

Deep Learning for Vision & Language

Explainability, Self-Supervision, and Video

Explainability: GradCAM

(a) Original Image

(c) Grad-CAM 'Cat'

(i) Grad-CAM 'Dog'

https://arxiv.org/abs/1610.02391

Explainability: GradCAM

global average pooling ∂y^c $\alpha_k^c =$ gradients via backprop

 $L_{\text{Grad-CAM}}^{c} = ReLU\left(\sum_{k} \alpha_{k}^{c} A^{k}\right)$

linear combination

https://arxiv.org/abs/1610.02391

Explainability with Vision-Language Models Case Study: The ALBEF model

https://arxiv.org/pdf/2107.07651.pdf

Attention Mask Consistency (AMC)

https://arxiv.org/abs/2206.15462

Self-Supervised Learning vs Supervised Learning

Colorization

https://arxiv.org/pdf/1603.08511.pdf

Context Prediction

Consistency Counting

https://openaccess.thecvf.com/content_IC CV_2017/papers/Noroozi_Representation_ Learning_by_ICCV_2017_paper.pdf

Training Vision models with Self-supervision Case: SimCLR

https://arxiv.org/abs/2002.05709

Training Vision models with Self-supervision Case: SimCLR

https://arxiv.org/abs/2002.05709

Training Vision models with Self-supervision Case: SimCLR

$$\ell_{i,j} = -\log \frac{\exp(\operatorname{sim}(\boldsymbol{z}_i, \boldsymbol{z}_j)/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(\operatorname{sim}(\boldsymbol{z}_i, \boldsymbol{z}_k)/\tau)}$$

https://www.earthdata.nasa.gov/learn/articles/ssl-impact-blog https://arxiv.org/abs/2002.05709

Masked AutoEncoders

https://arxiv.org/pdf/2111.06377.pdf

Video

- Optical flow
- Two-Stream Networks
- CNN + LSTM
- CNN + Temporal Pooling
- 3D CNNs

From images to videos

- A video is a sequence of frames captured over time
- Now our image data is a function of space (x, y) and time (t)

Why is motion useful?

Why is motion useful?

Optical flow

- Definition: optical flow is the *apparent* motion of brightness patterns in the image
- Note: apparent motion can be caused by lighting changes without any actual motion
 - Think of a uniform rotating sphere under fixed lighting vs. a stationary sphere under moving illumination

GOAL: Recover image motion at each pixel from optical flow

Optical flow

Picture courtesy of Selim Temizer - Learning and Intelligent Systems (LIS) Group, MIT

Estimating optical flow

- Given two subsequent frames, estimate the apparent motion field u(x,y), v(x,y) between them
- Key assumptions
 - **Brightness constancy:** projection of the same point looks the same in every frame
 - Small motion: points do not move very far
 - Spatial coherence: points move like their neighbors

Key Assumptions: small motions

Assumption:

The image motion of a surface patch changes gradually over time.

Key Assumptions: spatial coherence

Assumption

- * Neighboring points in the scene typically belong to the same surface and hence typically have similar motions.
- * Since they also project to nearby points in the image, we expect spatial coherence in image flow.

Key Assumptions: brightness Constancv

Assumption

Image measurements (e.g. brightness) in a small region remain the same although their location may change.

$$I(x+u, y+v, t+1) = I(x, y, t)$$

(assumption)

The brightness constancy constraint

• Brightness Constancy Equation:

$$I(x, y, t-1) = I(x + u(x, y), y + v(x, y), t)$$

Linearizing the right side using Taylor expansion:

$$I(x+u, y+v, t) \approx I(x, y, t-1) + I_x \quad u(x, y) + I_y \cdot v(x, y) + I_t$$

$$I(x+u, y+v, t) - I(x, y, t-1) = I_x \cdot u(x, y) + I_y \cdot v(x, y) + I_t$$
Hence, $I_x \cdot u + I_y \cdot v + I_t \approx 0 \quad \Rightarrow \nabla I \cdot [u \ v]^T + I_t = 0$

The brightness constancy constraint

$$I(x+u, y+v, t) - I(x, y, t-1) = I_x \cdot u(x, y) + I_y \cdot v(x, y) + I_t$$

Hence, $I_x \cdot u + I_y \cdot v + I_t \approx 0 \quad \Rightarrow \nabla I \cdot [u \ v]^T + I_t = 0$

Source: Silvio Savarese

Recommended Paper to Read:

Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset

João Carreira[†]

Andrew Zisserman^{†,*}

joaoluis@google.com

zisserman@google.com

[†]DeepMind

*Department of Engineering Science, University of Oxford

CNN + LSTM over sequence of frames

3D CNN of consecutive frames across time

Two Stream CNN: Images + Flow Map

Two Stream 3D CNN: Images + Flow Map

UCF-101 Action Dataset

https://www.crcv.ucf.edu/data/UCF101.php

Results on UCF101 actions

	UCF-101						
Architecture	RGB	Flow	RGB + Flow				
(a) LSTM	81.0	_	_				
(b) 3D-ConvNet	51.6	_	—				
(c) Two-Stream	83.6	85.6	91.2				
(d) 3D-Fused	83.2	85.8	89.3				
(e) Two-Stream I3D	84.5	90.6	93.4				

Movie Trailers

Moviescope: Large-scale Analysis of Movies using Multiple Modalities

Paola Cascante-Bonilla^{1*} Kalpathy Sitaraman^{2†*} Mengjia Luo¹ Vicente Ordonez¹ ¹University of Virginia, ²Microsoft

[pc9za, ml6uk, vicente]@virginia.edu, kasivara@microsoft.com

https://arxiv.org/abs/1908.03180

Movie Trailers

- Movie Trailers
- Movie Plots
- Movie Posters
- Movie Metadata

https://arxiv.org/abs/1908.03180

CNN + Temporal Pooling

CNN + Temporal Pooling

Movie Posters

Results

Table 3. Mean Average Precision (mAP) Scores for movie genre prediction.

	action	anim	bio	com	crime	drama	fam	fant	horr	myst	rom	scifi	thrlr	mAP	μAP	sAP
% of training samples	8.70	1.84	2.22	14.17	10.56	19.63	4.14	6.97	4.29	3.79	8.36	4.66	10.69	-	-	-
Baseline accuracy	22.1	4.3	6.2	39.3	18.6	53.6	10.8	17.0	10.5	10.9	22.1	13.5	25.8	19.6	13.7	21.0
Video (V)																
C3D [37]	63.8	91.3	16.2	82.3	45.1	71.6	65.3	54.8	50.8	28.2	38.3	21.8	64.8	53.4	57.9	68.8
I3D [5]	37.2	51.8	9.2	72.6	33.9	67.6	43.6	39.0	22.8	21.3	34.3	22.6	48.3	38.8	50.5	65.6
LSTM	47.5	86.8	12.0	79.2	33.0	72.0	64.5	54.4	22.7	24.7	40.4	36.5	54.8	48.4	59.6	70.5
Bidirectional LSTM	49.9	86.3	8.2	77.6	29.9	70.8	65.4	55.3	22.3	21.7	41.6	35.9	51.2	47.4	58.2	69.9
fastVideo	61.4	94.8	23.9	81.5	41.7	77.0	67.0	62.6	36.1	30.4	48.4	48.2	62.0	56.5	64.9	75.6
fastVideo + TempConv	64.7	95.7	21.2	83.5	49.1	78.9	68.6	68.9	42.7	29.2	46.8	51.0	64.8	58.9	65.9	76.3
Audio (A)																
CRNN	56.7	48.0	11.2	86.2	40.0	79.0	49.6	44.7	37.6	22.7	43.0	27.0	56.3	46.3	61.4	72.3
Poster (P)																
VGG16	48.6	60.0	12.1	73.4	33.4	69.8	47.2	41.3	37.0	22.3	38.1	33.9	46.3	43.3	51.9	66.5
Text (T)																
Conv1D	62.5	34.4	24.7	64.8	54.3	73.8	50.3	64.6	50.4	31.5	43.2	70.6	61.5	52.8	57.8	70.4
LSTM	64.8	44.5	25.6	70.1	63.4	78.0	63.3	70.8	63.2	32.6	47.1	75.2	66.5	58.9	63.8	73.8
Bidirectional LSTM	63.7	42.5	31.2	69.3	58.1	76.7	57.9	66.4	61.3	30.7	52.3	76.2	63.2	57.7	63.2	73.5
fastText	72.0	50.7	40.6	81.1	68.7	82.3	69.2	68.8	78.3	47.8	60.3	74.4	72.9	66.7	72.5	81.4
fastText w/ Glove [20]	72.2	51.6	45.2	81.2	69.1	82.3	70.8	68.9	78.8	49.7	61.1	75.2	73.3	67.7	72.8	81.7
Metadata (M)																
XGBoost	61.5	76.8	35.4	74.8	36.7	82.7	83.7	53.7	62.3	22.8	31.4	33.4	50.9	54.3	62.9	73.7
RandomForest	59.3	73.7	33.3	74.9	40.6	82.7	83.2	58.8	62.7	25.4	35.4	37.9	55.0	55.6	63.9	73.7
Score Fusion																
Video-Audio (VA)	69.0	90.8	26.1	88.6	49.0	82.6	74.8	63.8	49.0	34.4	49.8	51.1	70.8	61.5	70.3	78.8
Vid-Aud-Poster (VAP)	68.8	92.5	27.4	88.5	48.9	82.6	74.8	63.7	49.5	34.3	50.1	50.3	70.7	61.7	70.4	78.8
Vid-Aud-Post-Text (VAPT)	73.3	95.2	29.9	91.0	61.2	85.0	77.2	69.0	68.9	38.8	51.8	61.6	74.1	67.5	74.9	82.3
Vid-Aud-Post-Text-Metad (VAPTM)	75.5	88.8	36.6	91.5	60.6	86.8	87.0	70.5	74.6	39.7	49.7	59.4	71.3	68.6	75.3	82.5

Results

Table 4. Mean Average Precision Scores on UCF101.

	mAP
'Slow Fusion' spatio-temporal ConvNet [16]	65.4
LSTM composite model (only RGB) [34]	75.8
C3D (fc6) [37]	76.4
iDT+C3D (fc6) [37]	86.7
Two-stream model [28]	88.0
Two-Stream I3D [5]	98.0
fastVideo - 16 Frames	79.2
fastVideo - 200 Frames	79.4
fastVideo - 49 Frames	81.1

Other Video and Language

- Youtube videos with titles
 - <u>http://aliensunmin.github.io/project/video-language/index.html#VTW</u>
- YouCook2 Dataset
 - <u>http://youcook2.eecs.umich.edu/</u>
- MSRVTT: Microsoft Video and Text Dataset
 - <u>https://www.microsoft.com/en-us/research/publication/msr-vtt-a-large-video-description-dataset-for-bridging-video-and-language/</u>

ViC-MAE (Video Contrastive Masked Autoencoders)

https://arxiv.org/abs/2303.12001

ViC-MAE (Video Contrastive Masked Autoencoders)

https://arxiv.org/abs/2303.12001

Questions?