4‘ AR i W e i ks, Wl e DB o G i v i

A ML SO s e il N ™ I AN .
- e e i S S i . WM o Pl . . »
N Ml Bl A I A Bl M . W WP N e -
el TR e el ol NSt B BB, N o el
Tt T BT i i, e S . M @
B S i
- A . - * 4 . el I I . W et

Deep Learning for Vision &
Language

Generative Adversarial Networks, Text-to-Scene Introduction

Recap RNNs for your Assignment

hl = tanh(Whth + thxl)

® - @ - &
|

&

RNN in Pytorch

Recurrent layers

class torch.nn.RNN(*args, **kwargs) [source]

Applies a multi-layer EIman RNN with tanh or ReLU non-linearity to an input sequence.

For each element in the input sequence, each layer computes the following function:

ht = ta,nh(w,-h * X + b,‘h + wyy, * h(t—l) + bhh)

where A, is the hidden state at time t, and x; is the hidden state of the previous layer at time t or
input, for the first layer. If nonlinearity="relu’, then ReLU is used instead of tanh.

Parameters:

input_size - The number of expected features in the input x

hidden_size - The number of features in the hidden state h

num_layers - Number of recurrent layers.

nonlinearity - The non-linearity to use [‘tanh’|'relu’]. Default: ‘tanh’

bias - If False, then the layer does not use bias weights b_ih and b_hh. Default:
True

batch_first - If True, then the input and output tensors are provided as (batch, seq,
feature)

dropout - If non-zero, introduces a dropout layer on the outputs of each RNN
layer except the last layer

bidirectional - If True, becomes a bidirectional RNN. Default: False

LSTM Cell (Long Short-Term Memory)

it = 0 Wayixe + Whihi—1 + Weice—1 + b;) (7)
ft =0 Wypxe + Whhe1 + Weper—1 + by) (8)
ct = frer—1 + iy tanh (Weexy + Whchi—1 + be) (9)
0 =0 (Wmoxt + Whohit—1 + Weoer + bo) (10)
ht = o tanh(cy) (11)

https://ieeexplore.ieee.org/abstract/document/6795963

LSTM in Pytorch

0
‘A
4 ™
By h, ‘ ‘
r 4 class torch.nn.LSTM(*args, **kwargs) [source]
t}"h Applies a multi-layer long short-term memory (LSTM) RNN to an input sequence.
For each element in the input sequence, each layer computes the following function:
= 4 i = sigmoid(W,-,-x, + b; + Whih(t—l) + by;)
t . .
i = s1gm01d(Wifx, + bif + thh(t—l) + bhf)
R N N g = tanh(W,-gx, + big + thh(t—l) + bhg)
o; = sigmoid(W;,x; + b;, + Whoh(t—l) + bpy)
ht A Cy =ﬁ %k C(t_]) + it *gt
h; = o; * tanh(c;)
Ct . (\ Ct t t t
® @ B> where A; is the hidden state at time t, ¢; is the cell state at time t, x; is the hidden state of the
Ganh previous layer at time t or input, for the first layer, and i, f;, g;, 0; are the input, forget, cell, and
X X out gates, respectively.
ht— 1 I—(Ij—l ﬂ IEi‘i' m ht Parameters: ¢ input_size - The number of expected features in the input x
j » ¢ hidden_size - The number of features in the hidden state h
Ty e num_layers - Number of recurrent layers.
¢ bias - If False, then the layer does not use bias weights b_ih and b_hh. Default:
LSTM True
(Long -Short Term Memory) o batch_first - If True, then the input and output tensors are provided as (batch, seq,
feature)

e dropout - If non-zero, introduces a dropout layer on the outputs of each RNN
layer except the last layer

¢ bidirectional - If True, becomes a bidirectional RNN. Default: False

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

GRU in Pytorch

OtA
4 ™
h't—l 'h’t
tag class torch.nn.GRU(*args, **kwargs) [source]
} Applies a multi-layer gated recurrent unit (GRU) RNN to an input sequence.
¥ For each element in the input sequence, each layer computes the following function:
Xt
RNN r; = sigmoid(W;,x; + biy + Wy h—1) + bp,)
7, = sigmoid(W,x; + b;; + thh(t—l) + bpz)
n; = tanh(Wi,x; + bip, + 11 ¥ (Winh(e—1) + bpn))
hy =1 —z)*n +z * h(t—l)
r where A, is the hidden state at time t, x; is the hidden state of the previous layer at time t or input,

for the first layer, and r;, z;, n; are the reset, input, and new gates, respectively.

hf .

|-
X
+

Parameters: ¢ input_size - The number of expected features in the input x
¢ hidden_size - The number of features in the hidden state h

W w 2 X ,‘l e num_layers - Number of recurrent layers.
L ~ {
o o tanh ¢ bias - If False, then the layer does not use bias weights b_ih and b_hh. Default:
True

e batch_first - If True, then the input and output tensors are provided as (batch, seq,
J feature)

e dropout - If non-zero, introduces a dropout layer on the outputs of each RNN

£y
layer except the last layer

¢ bidirectional - If True, becomes a bidirectional RNN. Default: False

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Today’s Class

* Adversarial Examples — Input Optimization
e Generative Adversarial Networks (GANSs)
* Conditional GANs

What we have been doing: Optimize weights in
the network to predict bus (correct class).

I y=fU;w) L(y, bus)

New Idea: Create Adversarial Inputs by optimizing
the input image to predict ostrich (wrong class).

I y=f(;w) L(y, ostrich)

ostrich

[=1 AaL
B ol

Work on Adversarial examples by Goodfellow et al. , Szegedy et. al., etc.

Convnets (optimize input to predict ostrich)

Work on Adversarial examples by Goodfellow et
al. , Szegedy et. al., etc.

All get
predicte
as ostric

Deep Neural Networks are Easily Fooled: High
Confidence Predictions for Unrecognizable Images

mw@m Anh Nguyen, Jason Yosinski, Jeff Clune, 2014

backpack " cliff dwelling

chimpanzee

photocopier screen soccer ball stopwatch Windsor tie

Figure 13. Images found by maximizing the softmax output for
classes via gradient ascent [1 1, 26]. Optimization begins at the Im-
ageNet mean (plus small Gaussian noise to break symmetry) and
continues until the DNN confidence for the target class reaches
99.99%. Images are shown with the mean subtracted. Adding reg-
ularization makes images more recognizable but results in slightly
lower confidence scores (see supplementary material).

New Idea: Create Adversarial Inputs by optimizing
the input image to predict ostrich (wrong class).

I y=f(;w) L(y,parking meter)

'n
(@)
(o))
m
(@)
~

-
H
00

parking meter

2 00---0®

w
5
:1000°--- 000
()]
H
:000--- 000
(=}

[=1 AaL
B ol

Work on Adversarial examples by Goodfellow et al. , Szegedy et. al., etc.

G
N

parking meter: 0.999679

Total Variation Regularization

A second richer regulariser is total variation (TV)
Ry s (x), encouraging images to consist of piece-wise con-
stant patches. For continuous functions (or distributions)
f:REXW 5 Q 3 R, the TV norm is given by:

B

(%(u,v))2+ (g—i(u,v)>2 2 du dv

where 3 = 1. Here images are discrete (x € R”*W) and
the TV norm is replaced by the finite-difference approxima-

tion: Figure 1. What is encoded by a CNN? The figure shows five
possible reconstructions of the reference image obtained from the

Rvﬂ(f)zf

Q

B
2 2\ 2 1,000-dimensional code extracted at the penultimate layer of a ref-
VB (X) - (xz,]+1 — Ty) + (xz+1,g — Ty) . erence CNN[13] (before the softmax is applied) trained on the Im-
i,j ageNet data. From the viewpoint of the model, all these images are

practically equivalent. This image is best viewed in color/screen.

Mahendran and Vedaldi, Understanding Deep Image Representations by Inverting Them, 2014

Taking the idea to the extreme: Google’s
DeepDream

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
Generate your own in Pytorch: https://github.com/XavierLinNow/deepdream_pytorch

Generative Adversarial Networks (GAN)
|Goodfellow et al 2014]

Generator Fake image

https://deeplearning4j.org/generative-adversarial-network

Generative Network (closer look)

Radford et. al. Unsupervised Representation

Learning with Deep Convolutional Generative
Adversarial Networks. ICLR 2016

Generative Network (closer look)

Deconvolutional Layers
Upconvolutional Layers

Backwards Strided

Project and reshape

Radford et. al
Learning with

Convolutional Layers

Fractionally Strided
Convolutional Layers

Transposed
Convolutional Layers

Spatial Full
Convolutional Layers

Adversarial N

Stride 2

- 5
—
-~
e -
=B
===
-
= i
-
-
.

N

Stride 2

lon

c(WOUTKRS. TULIRN ZUTO

64

CONV 4
G(2)

itive

Generative Adversarial Networks (GAN)
|Goodfellow et al.]

Geherator —%- Fake image

https://deeplearning4j.org/generative-adversarial-network

Generative Adversarial Networks (GAN)
|Goodfellow et al.]

Training set

Generator

https://deeplearning4j.org/generative-adversarial-network

Fake image

Discriminator

Real

h = {Fa ke

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, £, is a hyperparameter. We used k = 1, the least expensive option, in our
experiments.

for number of training iterations do
for £ steps do

e Sample minibatch of m noise samples {1, ..., (™)} from noise prior p,(z).
e Sample minibatch of m examples {:1:(1), e m(m)} from data generating distribution
Ddata (CB)

e Update the discriminator by ascending its stochastic gradient:

Vo, L 3" oD () +10g (1 - D (¢ (+%)))].

end for

e Sample minibatch of m noise samples {z1)| ..., z(™)} from noise prior p,(z).
e Update the generator by descending its stochastic gradient:

Vo, 3 tos (10 (6 ().

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

Goodfellow et al. NeurlPS 2014

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k£ = 1, the least expensive option, in our
experiments.

for number of training iterations do
for £ steps do

e Sample minibatch of m noise samples {1, ..., (™)} from noise prior p,(z).
e Sample minibatch of m examples {.’1:(1), ey m(m)} from data generating distribution
Update Pdata ().
Discriminator e Update the discriminator by ascending its stochastic gradient:
0 L (i (3
ngag: [logD (m ’) + log (1 —D (G (z ’)))] :
end for)
e Sample minibatch of m noise samples {z'"/, ..., 2"/ } from noise prior py(2).

e Update the generator by descending its stochastic gradient:

Vo, 3 tos (10 (6 ().

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

Goodfellow et al. NeurlPS 2014

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k£ = 1, the least expensive option, in our
experiments.

for number of training iterations do
for £ steps do

e Sample minibatch of m noise samples {1, ..., (™)} from noise prior p,(z).
e Sample minibatch of m examples {.’1:(1), ey m(m)} from data generating distribution
Ddata (w)

e Update the discriminator by ascending its stochastic gradient:

VoL 3" oD (29) +10g (1- D (¢ (+2)))].

1=

end for
e Sample minibatch of m noise samples {z1)| ..., z(™)} from noise prior p,(z).
Update e Update the generator by descending its stochastic gradient:
Generator L m
G Vo, > log (1-D (G (29))).
end for

The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

Goodfellow et al. NeurlPS 2014

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
_ steps to apply to the discriminator, £, is a hyperparameter. We used k = 1, the least expensive option, in our
Until experiments.

Desirable for number of training iterations do
Results are for & steps do
Achieved? e Sample minibatch of m noise samples {1, ..., (™)} from noise prior p,(z).
e Sample minibatch of m examples {:1:(1), e :c(m)} from data generating distribution
Ddata (w)

e Update the discriminator by ascending its stochastic gradient:

VoL 3" oD (29) +10g (1- D (¢ (+2)))].

end for

e Sample minibatch of m noise samples {z1)| ..., z(™)} from noise prior p,(z).
e Update the generator by descending its stochastic gradient:

Vo, 3 tos (10 (6 ().

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

Goodfellow et al. NeurlPS 2014

Generative Adversarial Networks (GAN)
|Goodfellow et al.]

Training set

Generator

https://deeplearning4j.org/generative-adversarial-network

Fake image

Discriminator

Real

h = {Fa ke

Generative Adversarial Networks (GAN)
|Goodfellow et al.]

* GANSs are hard to train, loss
for the discriminator and

generator might fluctuate.

Training set V Discriminator

* There are many choices for L L, M Rea

; /1 D=

loss, and other auxiliary B
signals. Y I | %

Fake image

Generator

* Training of these models is
even less well understood
than for other deep models.

https://deeplearning4j.org/generative-adversarial-network

Basic GAN Results (Example implementation is
orovided in Pytorch’s examples)

http://torch.ch/blog/2015/11/13/gan.html

NVidia’s progressive GANs ICLR 2018

Google’s BigGAN

Google’s BigGAN

Teddy Bear Microphone
e, SR,
PR \% i
f. 4

http://aiweirdness.com/post/179626595787/the-creepiest-images-generated-by-biggan

Conditional GANs: Input is not just Noise

Aﬂﬂﬂ_’ real

Isola et al. CVPR 2017: Image-to-Image Translation with Conditional Adversarial Networks

Conditional GANs: Also Hard to Train

L1

Result they
obtained with
a regular Fully
Convolutional
Network

Encoder-decoder

Result they
obtained with a
U-Net network
(with skip-
connections)

U-Net

Isola et al. CVPR 2017: Image-to-Image Translation with Conditional Adversarial Networks

Conditional GANs: Also Hard to Train

1 64 64
128 64 64 2
input
imapge o ‘ o lu || output
- - segmentation
tile Sl S &8
Ol ol Of ™) map
~l el g N
| b & 2l o A3
x x x
AN| Off ©
~| =il ©
[Tol Te] WTe}
'128 128
256 128
BB
3| & SUECH S
AN N t
512 256
'gl =» conv 3x3, RelLU
S = copy and crop

¥ max pool 2x2

4 up-conv 2x2
=» conv 1x1

Ronneberger et al. MICCAI 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation

Conditional GANs / Text-conditioned

AttnGAN: Fine-Grained Text to Image Generation
with Attentional Generative Adversarial Networks

Tao Xu*!, Pengchuan Zhang?, Qiuyuan Huang?,
Han Zhang®, Zhe Gan*, Xiaolei Huang', Xiaodong He?

'Lehigh University 2Microsoft Research Rutgers University 4Duke University
{tax313, xih206}@lehigh.edu, {penzhan, gihua, xiaohe}@microsoft.com
han.zhang@cs.rutgers.edu, zhe.gan@duke.edu

Conditional GANs / Text-conditioned

Generative Adversarial Text to Image Synthesis

Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran REEDSCOT!, AKATA?, XCYAN!, LLAJAN!
Bernt Schiele, Honglak Lee SCHIELE?,HONGLAK!
1 University of Michigan, Ann Arbor, MI, USA (UMICH.EDU)

2 Max Planck Institute for Informatics, Saarbriicken, Germany (MPI-INF.MPG.DE)

Conditional GANs / Text-conditioned

This flower has small, round violet This flower has small, round violet
petals with a dark purple center petals with a dark purple center

D I
N e
: e S t
NP . [, N [~ H [N e G —— x, SO
[) A Ymm——— - A i I === X DN @ G Nkt
Z (4 4 i ' o 1 WS ' '
b) -="=] . ' “r DR ! ~ 1 -
/ = ., - e) S R <« oS N U g 28
L8 L] ' h H = N B S N - - -) S
\ A R o . ~ . = Ss ~ ey So
- g % R S ~E oS-
[5 o L. L o S~ s
1 B >, e
’ - “
N e - ~
.
'

............

Generator Network Discriminator Network

Conditional GANs / Text-conditioned

this small bird has a pink
breast and crown, and black
primaries and secondaries.

Conditional GANs / Text-conditioned

I Residual I FC with reshape I Upsampling

Deep Attentional Multimodal Similarity Model (DAMSM)

I Joining

I Conv3x3

|

word

features

— Il

Attentional Generative Network

Attention models

white and has a
very short beak

v
attn F
2~N(0,)) Fo I*E :
sentence |
feature N ho <
Text =l ¢ > >
> > [y
Encoder

this bird is red with

/8\
N
AA

256x256x3

Local image
features

[l
1

Image
Encoder

Conditional GANs / Text-conditioned

this bird 1s red with white and has a very short beak

Questions

