Deep Learning for Vision & Language

Generative Adversarial Networks, Text-to-Scene Introduction

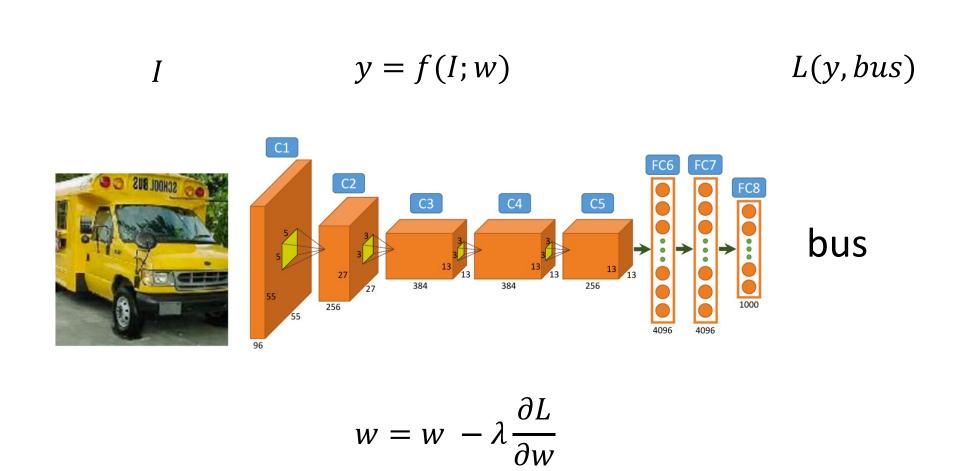
Last Class

- Adversarial Examples Input Optimization
- Generative Adversarial Networks (GANs)

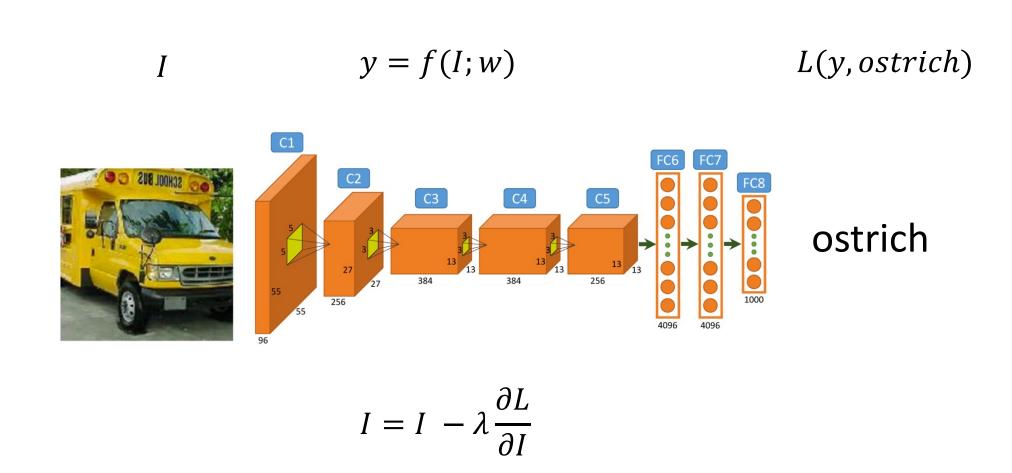
Today:

- Conditional GANs
- AutoEncoder Models (AEs, VAEs)
- Text to image Models

What we have been doing: Optimize weights in the network to predict bus (correct class).

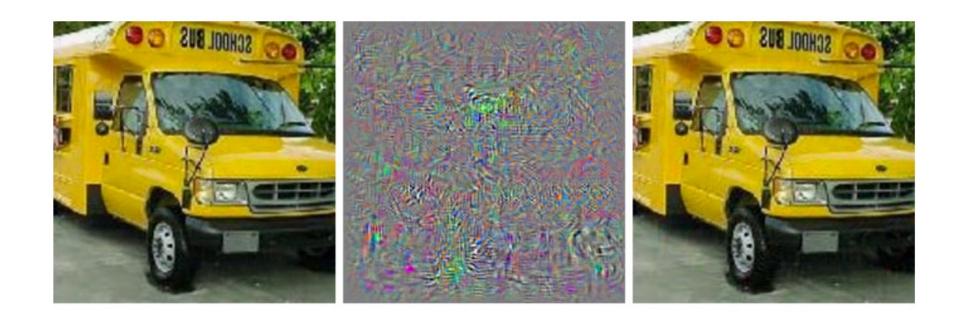


New Idea: Create Adversarial Inputs by optimizing the input image to predict ostrich (wrong class).

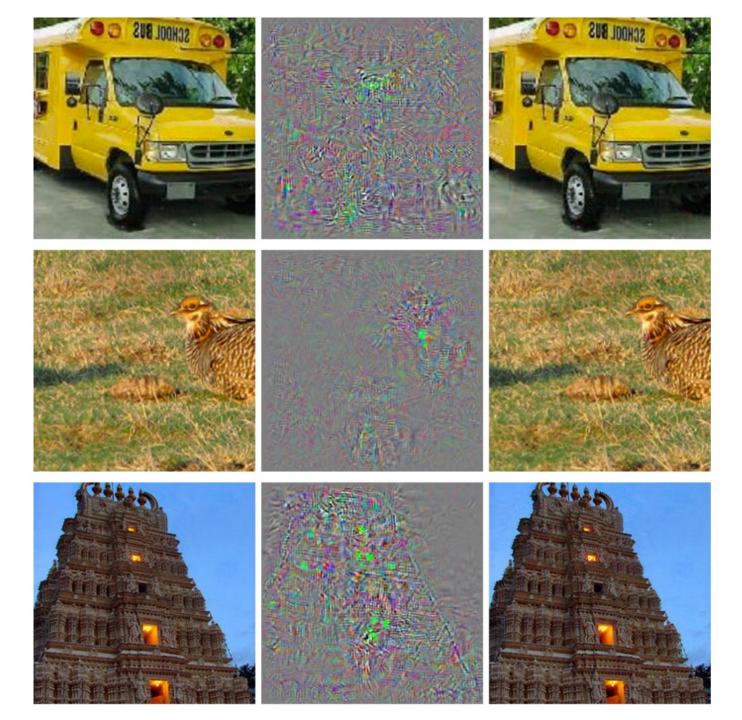


Work on Adversarial examples by Goodfellow et al., Szegedy et. al., etc.

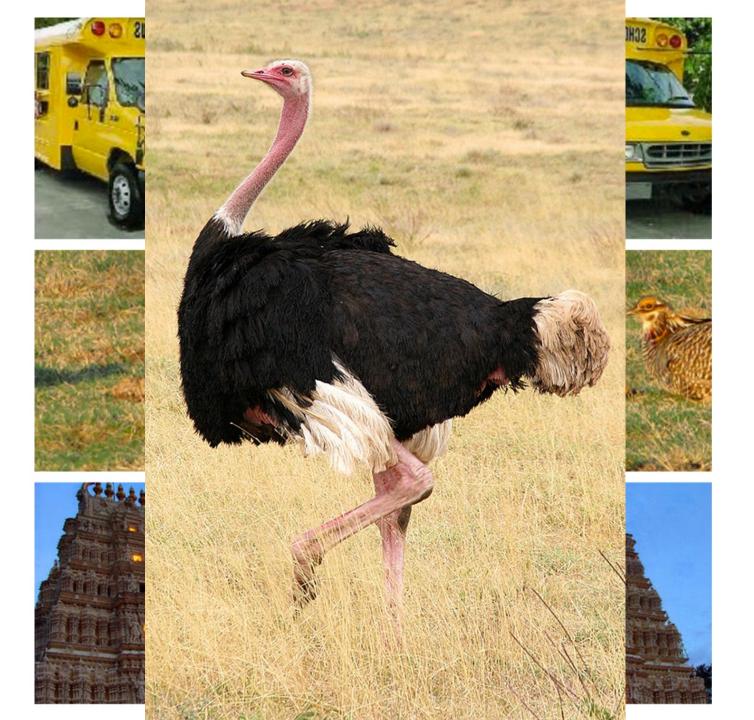
Convnets (optimize input to predict ostrich)



Work on Adversarial examples by Goodfellow et al., Szegedy et. al., etc.



All get predicted as ostrich



Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images

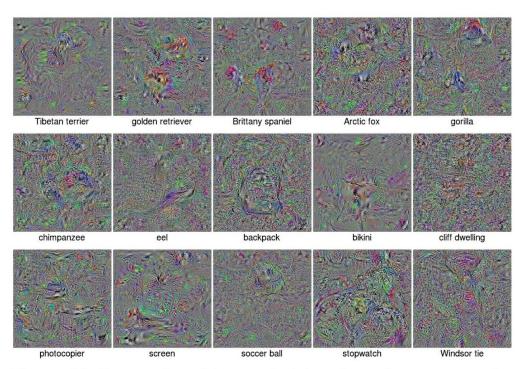
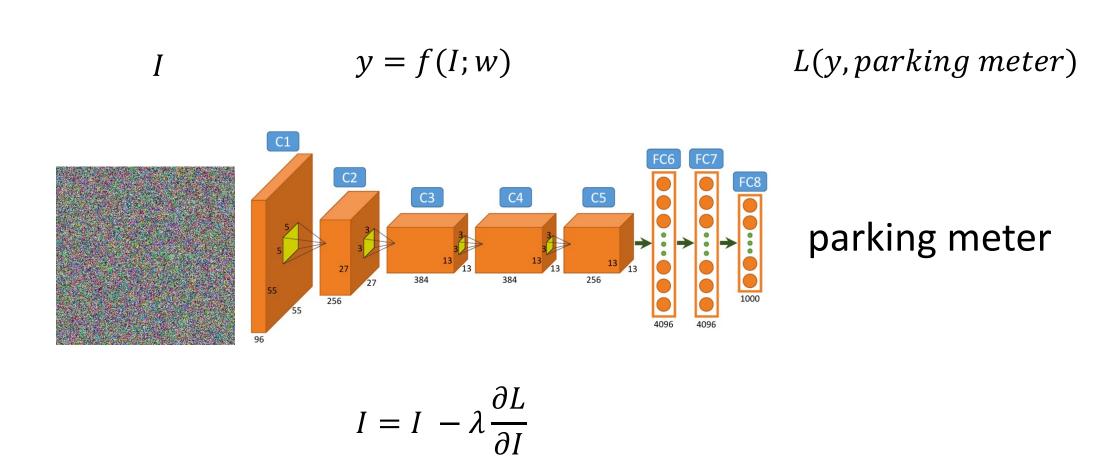


Figure 13. Images found by maximizing the softmax output for classes via gradient ascent [11, 26]. Optimization begins at the ImageNet mean (plus small Gaussian noise to break symmetry) and continues until the DNN confidence for the target class reaches 99.99%. Images are shown with the mean subtracted. Adding regularization makes images more recognizable but results in slightly lower confidence scores (see supplementary material).

Anh Nguyen, Jason Yosinski, Jeff Clune, 2014

New Idea: Create Adversarial Inputs by optimizing the input image to predict ostrich (wrong class).



Work on Adversarial examples by Goodfellow et al., Szegedy et. al., etc.

parking meter: 0.999679

Total Variation Regularization

A second richer regulariser is *total variation* (TV) $\mathcal{R}_{V^{\beta}}(\mathbf{x})$, encouraging images to consist of piece-wise constant patches. For continuous functions (or distributions) $f: \mathbb{R}^{H \times W} \supset \Omega \to \mathbb{R}$, the TV norm is given by:

$$\mathcal{R}_{V^{eta}}(f) = \int_{\Omega} \left(\left(rac{\partial f}{\partial u}(u,v)
ight)^2 + \left(rac{\partial f}{\partial v}(u,v)
ight)^2
ight)^{rac{eta}{2}} \, du \, dv$$

where $\beta = 1$. Here images are discrete ($\mathbf{x} \in \mathbb{R}^{H \times W}$) and the TV norm is replaced by the finite-difference approximation:

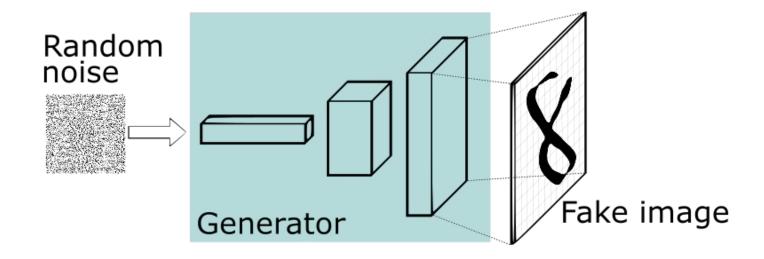
$$\mathcal{R}_{V^{\beta}}(\mathbf{x}) = \sum_{i,j} \left((x_{i,j+1} - x_{ij})^2 + (x_{i+1,j} - x_{ij})^2 \right)^{\frac{\beta}{2}}.$$

Figure 1. What is encoded by a CNN? The figure shows five possible reconstructions of the reference image obtained from the 1,000-dimensional code extracted at the penultimate layer of a reference CNN[13] (before the softmax is applied) trained on the ImageNet data. From the viewpoint of the model, all these images are practically equivalent. This image is best viewed in color/screen.

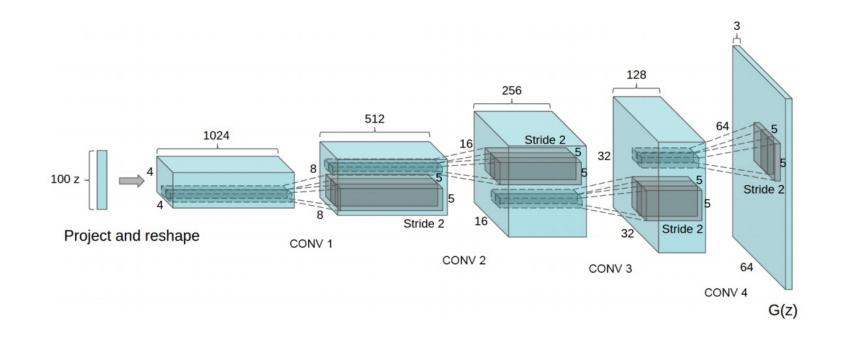
Taking the idea to the extreme: Google's DeepDream

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html Generate your own in Pytorch: https://github.com/XavierLinNow/deepdream_pytorch

Generative Adversarial Networks (GAN) [Goodfellow et al 2014]

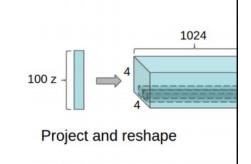


Generative Network (closer look)



Radford et. al. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. ICLR 2016

Generative Network (closer look)



Deconvolutional Layers

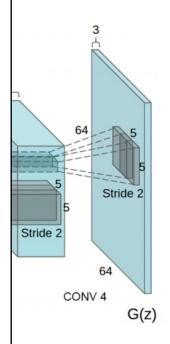
Upconvolutional Layers

Backwards Strided Convolutional Layers

Fractionally Strided Convolutional Layers

Transposed Convolutional Layers

Spatial Full Convolutional Layers



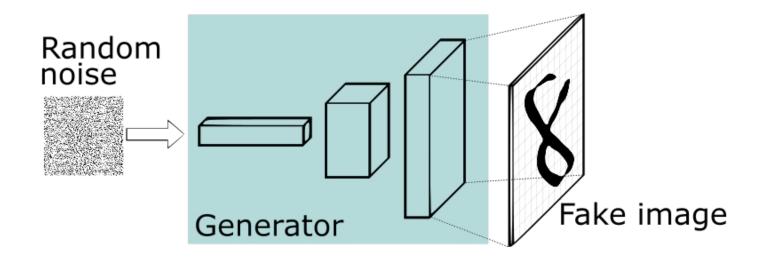
ion itive

Radford et. al.

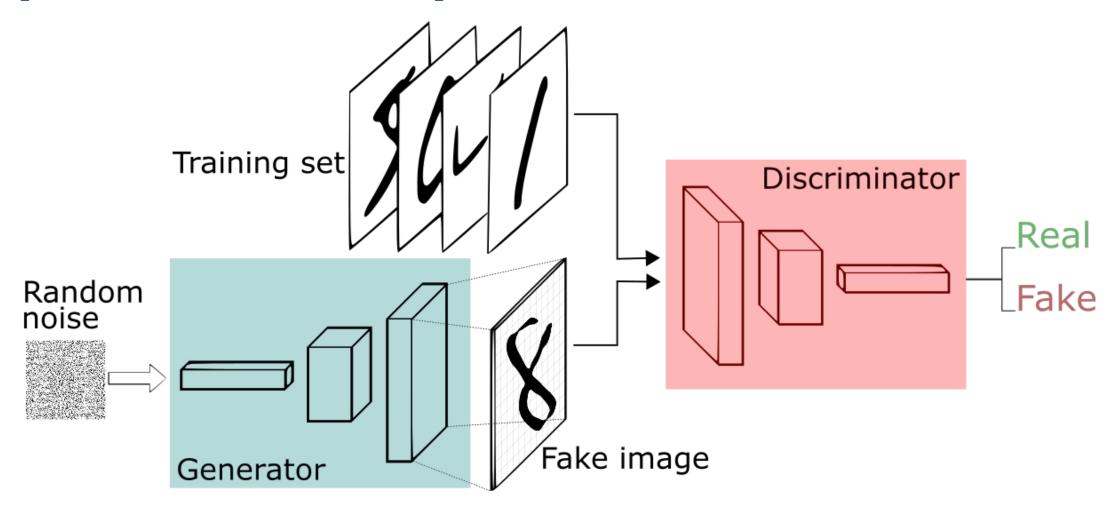
Learning with

Adversarial Networks. ICLK

Generative Adversarial Networks (GAN) [Goodfellow et al.]



Generative Adversarial Networks (GAN) [Goodfellow et al.]



Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \dots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)}\right) + \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_q(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right) \right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \dots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \dots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right) \right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

Update
Discriminator
D

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \dots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right) \right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

Update Generator G Until
Desirable
Results are
Achieved?

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

for number of training iterations **do**

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \dots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \right].$$

end for

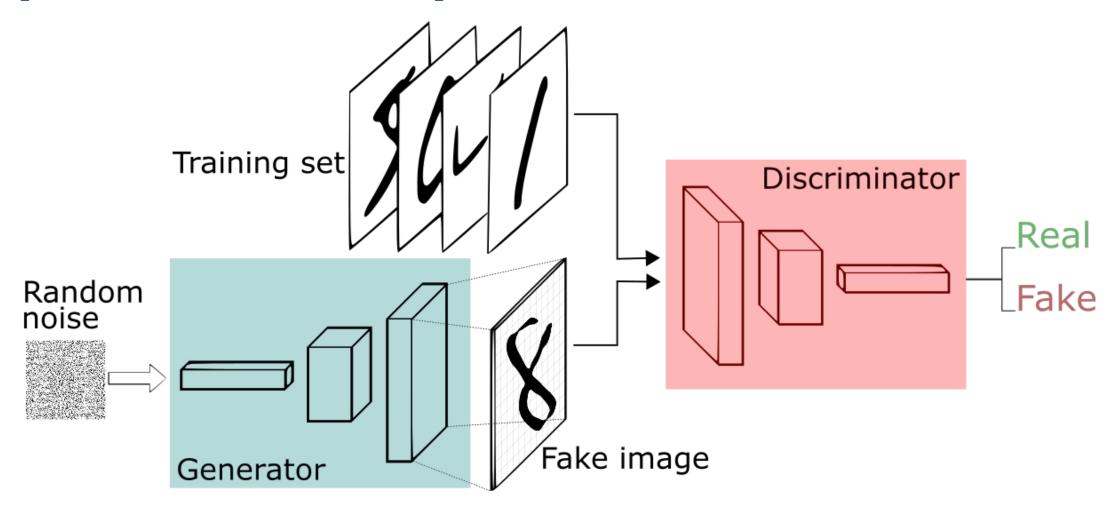
- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_q(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D \left(G \left(\boldsymbol{z}^{(i)} \right) \right) \right).$$

end for

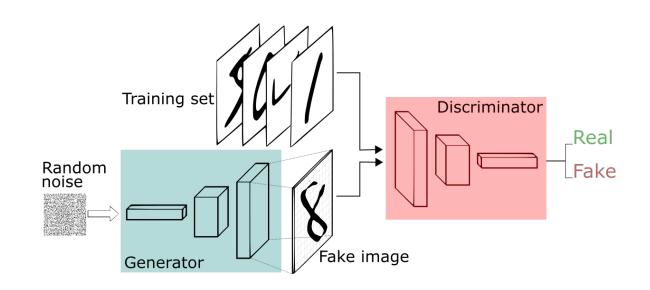
The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

Generative Adversarial Networks (GAN) [Goodfellow et al.]



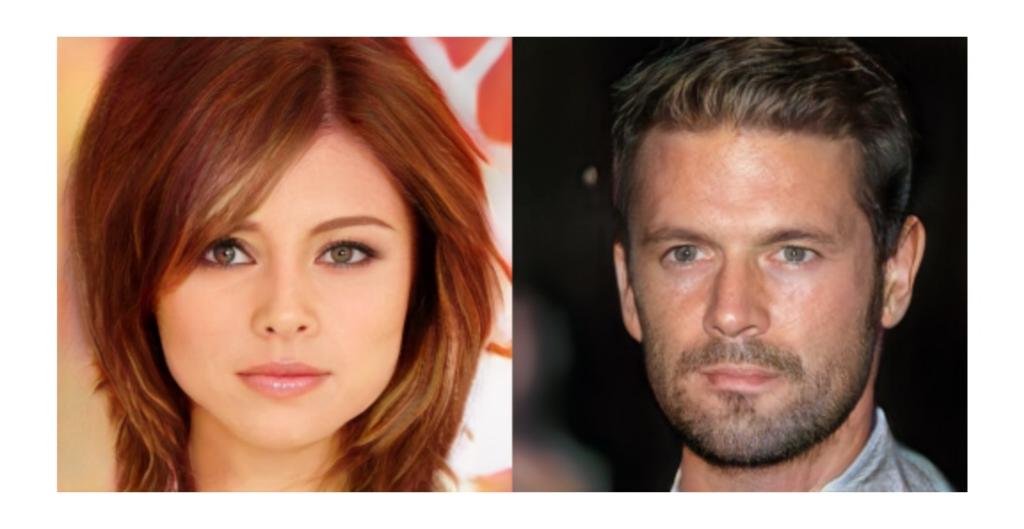
Generative Adversarial Networks (GAN) [Goodfellow et al.]

- GANs are hard to train, loss for the discriminator and generator might fluctuate.
- There are many choices for loss, and other auxiliary signals.
- Training of these models is even less well understood than for other deep models.



Basic GAN Results (Example implementation is provided in Pytorch's examples)

NVidia's progressive GANs ICLR 2018



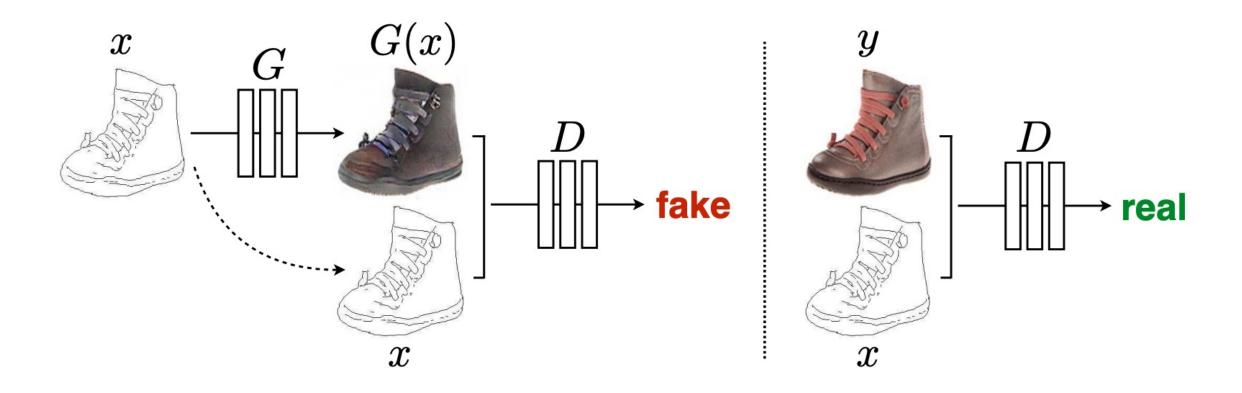
Google's BigGAN

Google's BigGAN

Teddy Bear

Microphone

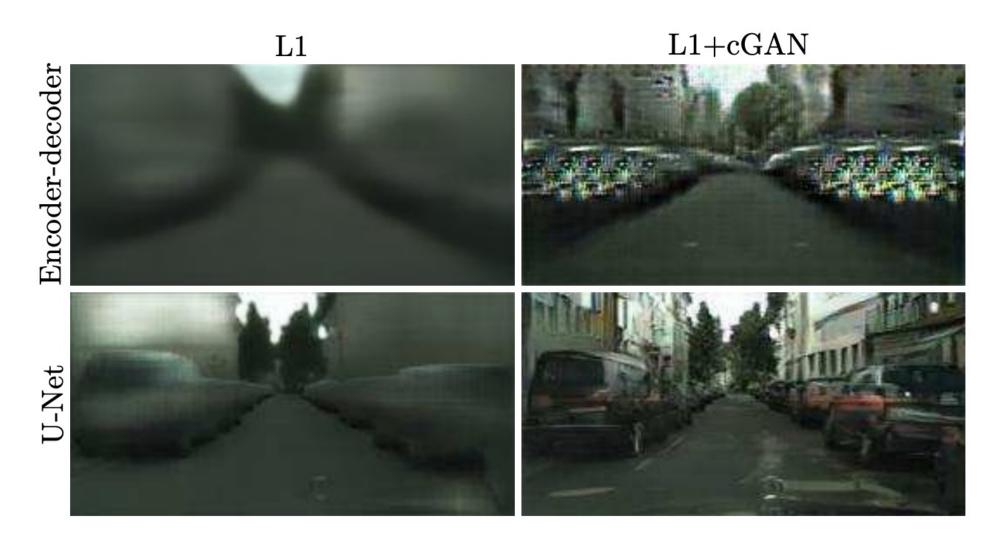
Conditional GANs: Input is not just Noise



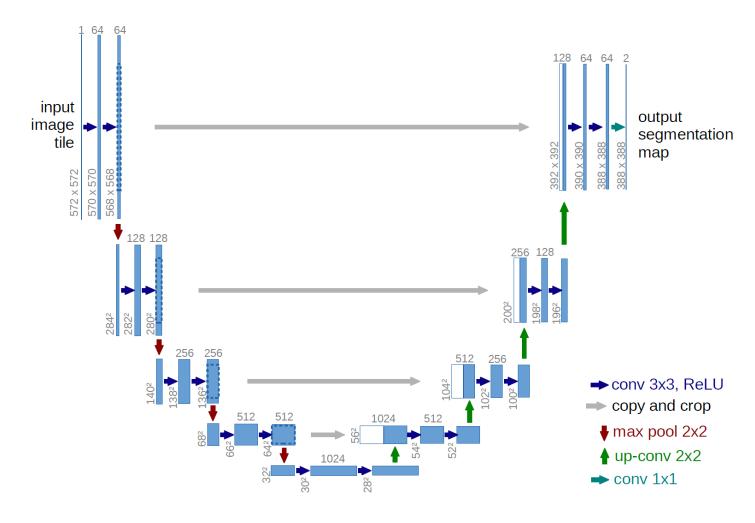
Conditional GANs: Also Hard to Train

Result they obtained with a regular Fully Convolutional Network

Result they obtained with a U-Net network (with skip-connections)



Conditional GANs: Also Hard to Train



AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks

Tao Xu*1, Pengchuan Zhang², Qiuyuan Huang², Han Zhang³, Zhe Gan⁴, Xiaolei Huang¹, Xiaodong He²

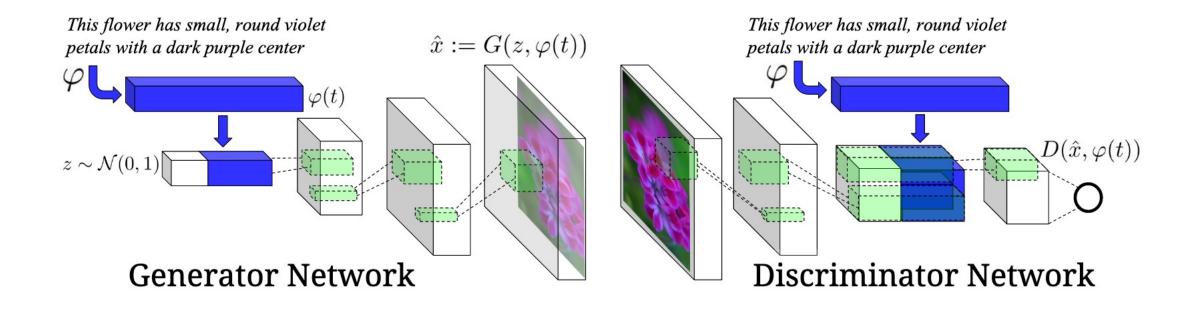
¹Lehigh University ²Microsoft Research ³Rutgers University ⁴Duke University {tax313, xih206}@lehigh.edu, {penzhan, qihua, xiaohe}@microsoft.com han.zhang@cs.rutgers.edu, zhe.gan@duke.edu

Generative Adversarial Text to Image Synthesis

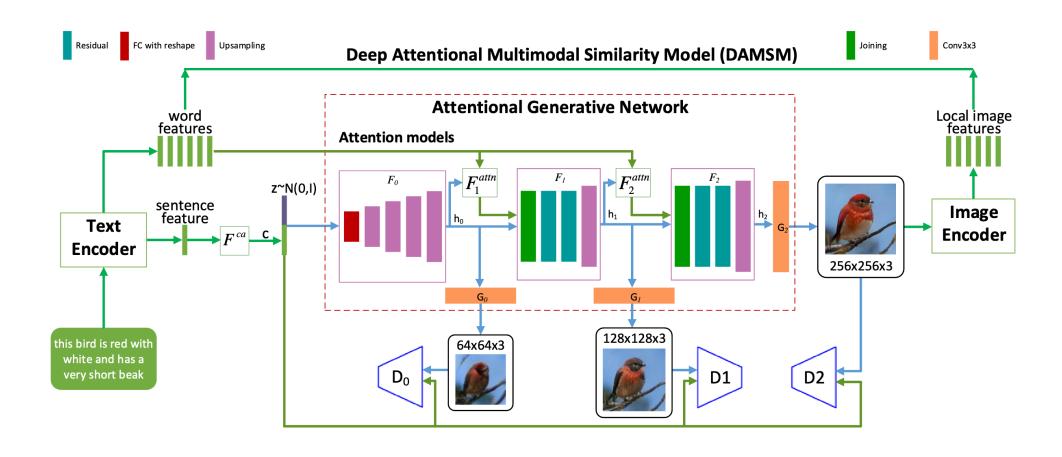
Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran Bernt Schiele, Honglak Lee REEDSCOT¹, AKATA², XCYAN¹, LLAJAN¹ SCHIELE²,HONGLAK¹

¹ University of Michigan, Ann Arbor, MI, USA (UMICH.EDU)

² Max Planck Institute for Informatics, Saarbrücken, Germany (MPI-INF.MPG.DE)



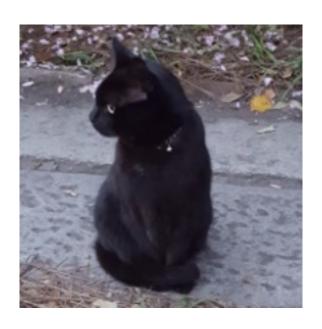
this small bird has a pink breast and crown, and black primaries and secondaries.

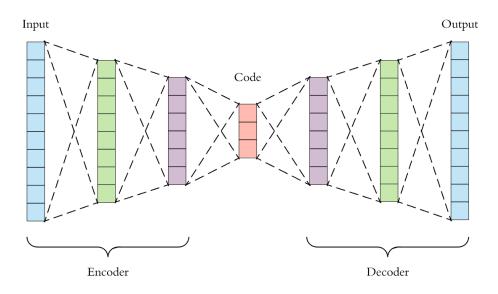


this bird is red with white and has a very short beak

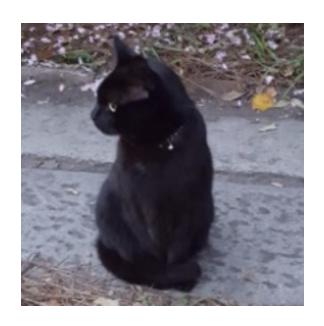


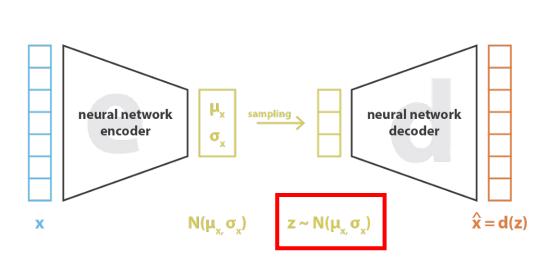
AutoEncoder Models

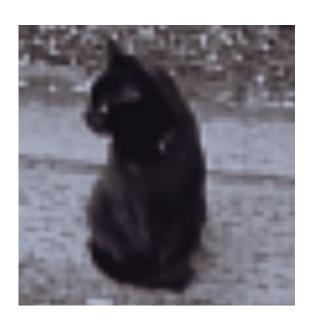




Variational AutoEncoder (VAE)

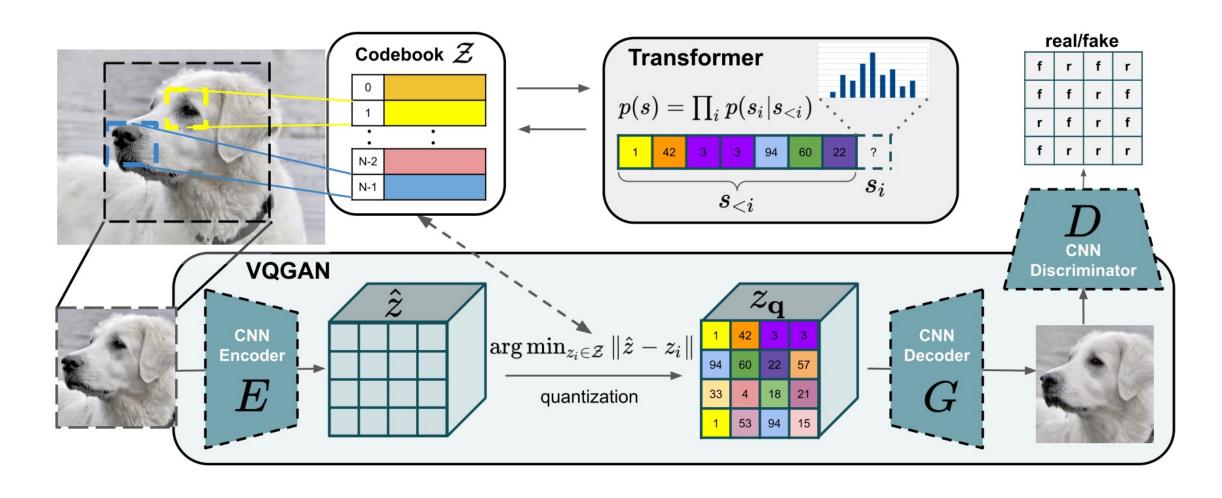




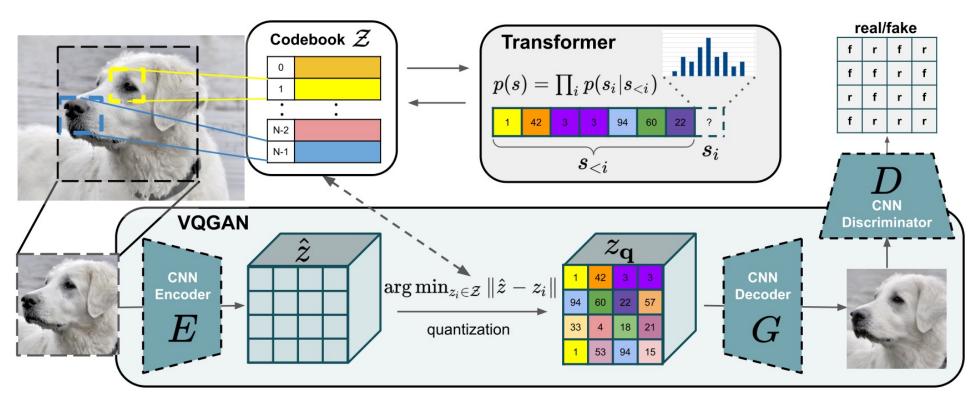


loss =
$$|| x - x^{\prime}||^2 + KL[N(\mu_x, \sigma_x), N(0, I)]$$

Vector Quantized - GAN



Vector Quantized GAN (VQGAN)



$$\mathcal{Q}^{*} = \underset{E,G,\mathcal{Z}}{\arg\min} \max_{D} \mathbb{E}_{x \sim p(x)} \Big[\mathcal{L}_{\text{VQ}}(E,G,\mathcal{Z}) \\ + \|\text{sg}[z_{\mathbf{q}}] - E(x)\|_{2}^{2} \\ + \lambda \mathcal{L}_{\text{GAN}}(\{E,G,\mathcal{Z}\},D) \Big]$$

$$\mathcal{L}_{\text{VQ}}(E,G,\mathcal{Z}) = \|x - \hat{x}\|^{2} + \|\text{sg}[E(x)] - z_{\mathbf{q}}\|_{2}^{2} \\ + \|\text{sg}[z_{\mathbf{q}}] - E(x)\|_{2}^{2}.$$

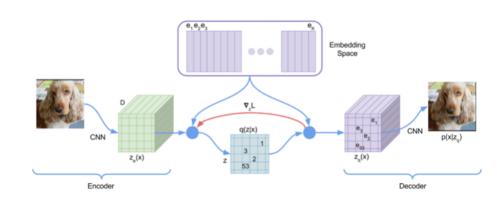
DALL-E (v1)

Step 1:

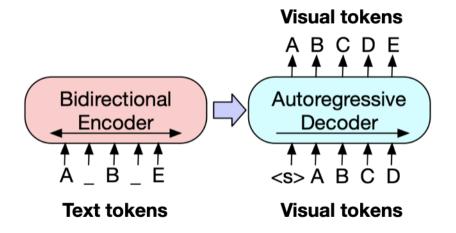
Learn Discrete Dictionary of Visual Tokens

Step 2:

Build a scene as a composition of discrete visual tokens



VQVAE — Oord, Vinyals, Kavukcuoglu, 2017 VQGAN — Esser, Rombach, Ommer, 2021 dVAE - DALL-E — Ramesh et al 2021



BART, GPT-3, etc

an armchair in the shape of an avocado....

Questions