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Background: Boolean SATisfiability Problem

* Variables: z,y, z... € {T, F'}

 Connectives: =(Not), A(and), V(or), B (zor)...

« Formula: (z A —y) @z ...

 Solution: an assignment with T/F of variables s.t. formula yields T

« SAT: Does a formula have a solution or not?
r =T,y = F is a solution of T A\ =Y
no solution exists for £ A —x
* NP-completeness of SAT was proven in 1971 by Stephen Cook
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Applications of SAT

Used by hardware and software designers on a daily basis
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Discrete Optimization  Software Verification Motion planning Probabilistic inference
[lgnatiev et al., 2017] [Velev, 2004] [Bera, 2017] [Chavira et al., 2008]

[ X3 ’
40 =
[ X% )/ \(X‘:\/

SAT solvers solve industrial SAT instances with millions of variables

[Katebi et al., 2011]
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CNF and Hybrid SAT Solving O

» Conjunctive Normal Form (CNF)
 Connectives: 1, \, V
e Clauses: 1V T2V T3 ...
e Formulas: (1 Va2V —x3) A (x2Vxy) ...
« 3-CNF is NP-complete [cook, 1971]

* Non-CNF Clauses/Constraints
» cryptography: XOR [Bogdanov et al., 2011] rTOYD=2
« graph theory: cardinality constraints [Costa et al., 2009] r+y+z2>2
not-all-equal (NAE) [Tomas J, 1978] NAE(z,y,2z) = ~(x =y = 2)
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Related Work: Hybrid SAT Solving

* CNF-encoding of Non-CNF constraints
Involves large number of new variables and clauses ™My 2018]
Encodings make a big difference iprestwich 2009

* Extensions of CNF solvers

| Cryptominisat (CNF + XOR) [Soos et al., 2009]

| Minicard (CNF + cardinality constraints) [Liffition et al., 2012]

| MonoSAT (CNF + graph properties) [Bayless et al. 2015]
Pueblo (CNF + pseudo Boolean constraints) [Sheini et al., 2006]

Need to design algorithms for each specific type of constraints
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Contribution: A versatile Boolean SAT Solver
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Each C; can be a CNF, XOR, Not-all-equal constraint or
cardinality constraint

Goal: Handle different types of

constraints uniformly & naturally
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Boolean formulas =) Multilinear Polynomials

{1, -1} = {1,-1} p:{l,—1}" = {1, -1}
{F, T}
TNy —% 1+5-24+5-y—5-2y
T Y zAy lileylylpy
1 1 1 1
1 —1 1 1
-1 1 1 1
—1 —1 —1 —1

___________________________________________________________________________



From SAT to continuous optimization
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(171) (17_1)(_171) (—1;~1) (—1,51) (17_1)
Tree Search/Backtracking Local Search

discrete searching on Boolean domain
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optimization on continuous domain
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f=(x1V x2) Fourier F =—0.32 4 0.02z; — 0.032
Nxo ® x3 B 24) transform + 0.04z3 — 0.007x4 + - - -
A4+ x5 + 26 + T9 > 2) — + 0.000875x5x6x728T9 + - - * analytical
... hybrid Boolean formula multilinear polynomial computation

i OF
ls a solution? continuous optimization B 0.003x2 + - - -
B 0.008z1 + - - -
6:::2
( 1 1 ) gradients
7 7 discretize
discrete assignment S |
(0.586, —0.324, - - - ) 0 /14
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» Generally, computing the Fourier Expansion of a Boolean function is #P-hard
* How to evaluate a polynomial with exponentially many terms?

f=ciNca AN Acpy,

« Many types of constraints has closed form Fourier expansions

i Type of Constraint Example ) Fou:rlier Exp?nsion ) E
i CNF clauses T N\Yy 5 T 3T+ 3y — 5TY |
| XOR rTDYD=z R !
i Cardinality constraints r+y+z =2 %:E == %y =g %Z — %:cyz i
i_ Not-all-equal NAE(z,y, 2) ~L Loyt lyzt Loz i

Define a new objective function by the Fourier Expansion of each clause
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Obijective Function Construction

f:C1/\CQ/\“'/\Cm

f=(xV-y N\ (z&®
I =y +p2+ - +Pm / \
S F=(4+-ty-4o9)+ (z-y)
F = qu; Fourier expansions = —S+ir—ty+iT-y
=1
Theorem

fisSAT & Min (F)=-m i
x€[—1,1]" !
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Theoretical Properties of FourierSAT

. . e I
Randomized Rounding;: | Theorem i

=11 o . . .
PlR(@)i=-11=5-3% | | p(g)=—k= m+k clauses can be satisfied in expectation;
PR@); =1 =1+ 12 | Voo e !

I I

| F —

| (z) g | mtk clauses can be satisfied : (Deterministically)
. I
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Experimental Results: Parity Learning with Errors

* Solving a random XOR system of m XOR
equations and n variables but tolerating up 60 | ,

- CMS+CNF-XOR

to e - m equations to be violated —— FourierSAT

50

em =2n, €= i: Known as hard instances

for both DPLL and local search SAT solvers °

« XORs + 1 Cardinality Constraint

—== CMS+CNF
—-—=- WalkSAT+CNF

1 Dxro Dy =—1 7 ;:
1 Dxe=—1 §40- "I |
To Daxrg=—1 "2730-
r1Pxrg=—1 g‘zo_ }:
UNSAT for e = 0. SAT for e = 0.25 & )y
10 A

r
100 150 200
Number of problems solved

250
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Conclusion 7N

« SAT solving beyond CNF is worth studying
e Our work, FourierSAT is a versatile and robust tool for Boolean SAT

* Applications of Fourier analysis and other algebraic techniques for Boolean
logic are promising
» Bridging discrete and continuous optimization

 Future directions:
» Proving unsatisfiability algebraically
» Deploying FourierSAT with methods from machine learning and local search
SAT solvers



