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Deep Learning for Vision &
Language

Generative Adversarial Networks, Text-to-Scene Introduction




Recap RNNs for your Assignment

hl = tanh(Whth + thxl)
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RNN in Pytorch

Recurrent layers

class torch.nn.RNN(*args, **kwargs) [source]

Applies a multi-layer EIman RNN with tanh or ReLU non-linearity to an input sequence.

For each element in the input sequence, each layer computes the following function:

ht = ta,nh(w,-h * X + b,‘h + wyy, * h(t—l) + bhh)

where A, is the hidden state at time t, and x; is the hidden state of the previous layer at time t or
input, for the first layer. If nonlinearity="relu’, then ReLU is used instead of tanh.

Parameters:

input_size - The number of expected features in the input x

hidden_size - The number of features in the hidden state h

num_layers - Number of recurrent layers.

nonlinearity - The non-linearity to use [‘tanh’|'relu’]. Default: ‘tanh’

bias - If False, then the layer does not use bias weights b_ih and b_hh. Default:
True

batch_first - If True, then the input and output tensors are provided as (batch, seq,
feature)

dropout - If non-zero, introduces a dropout layer on the outputs of each RNN
layer except the last layer

bidirectional - If True, becomes a bidirectional RNN. Default: False



LSTM Cell (Long Short-Term Memory)

it = 0 Wayixe + Whihi—1 + Weice—1 + b;) (7)
ft =0 Wypxe + Whhe1 + Weper—1 + by) (8)
ct = frer—1 + iy tanh (Weexy + Whchi—1 + be) (9)
0 =0 (Wmoxt + Whohit—1 + Weoer + bo) (10)
ht = o tanh(cy) (11)

https://ieeexplore.ieee.org/abstract/document/6795963



LSTM in Pytorch
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r 4 class torch.nn.LSTM(*args, **kwargs) [source]
t}"h Applies a multi-layer long short-term memory (LSTM) RNN to an input sequence.
For each element in the input sequence, each layer computes the following function:
= 4 i = sigmoid(W,-,-x, + b; + Whih(t—l) + by;)
t . .
i = s1gm01d(Wifx, + bif + thh(t—l) + bhf)
R N N g = tanh(W,-gx, + big + thh(t—l) + bhg)
o; = sigmoid(W;,x; + b;, + Whoh(t—l) + bpy)
ht A Cy =ﬁ %k C(t_]) + it *gt
h; = o; * tanh(c;)
Ct . ( \ Ct t t t
® @ B> where A; is the hidden state at time t, ¢; is the cell state at time t, x; is the hidden state of the
Ganh previous layer at time t or input, for the first layer, and i, f;, g;, 0; are the input, forget, cell, and
X X out gates, respectively.
ht— 1 I—(Ij—l ﬂ IEi‘i' m ht Parameters: ¢ input_size - The number of expected features in the input x
j » ¢ hidden_size - The number of features in the hidden state h
Ty e num_layers - Number of recurrent layers.
¢ bias - If False, then the layer does not use bias weights b_ih and b_hh. Default:
LSTM True
(Long -Short Term Memory) o batch_first - If True, then the input and output tensors are provided as (batch, seq,
feature)

e dropout - If non-zero, introduces a dropout layer on the outputs of each RNN
layer except the last layer

¢ bidirectional - If True, becomes a bidirectional RNN. Default: False

https://colah.github.io/posts/2015-08-Understanding-LSTMs/



GRU in Pytorch

OtA
4 ™
h't—l 'h’t
tag class torch.nn.GRU(*args, **kwargs) [source]
} Applies a multi-layer gated recurrent unit (GRU) RNN to an input sequence.
¥ For each element in the input sequence, each layer computes the following function:
Xt
RNN r; = sigmoid(W;,x; + biy + Wy h—1) + bp,)
7, = sigmoid(W,x; + b;; + thh(t—l) + bpz)
n; = tanh(Wi,x; + bip, + 11 ¥ (Winh(e—1) + bpn))
hy =1 —z)*n +z * h(t—l)
r where A, is the hidden state at time t, x; is the hidden state of the previous layer at time t or input,

for the first layer, and r;, z;, n; are the reset, input, and new gates, respectively.

hf .

|-
X
+

Parameters: ¢ input_size - The number of expected features in the input x
¢ hidden_size - The number of features in the hidden state h

W w 2 X ,‘l e num_layers - Number of recurrent layers.
L ~ {
o o tanh ¢ bias - If False, then the layer does not use bias weights b_ih and b_hh. Default:
True

e batch_first - If True, then the input and output tensors are provided as (batch, seq,
J feature)

e dropout - If non-zero, introduces a dropout layer on the outputs of each RNN

£y
layer except the last layer

¢ bidirectional - If True, becomes a bidirectional RNN. Default: False

https://colah.github.io/posts/2015-08-Understanding-LSTMs/



Today’s Class

* Adversarial Examples — Input Optimization
e Generative Adversarial Networks (GANSs)
* Conditional GANs



What we have been doing: Optimize weights in
the network to predict bus (correct class).

I y=fU;w) L(y, bus)




New Idea: Create Adversarial Inputs by optimizing
the input image to predict ostrich (wrong class).

I y=f(;w) L(y, ostrich)

ostrich
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Work on Adversarial examples by Goodfellow et al. , Szegedy et. al., etc.



Convnets (optimize input to predict ostrich)

Work on Adversarial examples by Goodfellow et
al. , Szegedy et. al., etc.
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Deep Neural Networks are Easily Fooled: High
Confidence Predictions for Unrecognizable Images

mw@m Anh Nguyen, Jason Yosinski, Jeff Clune, 2014

backpack " cliff dwelling

chimpanzee

photocopier screen soccer ball stopwatch Windsor tie

Figure 13. Images found by maximizing the softmax output for
classes via gradient ascent [ 1 1, 26]. Optimization begins at the Im-
ageNet mean (plus small Gaussian noise to break symmetry) and
continues until the DNN confidence for the target class reaches
99.99%. Images are shown with the mean subtracted. Adding reg-
ularization makes images more recognizable but results in slightly
lower confidence scores (see supplementary material).



New Idea: Create Adversarial Inputs by optimizing
the input image to predict ostrich (wrong class).

I y=f(;w) L(y,parking meter)
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Work on Adversarial examples by Goodfellow et al. , Szegedy et. al., etc.
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Total Variation Regularization

A second richer regulariser is total variation (TV)
Ry s (x), encouraging images to consist of piece-wise con-
stant patches. For continuous functions (or distributions)
f:REXW 5 Q 3 R, the TV norm is given by:

B

(%(u,v))2+ (g—i(u,v)>2 2 du dv

where 3 = 1. Here images are discrete (x € R”*W) and
the TV norm is replaced by the finite-difference approxima-

tion: Figure 1. What is encoded by a CNN? The figure shows five
possible reconstructions of the reference image obtained from the

Rvﬂ(f)zf

Q

B
2 2\ 2 1,000-dimensional code extracted at the penultimate layer of a ref-
VB (X) - (xz,]+1 — Ty ) + (xz+1,g — Ty ) . erence CNN[ 13] (before the softmax is applied) trained on the Im-
i,j ageNet data. From the viewpoint of the model, all these images are

practically equivalent. This image is best viewed in color/screen.

Mahendran and Vedaldi, Understanding Deep Image Representations by Inverting Them, 2014



Taking the idea to the extreme: Google’s
DeepDream

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
Generate your own in Pytorch: https://github.com/XavierLinNow/deepdream_pytorch



Generative Adversarial Networks (GAN)
|Goodfellow et al 2014]

Generator Fake image

https://deeplearning4j.org/generative-adversarial-network



Generative Network (closer look)

Radford et. al. Unsupervised Representation

Learning with Deep Convolutional Generative
Adversarial Networks. ICLR 2016



Generative Network (closer look)
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Generative Adversarial Networks (GAN)
|Goodfellow et al.]

Geherator —%- Fake image

https://deeplearning4j.org/generative-adversarial-network



Generative Adversarial Networks (GAN)
|Goodfellow et al.]

Training set

Generator

https://deeplearning4j.org/generative-adversarial-network

Fake image

Discriminator

Real

h = {Fa ke




Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, £, is a hyperparameter. We used k = 1, the least expensive option, in our
experiments.

for number of training iterations do
for £ steps do

e Sample minibatch of m noise samples {1, ..., (™)} from noise prior p,(z).
e Sample minibatch of m examples {:1:(1), e m(m)} from data generating distribution
Ddata (CB)

e Update the discriminator by ascending its stochastic gradient:

Vo, L 3" oD () +10g (1 - D (¢ (+%)))].

end for

e Sample minibatch of m noise samples {z1)| ..., z(™)} from noise prior p,(z).
e Update the generator by descending its stochastic gradient:

Vo, 3 tos (10 (6 ().

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

Goodfellow et al. NeurlPS 2014



Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k£ = 1, the least expensive option, in our
experiments.

for number of training iterations do
for £ steps do

e Sample minibatch of m noise samples {1, ..., (™)} from noise prior p,(z).
e Sample minibatch of m examples {.’1:(1), ey m(m)} from data generating distribution
Update Pdata ().
Discriminator e Update the discriminator by ascending its stochastic gradient:
0 L (i (3
ngag: [logD (m ’ ) + log (1 —D (G (z ’ )))] :
end for )
e Sample minibatch of m noise samples {z'"/, ..., 2"/ } from noise prior py(2).

e Update the generator by descending its stochastic gradient:

Vo, 3 tos (10 (6 ().

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

Goodfellow et al. NeurlPS 2014



Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k£ = 1, the least expensive option, in our
experiments.

for number of training iterations do
for £ steps do

e Sample minibatch of m noise samples {1, ..., (™)} from noise prior p,(z).
e Sample minibatch of m examples {.’1:(1), ey m(m)} from data generating distribution
Ddata (w)

e Update the discriminator by ascending its stochastic gradient:

VoL 3" oD (29) +10g (1- D (¢ (+2)))].

1=

end for
e Sample minibatch of m noise samples {z1)| ..., z(™)} from noise prior p,(z).
Update e Update the generator by descending its stochastic gradient:
Generator L m
G Vo, > log (1-D (G (29))).
end for

The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

Goodfellow et al. NeurlPS 2014



Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
_ steps to apply to the discriminator, £, is a hyperparameter. We used k = 1, the least expensive option, in our
Until experiments.

Desirable for number of training iterations do
Results are for & steps do
Achieved? e Sample minibatch of m noise samples {1, ..., (™)} from noise prior p,(z).
e Sample minibatch of m examples {:1:(1), e :c(m)} from data generating distribution
Ddata (w)

e Update the discriminator by ascending its stochastic gradient:

VoL 3" oD (29) +10g (1- D (¢ (+2)))].

end for

e Sample minibatch of m noise samples {z1)| ..., z(™)} from noise prior p,(z).
e Update the generator by descending its stochastic gradient:

Vo, 3 tos (10 (6 ().

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

Goodfellow et al. NeurlPS 2014



Generative Adversarial Networks (GAN)
|Goodfellow et al.]

Training set

Generator

https://deeplearning4j.org/generative-adversarial-network

Fake image

Discriminator

Real

h = {Fa ke




Generative Adversarial Networks (GAN)
|Goodfellow et al.]

* GANSs are hard to train, loss
for the discriminator and

generator might fluctuate.

Training set V Discriminator

* There are many choices for L L, M Rea

; /1 D=

loss, and other auxiliary B
signals. Y I | %

Fake image

Generator

* Training of these models is
even less well understood
than for other deep models.

https://deeplearning4j.org/generative-adversarial-network



Basic GAN Results (Example implementation is
orovided in Pytorch’s examples)

http://torch.ch/blog/2015/11/13/gan.html



NVidia’s progressive GANs ICLR 2018




Google’s BigGAN




Google’s BigGAN

Teddy Bear Microphone
e, SR,
PR \% i
f. 4

http://aiweirdness.com/post/179626595787/the-creepiest-images-generated-by-biggan



Conditional GANs: Input is not just Noise

Aﬂﬂﬂ_’ real

Isola et al. CVPR 2017: Image-to-Image Translation with Conditional Adversarial Networks



Conditional GANs: Also Hard to Train

L1

Result they
obtained with
a regular Fully
Convolutional
Network

Encoder-decoder

Result they
obtained with a
U-Net network
(with skip-
connections)

U-Net

Isola et al. CVPR 2017: Image-to-Image Translation with Conditional Adversarial Networks



Conditional GANs: Also Hard to Train
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Ronneberger et al. MICCAI 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation



Conditional GANs / Text-conditioned

AttnGAN: Fine-Grained Text to Image Generation
with Attentional Generative Adversarial Networks

Tao Xu*!, Pengchuan Zhang?, Qiuyuan Huang?,
Han Zhang®, Zhe Gan*, Xiaolei Huang', Xiaodong He?

'Lehigh University 2Microsoft Research Rutgers University 4Duke University
{tax313, xih206}@lehigh.edu, {penzhan, gihua, xiaohe}@microsoft.com
han.zhang@cs.rutgers.edu, zhe.gan@duke.edu



Conditional GANs / Text-conditioned

Generative Adversarial Text to Image Synthesis

Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran REEDSCOT!, AKATA?, XCYAN!, LLAJAN!
Bernt Schiele, Honglak Lee SCHIELE?,HONGLAK!
1 University of Michigan, Ann Arbor, MI, USA (UMICH.EDU)

2 Max Planck Institute for Informatics, Saarbriicken, Germany (MPI-INF.MPG.DE)



Conditional GANs / Text-conditioned

This flower has small, round violet This flower has small, round violet
petals with a dark purple center petals with a dark purple center
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Conditional GANs / Text-conditioned

this small bird has a pink
breast and crown, and black
primaries and secondaries.




Conditional GANs / Text-conditioned

I Residual I FC with reshape I Upsampling

Deep Attentional Multimodal Similarity Model (DAMSM)

I Joining

I Conv3x3

|

word

features

— Il

Attentional Generative Network

Attention models

white and has a
very short beak
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Conditional GANs / Text-conditioned

this bird 1s red with white and has a very short beak




Questions



