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• SAT: Does a formula have a solution or not?    
is a solution of  

no solution exists for
• NP-completeness of SAT was proven in 1971 by Stephen Cook

Background: Boolean SATisfiability Problem

• Variables:  

• Connectives:

• Formula: 

• Solution: an assignment with T/F of variables s.t. formula yields T
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Applications of SAT

SAT solvers solve industrial SAT instances with millions of variables

Used by hardware and software designers on a daily basis

Discrete Optimization Software Verification Motion planning Probabilistic inference
[Ignatiev et al., 2017] [Velev, 2004] [Bera, 2017] [Chavira et al., 2008]

[Katebi et al., 2011]
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CNF and Hybrid SAT Solving

• Conjunctive Normal Form (CNF)
• Connectives: 
• Clauses:
• Formulas: 
• 3-CNF is NP-complete [Cook, 1971]

• Non-CNF Clauses/Constraints
• cryptography: XOR [Bogdanov et al., 2011]

• graph theory: cardinality constraints [Costa et al., 2009]

not-all-equal (NAE) [Tomas J, 1978]
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Related Work: Hybrid SAT Solving

• CNF-encoding of Non-CNF constraints 

Cryptominisat (CNF + XOR) [Soos et al., 2009]

Minicard (CNF + cardinality constraints) [Liffition et al., 2012]

MonoSAT (CNF + graph properties) [Bayless et al. 2015]

Pueblo (CNF + pseudo Boolean constraints) [Sheini et al., 2006] 

Involves large number of new variables and clauses

Need to design algorithms for each specific type of constraints 

• Extensions of CNF solvers

Encodings make a big difference [Prestwich 2009]

[Wynn, 2018]
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Contribution: A versatile Boolean SAT Solver

Each       can be a CNF, XOR, Not-all-equal constraint or 
cardinality constraint

Goal: Handle different types of 
constraints uniformly & naturally
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Boolean formulas Multilinear Polynomials 

Fourier Expansion of Boolean Function

{F, T}

7 /14Every Boolean function has a unique representation in multilinear polynomial. 



From SAT to continuous optimization

discrete searching on Boolean domain optimization on continuous domain
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Tree Search/Backtracking Local Search



Workflow
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hybrid Boolean formula

gradients

continuous optimization
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Is a solution?
No

discretize

analytical 
computation
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transform
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Factored Representation

• Many types of constraints has closed form Fourier expansions 

Type of Constraint Fourier Expansion

CNF clauses

XOR

Cardinality constraints

Not-all-equal

Example

Define a new objective function by the Fourier Expansion of each clause

• Generally, computing the Fourier Expansion of a Boolean function is #P-hard

• How to evaluate a polynomial with exponentially many terms?
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Objective Function Construction

Fourier expansions
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Theoretical Properties of FourierSAT

Making progress in expectation per iteration

12 /14

$ (Deterministically)



Experimental Results: Parity Learning with Errors
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Conclusion

• SAT solving beyond CNF is worth studying

• Our work, FourierSAT is a versatile and robust tool for Boolean SAT

• Applications of Fourier analysis and other algebraic techniques for Boolean 
logic are promising

• Bridging discrete and continuous optimization

• Future directions: 
• Proving unsatisfiability algebraically
• Deploying FourierSAT with methods from machine learning and local search 
SAT solvers
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