
Deep Learning for Vision & 
Language

Transformers I: Introduction



Today
• Sequence-to-sequence (RNNs) for Machine Translation
• Learning to Align and Translate with Soft Attention
• Image Captioning (CNNs + RNNs): Show and Tell
• Image Captioning (CNNs + RNNs + Attention): Show Attend and Tell
• Attention is All you Need!
• Encoder Transformers: BERT
• Decoder Transformers: GPT-2 – maybe next class
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RNNs for Text Generation (Auto-regressive)
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RNNs for Machine Translation Seq-to-Seq
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RNNs for Machine Translation Seq-to-Seq
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Perhaps a better idea is to
compute the average h vector across all steps
and pass this to the decoder
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Perhaps an even better idea is to
compute the average h vector across all steps
and pass this to the decoder at each time
step in the decoder!
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Perhaps an even better idea is to
compute the average h vector across all steps
and pass this to the decoder at each time
step in the decoder but using a weighted average
with learned weights!!
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RNNs for Machine Translation Seq-to-Seq
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Perhaps an even better idea is to
compute the average h vector across all steps
and pass this to the decoder at each time
step in the decoder but using a weighted average
with learned weights, and the weights are specific
for each time step!!!
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Only showing the third time step encoder-decoder connection

such that:

𝑎",! =
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∑ exp(ℎ!𝑣!$%)



Let’s take a look at one of 
the first papers introducing 
this idea.



Let’s look at the Attention weights
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CNN

Vinyals et al. Show and Tell: 
A Neural Image Caption 
Generator 
https://arxiv.org/abs/1411.4
555

CNNs + RNNs for Image Captioning

https://arxiv.org/abs/1411.4555
https://arxiv.org/abs/1411.4555


References (a lot of them)
• Vinyals et al. Show and Tell: A Neural Image Caption Generator https://arxiv.org/abs/1411.4555

• Mao et al. Deep Captioning with Multimodal Recurrent Neural Networks (m-RNN). 
https://arxiv.org/abs/1412.6632

• Karpathy and Fei-Fei. Deep Visual-Semantic Alignments for Generating Image Descriptions. 
https://arxiv.org/abs/1412.2306

• Fang et al. From Captions to Visual Concepts and Back. https://arxiv.org/abs/1411.4952

• Yin and Ordonez. OBJ2TEXT: Generating Visually Descriptive Language from Object Layouts. 
https://arxiv.org/abs/1707.07102 (not exactly targeting image captioning specifically but locally 
grown paper so let me self-promote)
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CNN

Xu et al. Show, Attend and 
Tell: Neural Image Caption 
Generation with Visual 
Attention
https://arxiv.org/abs/1502.0
3044

CNNs + RNNs for Image Captioning w/ Attention
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Only showing the third time step encoder-decoder connection

output tensor of size CxHxW e.g. 512x7x7

convert to 49 vectors of size 512 and those become ℎ!

https://arxiv.org/abs/1502.03044
https://arxiv.org/abs/1502.03044




Attention is All you Need  (no RNNs)

Vaswani et al. Attention is 
all you need
https://arxiv.org/abs/1706.0
3762

Fixed number of input tokens 
[but hey! we can always define a large enough length and add mask tokens]

Encoder

Decoder

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
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We can also draw this as in the paper:

Vaswani et al. Attention is 
all you need
https://arxiv.org/abs/1706.0
3762

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762


Regular Attention: + Scaling factor

Vaswani et al. Attention is 
all you need
https://arxiv.org/abs/1706.0
3762
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This is not unlike what we already used before
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Only showing the third time step encoder-decoder connection

such that:

𝑎",! =
exp(ℎ"𝑣"$%)
∑ exp(ℎ!𝑣!$%)

V: those are h’s here
Q: those are h’s here
K: those are v’s here



Multi-head Attention: Do not settle for just one set of attention weights.

Vaswani et al. Attention is 
all you need
https://arxiv.org/abs/1706.0
3762

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762


We can lose track of position since we are aggregating across all locations

Vaswani et al. Attention is 
all you need
https://arxiv.org/abs/1706.0
3762

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762


Multi-headed
attention 
weights are 
harder to 
interpret 
obviously

24



The BERT Encoder Model

25

Devlin et al. BERT: Pre-training of Deep 
Bidirectional Transformers for Language 
Understanding .  https://arxiv.org/abs/1810.04805

• No decoder

• Train the model to fill-in-the-blank by 
masking some of the input tokens and 
trying to recover the full sentence.

• The input is not one sentence but two 
sentences separated by a [SEP] token.

• Also try to predict whether these two 
input sentences are consecutive or not.

Important things to know

https://arxiv.org/abs/1810.04805


The BERT Encoder Model
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Devlin et al. BERT: Pre-training of Deep 
Bidirectional Transformers for Language 
Understanding .  https://arxiv.org/abs/1810.04805

https://arxiv.org/abs/1810.04805
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Questions?


