1}" — {0,1}
{r, T}y  A{FT}

i L y 51?/\9 %—%x—iy+%xy

1 1 0 0

1 —1 0 0

P —1 1 0 0

5—1 ~1 1 1
Theorem

|
|
|
Every Boolean function ¢ has a unique representation in multilinear i
polynomial that agrees with ¢ on all Boolean assignments |



How to compute expectation: by Walsh-Fourier expansion




Workflow of Our Gradient Ascend-Based Approach

f=
(35'2 D x3 @334)

A transform
A4 + 25 + 76 + 1o > 2) )

(35'1 V _12132)

hybrid Boolean formula

Is a solution?

(1,—1,---)

discrete assignment

discretize

Walsh-Fourier

F = —0.32 —+ 002331 — 0035(32
+ 0.04x3 — 0.007x4 + - - -
+ 0.000875x5x6 7289 + - - -

multilinear polynomial
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OF
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69332

compute gradients
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Where Will We Converge to”? The Geometry of Multilinear Polynomials

® Multilinear polynomials are non-convex and non-concave

local max saddle point

® Locally, F, is always convex among some directions while concave on some
other directions

In unconstrained setting, on every point a € R™, there is always a direction
that can increase the value of a multilinear polynomial

In the constrained setting where a € [—1, 1]”, this direction might be towards
the boundary. Thus we may still encounter local maxima along the boundary 10/18



Where Will We Converge to? An “Almost” Discrete Assignment

=xV

<

“don’t care variables”

Y
3
Fo=14—

1 o I3 X4 Is I

converge




The Versatility of Our Approach

® Modern-SAT solvers are highly CNF-focused

@ Other types of constraints are also important

XOR: (x2 @© —x3)
cardinality constraints: (x1 4+ x2 + x3 + x4 > 2)

pseudo-Boolean constraints: (3x7 — 4xs + 3 + 624 > 5)

Theorem

|
: i
|
: Disjunctive clauses (CNF), XOR and cardinality constraints all have closed- i
i form Walsh-Fourier expansions. |

® QOur approach treats different types of constraints uniformly as polynomials
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Better Global Convergence--Adding Constraint Weights

Fe(a) =) P le(x) =1] =) FEc(a) mmmp Fou(a)=>2 wlc) P le(z) =1] =2 w(c)- FE(a)

C CEESQ,

® Different constraints have different relative importance
Weightings change the landscape and attractive regions
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@ = (x1 ANx2) N (—x1 D x20)

Adaptative weighting: increase the weight of unsatisfied constraints
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Better Versatility--Beyond Walsh-Fourier Expansions

T N\Yy 05k
A JTTTEAY P
g FoF 0.6 0.1
= T F 1 1 1 1 T
T F F | g l-zr—7y+7-2y /
i.--.T. ________ T_ ________ T_ o ’/|(G.4 T0.6) x 0.8
Trath Table Walsh-Fourier Expansion CD

Binary decision diagram (BDD)
Walsh-Fourier expansions can not handle pseudo-Boolean constraints:
e.g. (3xy —4xo + x3 + 624 > 5H)

i Proposition

: Given the BDD with size S of a constraint, the output probability can be

i computed in O(S).

® We are able to handle coefficient-bounded pseudo-Boolean constraints. 14/18



Better Efficiency--Computing the Gradient by BDDs

® Nodes sharing between constraints

Forward Pass Backward Pass o



Experimental Results

# of best solutions

GradSAT (Our approach) 0.971 489
WalkSAT (discrete LS-based) 0.925 124
Mixing Method (SDP-based) 0.901 126

Loandra (SAT-based) 0.883 42

Results on 575 small-size instances from MaxSAT Competition

On random CNF-XOR and pseudo-Boolean benchmarks, our solver is better
than discrete local-search-based solvers.

On large industrial instances: the cost for differentiation on the real domain
is still too expensive
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Summary: Hybrid SAT Solving by Continuous Optimization

® Our motivations are

handling constraints beyond CNF's

exploring the potential of continuous methods in SAT /MaxSAT solving

® We find

nice theoretical results

interesting problems for the continuous optimization approach

® Our method can:

act as a complement to existing SAT /MaxSAT solvers

benefit from tractable structures of Boolean functions

and techniques from continuous optimization
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Challenges and Future Directions

e Full gradient is too expensive

compute imprecise gradient on large instances

® Balance between Continuous and Discrete Local Search

Fully Discrete Local Search Fully Continuous Local Search

e Continuous optimizer as a layer of NN
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® Our motivations are

handling constraints beyond CNF's
exploring the potential of continuous methods in SAT /MaxSAT solving

® We find

nice theoretical results for the continuous optimization approach
interesting problems

® Our method can:
act as a complement to existing SAT solvers

benefit from tractable structures of Boolean functions
and techniques from continuous optimization

e [n the future:

compute inprecise gradient on large instances

balance between Continuous and Discrete
as a layer of neural network

e 1T : Differentiable
I T2 [Tt X X0
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