

Deep Learning for Vision & Language

Transformers I: Introduction

Today

- Sequence-to-sequence (RNNs) for Machine Translation
- Learning to Align and Translate with Soft Attention
- Image Captioning (CNNs + RNNs): Show and Tell
- Image Captioning (CNNs + RNNs + Attention): Show Attend and Tell
- Attention is All you Need!
- Encoder Transformers: BERT
- Decoder Transformers: GPT-2 maybe next class

RNNs – One-to-one sequence prediction

RNNs – Sequence to score prediction

Classify

[English, German, Swiss German, Gaelic, Dutch, Afrikaans, Luxembourgish, Limburgish, other]

RNNs for Text Generation (Auto-regressive)

no

es

<END> world enough not The (y_1) (y_2) (y_5) y_4 y_6 Perhaps an even better idea is to compute the average h vector across all steps (h_1) and pass this to the decoder at each time $v_0 \rightarrow (RNN) \rightarrow (v_1)$ → (RNN) → (RNN) -(RNN) -(RNN) -RNN (v_2) (v₅)→ (v_{3}) (v_{4}) step in the decoder but using a weighted average with learned weights, and the weights are specific (x_1) for each time step!!! world not enough h $\overline{h_j} = \sum a_{j,i} h_i$ (h_1) h_5 such that: $(h_0 \rightarrow (RNN) \rightarrow (h_1) \rightarrow (RNN) \rightarrow (h_2) \rightarrow (RNN) \rightarrow (h_3) \rightarrow (RNN) \rightarrow (h_4) \rightarrow (RNN) \rightarrow (h_5) \rightarrow (RNN)$ $a_{j,i} = \frac{\exp(h_j v_{j-1})}{\sum \exp(h_i v_{j-1})}$ (x_1) <START> EL mundo suficiente

Only showing the third time step encoder-decoder connection

NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE

Dzmitry Bahdanau

Jacobs University Bremen, Germany

KyungHyun Cho Yoshua Bengio* Université de Montréal

Figure 1: The graphical illustration of the proposed model trying to generate the *t*-th target word y_t given a source sentence (x_1, x_2, \ldots, x_T) .

$$\alpha_{ij} = \frac{\exp\left(e_{ij}\right)}{\sum_{k=1}^{T_x} \exp\left(e_{ik}\right)},$$

$$e_{ij} = a(s_{i-1}, h_j)$$

Let's look at the Attention weights

CNNs + RNNs for Image Captioning

Vinyals et al. Show and Tell: A Neural Image Caption Generator <u>https://arxiv.org/abs/1411.4</u> 555

References (a lot of them)

- Vinyals et al. Show and Tell: A Neural Image Caption Generator https://arxiv.org/abs/1411.4555
- Mao et al. Deep Captioning with Multimodal Recurrent Neural Networks (m-RNN). <u>https://arxiv.org/abs/1412.6632</u>
- Karpathy and Fei-Fei. Deep Visual-Semantic Alignments for Generating Image Descriptions. <u>https://arxiv.org/abs/1412.2306</u>
- Fang et al. From Captions to Visual Concepts and Back. <u>https://arxiv.org/abs/1411.4952</u>
- Yin and Ordonez. OBJ2TEXT: Generating Visually Descriptive Language from Object Layouts. <u>https://arxiv.org/abs/1707.07102</u> (not exactly targeting image captioning specifically but locally grown paper so let me self-promote)

CNNs + RNNs for Image Captioning w/ Attention

Attention is All you Need (no RNNs)

Fixed number of input tokens

[but hey! we can always define a large enough length and add mask tokens]

Attention is All you Need (no RNNs)

Attention is All you Need (no RNNs)

We can also draw this as in the paper:

Vaswani et al. Attention is all you need <u>https://arxiv.org/abs/1706.0</u> <u>3762</u>

Regular Attention: + Scaling factor

Vaswani et al. Attention is all you need <u>https://arxiv.org/abs/1706.0</u> <u>3762</u>

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

Scaled Dot-Product Attention

This is not unlike what we already used before

Multi-head Attention: Do not settle for just one set of attention weights.

Vaswani et al. Attention is all you need <u>https://arxiv.org/abs/1706.0</u> <u>3762</u> $\begin{aligned} \text{MultiHead}(Q, K, V) &= \text{Concat}(\text{head}_1, ..., \text{head}_h)W^O \\ \text{where head}_i &= \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) \end{aligned}$

Where the projections are parameter matrices $W_i^Q \in \mathbb{R}^{d_{\text{model}} \times d_k}$, $W_i^K \in \mathbb{R}^{d_{\text{model}} \times d_k}$, $W_i^V \in \mathbb{R}^{d_{\text{model}} \times d_v}$ and $W^O \in \mathbb{R}^{hd_v \times d_{\text{model}}}$.

We can lose track of position since we are aggregating across all locations

Multi-headed attention weights are harder to interpret obviously

The BERT Encoder Model

Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding . <u>https://arxiv.org/abs/1810.04805</u>

Important things to know

- No decoder
- Train the model to fill-in-the-blank by masking some of the input tokens and trying to recover the full sentence.
- The input is not one sentence but two sentences separated by a [SEP] token.
- Also try to predict whether these two input sentences are consecutive or not.

The BERT Encoder Model

Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding . <u>https://arxiv.org/abs/1810.04805</u>

Questions?