

Deep Learning for Vision & Language

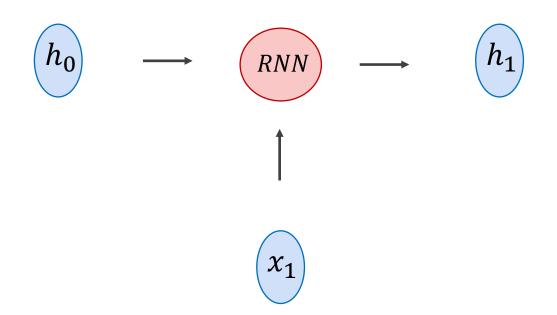
Natural Language Processing III: Recurrent Neural Networks

Second Assignment

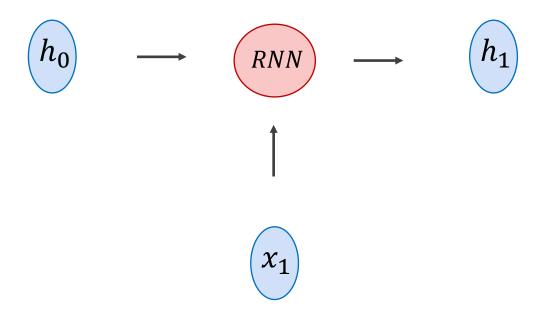
- Due Next Monday and third and final assignment to follow soon.
- Submit your project proposal think about the amount of work it would take to a) Create an assignment 4, b) Solve assignment 4. Often in research and entrepreneurship asking a good question/finding the right problem is more important than giving a great answer/solution.

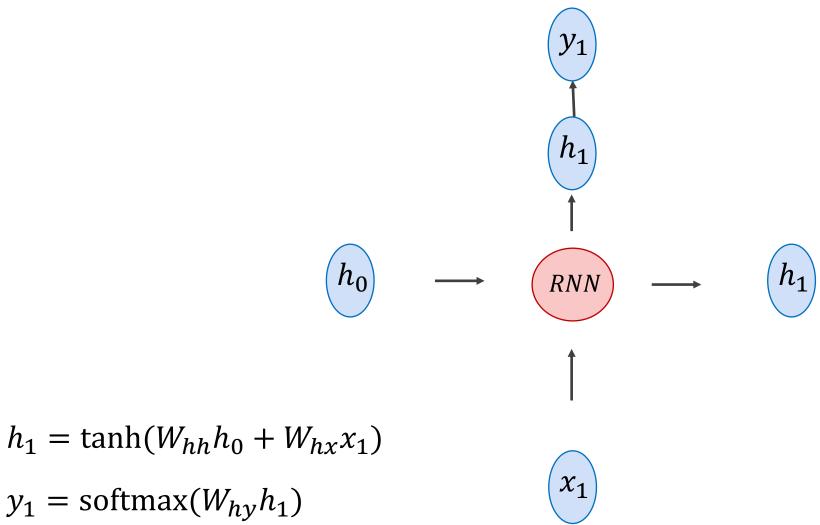
Recurrent Neural Networks

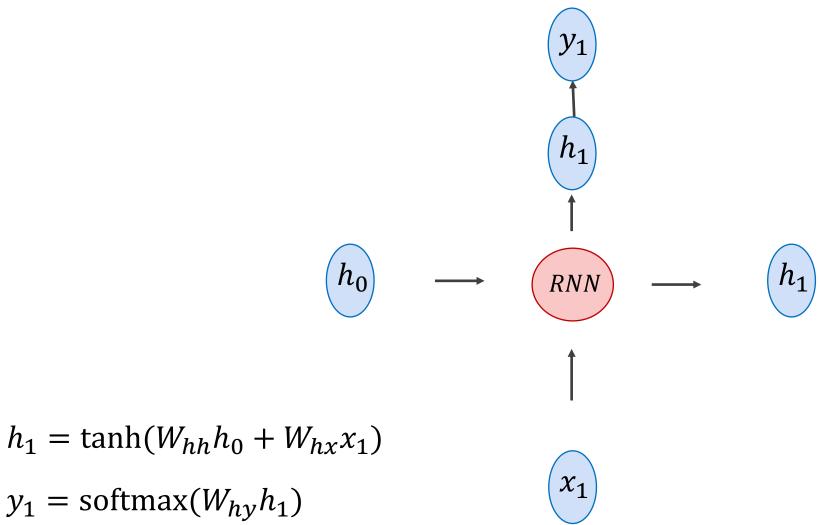
- These are models for handling sequences of things.
- Each input is not a vector but a sequence of input vectors.
- e.g. Each input can be a "word embedding" or any "word" representation – we will use in our first examples one-hot encoded tokens but in practice continuous dense word embeddings are used.

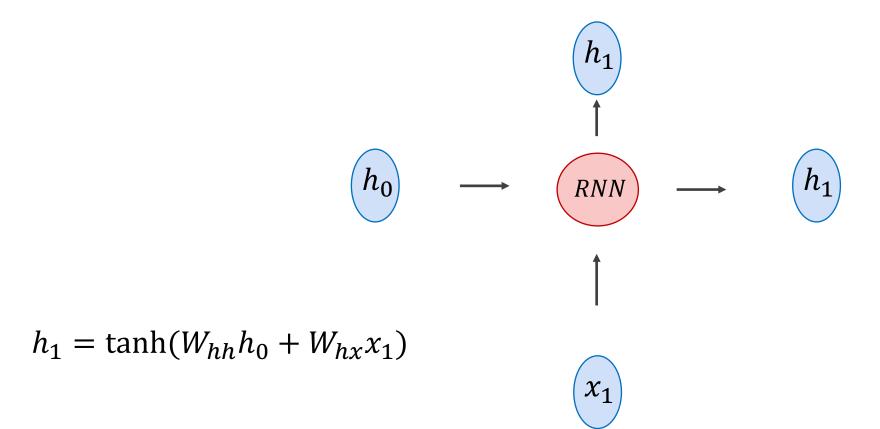


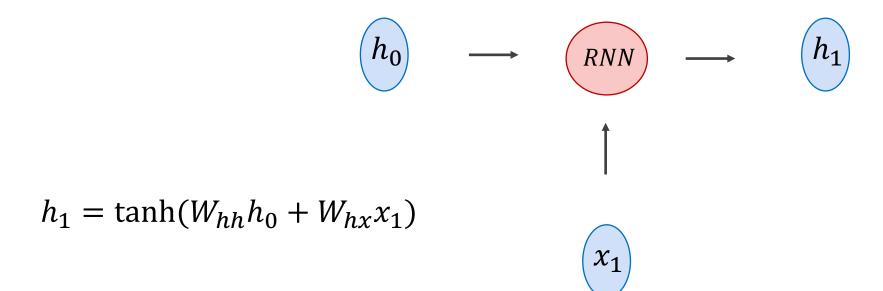
 $h_1 = \tanh(W_{hh}h_0 + W_{hx}x_1)$



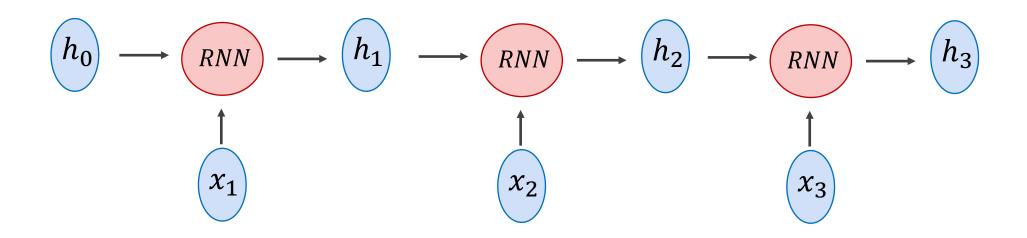


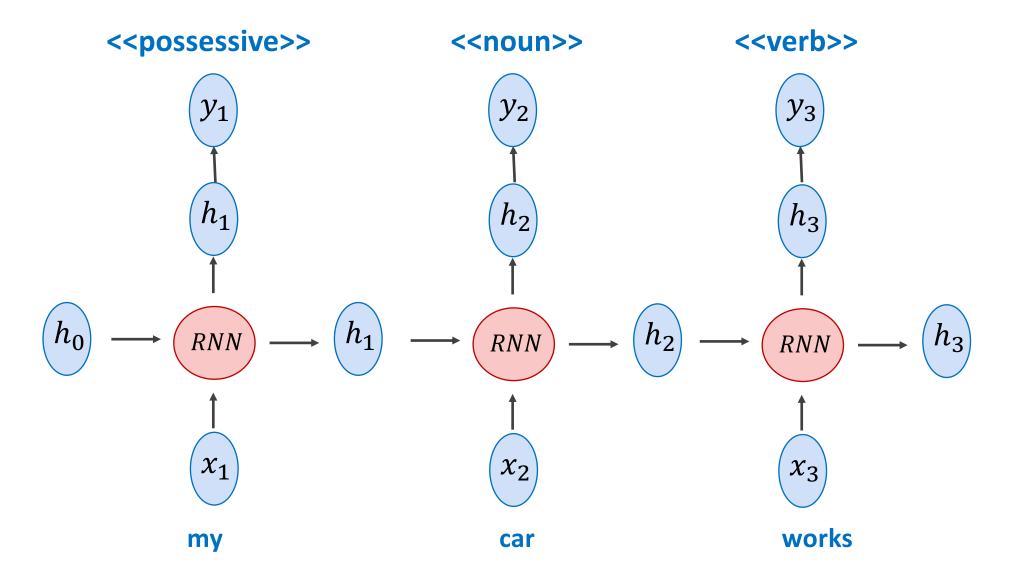






(Unrolled) Recurrent Neural Network





Training examples don't need to be the same length!

<<pre><<possessive>> <<noun>> <<verb>>

my dog ate the assignment <--

<<pre><<pre>consessive>> <<noun>> <<verb>> <<pre>onoun>> <<noun>> <</pre>

my mother saved the day

<<pre><<pre>consessive>> <<noun>> <<verb>> <<pre>onoun>> <<noun>>

the smart kid solved the problem

<<pre><<pre>concentration

	How can it be used? – e.g. Tagging a Text Sequence One-to-one Sequence Mapping Problems		
Training examples do		on't need to be the same length!	
	input	output	
	L(my car works) = 3	L (< <possessive>> <<noun>> <<verb>>) = 3</verb></noun></possessive>	
L(my dog ate the assignment) = 5		L (< <possessive>> <<noun>> <<verb>> <<pronoun>> <<noun>>) = 5</noun></pronoun></verb></noun></possessive>	
	L(my mother saved the day) = 5	L (< <possessive>> <<noun>> <<verb>> <<pronoun>> <<noun>>) = 5</noun></pronoun></verb></noun></possessive>	
	1(the smart kid columned the problem $) = 6$	I(corresponds) < constituents) < corresponds) < corresponds) < constituents)	

L(the smart kid solved the problem) = 6 L (<<pronoun>> <<qualifier>> <<noun>> <<verb>> <<pronoun>> (< noun>>) = 6

Training examples don't need to be the same length!

If we assume a vocabulary of a 1000 possible words and 20 possible output tags

input	output
T: 1000 x 3	T: 20 x 3
T: 1000 x 5	T: 20 x 5
T: 1000 x 5	T: 20 x 5
T: 1000 x 6	T: 20 x 6

Training examples don't need to be the same length!

If we assume a vocabulary of a 1000 possible words and 20 possible output tags

input	output
T: 1000 x 3	T: 20 x 3
T: 1000 x 5	T: 20 x 5
T: 1000 x 5	T: 20 x 5
T: 1000 x 6	T: 20 x 6

How do we create batches if inputs and outputs have different shapes?

Training examples don't need to be the same length!

If we assume a vocabulary of a 1000 possible words and 20 possible output tags

input	output
T: 1000 x 3	T: 20 x 3
T: 1000 x 5	T: 20 x 5
T: 1000 x 5	T: 20 x 5
T: 1000 x 6	T: 20 x 6

How do we create batches if inputs and outputs have different shapes?

Solution 1: Forget about batches, just process things one by one.

Training examples don't need to be the same length!

If we assume a vocabulary of a 1000 possible words and 20 possible output tags

input	output
T: 1000 x 3	T: 20 x 3
T: 1000 x 5	T: 20 x 5
T: 1000 x 5	T: 20 x 5
T: 1000 x 6	T: 20 x 6

How do we create batches if inputs and outputs have different shapes?

Solution 2: Zero padding. We can put the above vectors in T: 4 x 1000 x 6

Training examples don't need to be the same length!

If we assume a vocabulary of a 1000 possible words and 20 possible output tags

input	output
T: 1000 x 3	T: 20 x 3
T: 1000 x 5	T: 20 x 5
T: 1000 x 5	T: 20 x 5
T: 1000 x 6	T: 20 x 6

How do we create batches if inputs and outputs have different shapes?

Solution 3: Advanced. Dynamic Batching or Auto-batching <u>https://dynet.readthedocs.io/en/latest/tutorials_notebooks/Autobatching.html</u>

pad_sequence

torch.nn.utils.rnn.pad_sequence(sequences, batch_first=False, padding_value=0)

```
[SOURCE]
```

Pad a list of variable length Tensors with padding_value

pad_sequence stacks a list of Tensors along a new dimension, and pads them to equal length. For example, if the input is list of sequences with size $L \times *$ and if batch_first is False, and $T \times B \times *$ otherwise.

B is batch size. It is equal to the number of elements in sequences. *T* is length of the longest sequence. *L* is length of the sequence. * is any number of trailing dimensions, including none.

Example

>>> from torch.nn.utils.rnn import pad_sequence
>>> a = torch.ones(25, 300)
>>> b = torch.ones(22, 300)
>>> c = torch.ones(15, 300)
>>> pad_sequence([a, b, c]).size()
torch.Size([25, 3, 300])

• NOTE

This function returns a Tensor of size $T \times B \times *$ or $B \times T \times *$ where *T* is the length of the longest sequence. This function assumes trailing dimensions and type of all the Tensors in sequences are same.

Parameters

- **sequences** (*list*[*Tensor*]) list of variable length sequences.
- **batch_first** (*bool, optional*) output will be in B x T x * if True, or in T x B x * otherwise
- padding_value (python:float, optional) value for padded elements. Default: 0.

Returns

Solution 4: Pytorch stacking, padding, and sorting combination

Tensor of size T x B x * if batch_first is False. Tensor of size B x T x * otherwise

pack_sequence

torch.nn.utils.rnn.pack_sequence(sequences, enforce_sorted=True)
[SOURCE]
Packs a list of variable length Tensors
sequences should be a list of Tensors of size L x *, where L is the length of a sequence and * is any number of trailing
dimensions, including zero.
For unsorted sequences, use enforce_sorted = False. If enforce_sorted is True, the sequences should be sorted in the
order of decreasing length. enforce_sorted = True is only necessary for ONNX export.
Example
>>> from torch.nn.utils.rnn import pack_sequence
>>> a = torch.tensor([1,2,3])

Solution 4: Pytorch stacking, padding, and sorting combination

Parameters

- sequences (list[Tensor]) A list of sequences of decreasing length.
- **enforce_sorted** (*bool*, *optional*) if True, checks that the input contains sequences sorted by length in a decreasing order. If False, this condition is not checked. Default: True.

PackedSequence(data=tensor([1, 4, 6, 2, 5, 3]), batch_sizes=tensor([3, 2, 1]))

Returns

a PackedSequence object

>>> b = torch.tensor([4,5])
>>> c = torch.tensor([6])
>>> pack_sequence([a, b, c])

Pytorch RNN

CLASS torch.nn.RNN(*args, **kwargs)

[SOURCE]

Applies a multi-layer Elman RNN with tanh or ReLU non-linearity to an input sequence.

For each element in the input sequence, each layer computes the following function:

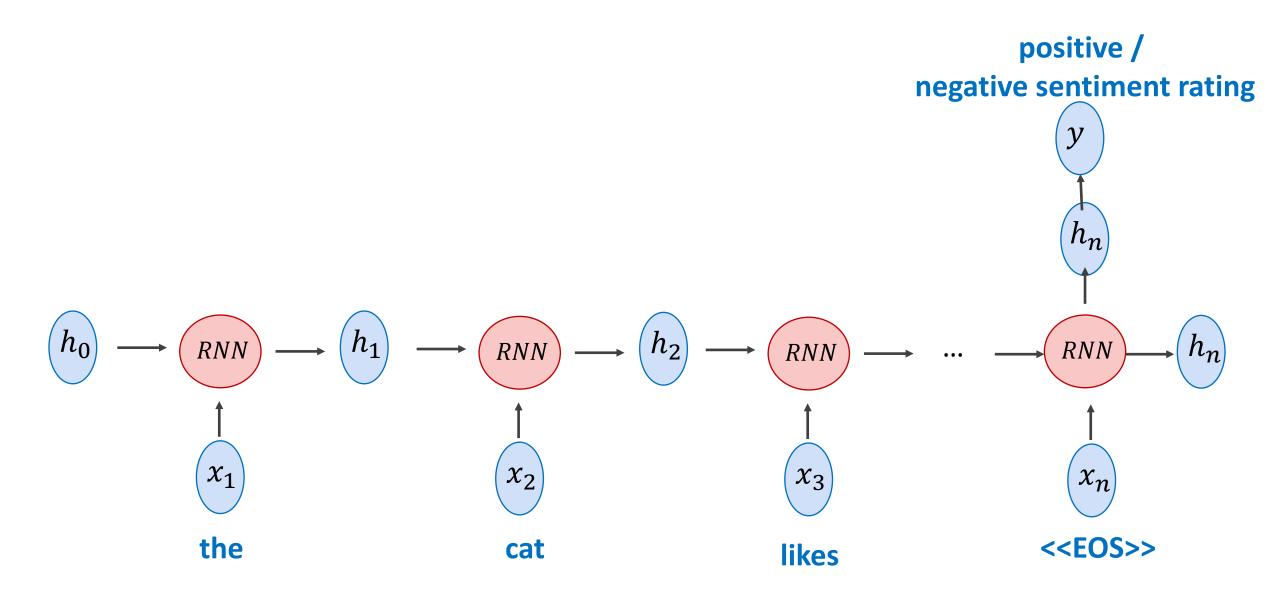
 $h_t= anh(W_{ih}x_t+b_{ih}+W_{hh}h_{(t-1)}+b_{hh})$

where h_t is the hidden state at time t, x_t is the input at time t, and $h_{(t-1)}$ is the hidden state of the previous layer at time t-1 or the initial hidden state at time o. If nonlinearity is 'relu', then *ReLU* is used instead of *tanh*.

Inputs: input, h_0

input of shape (seq_len, batch, input_size): tensor containing the features of the input sequence. The input can also be a packed variable length sequence. See torch.nn.utils.rnn.pack_padded_sequence() or torch.nn.utils.rnn.pack_sequence() for details.

How can it be used? – e.g. Scoring the Sentiment of a Text Sequence Many-to-one Sequence to score problems



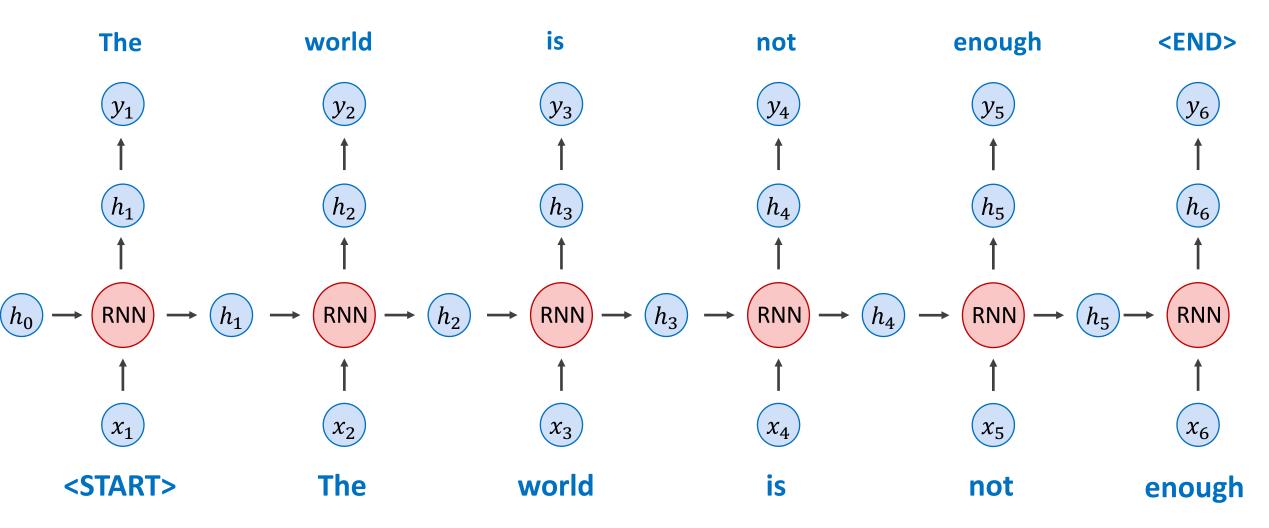
How can it be used? – e.g. Sentiment Scoring Many to one Mapping Problems

Input training examples don't need to be the same length! In this case outputs can be.

input	output
this restaurant has good food	Positive
this restaurant is bad	Negative
this restaurant is the worst	Negative
this restaurant is well recommended	Positive

Auto-regressive model – Sequence to Sequence during Training, Auto-regressive during test

DURING TRAINING

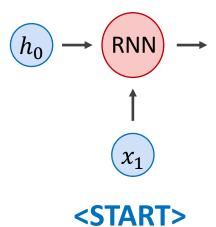


How can it be used? – e.g. Text Generation Auto-regressive Models

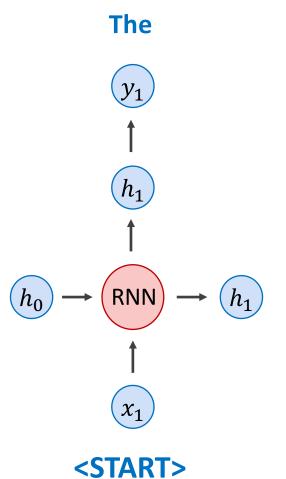
Input training examples don't need to be the same length! In this case outputs can be.

inputoutput<START> this restaurant has good foodthis restaurant has good food <END><START> this restaurant is badthis restaurant is bad <END><START> this restaurant is the worstthis restaurant is the worst <END><START> this restaurant is well recommendedthis restaurant is well recommended <END>

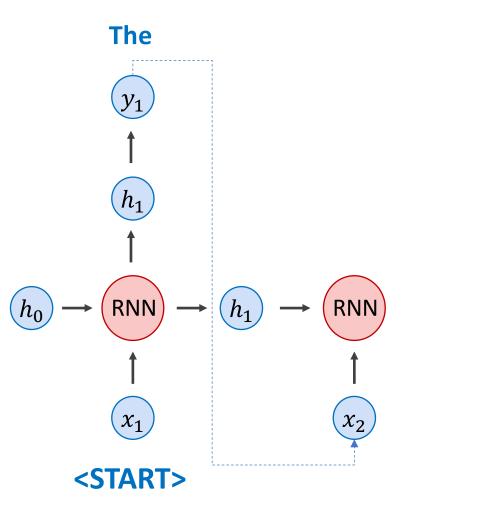
Auto-regressive model – Sequence to Sequence during Training, Auto-regressive during test



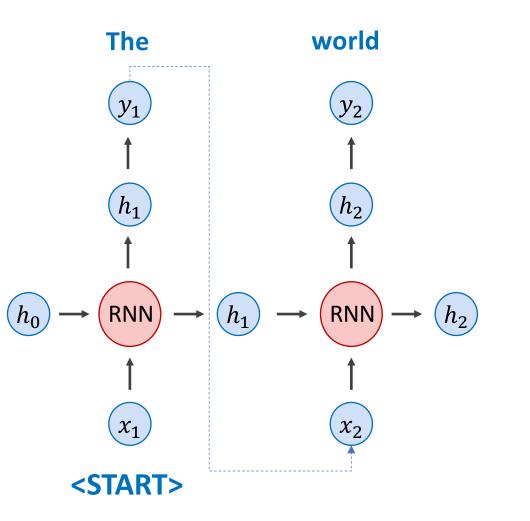
Auto-regressive model – Sequence to Sequence during Training, Auto-regressive during test



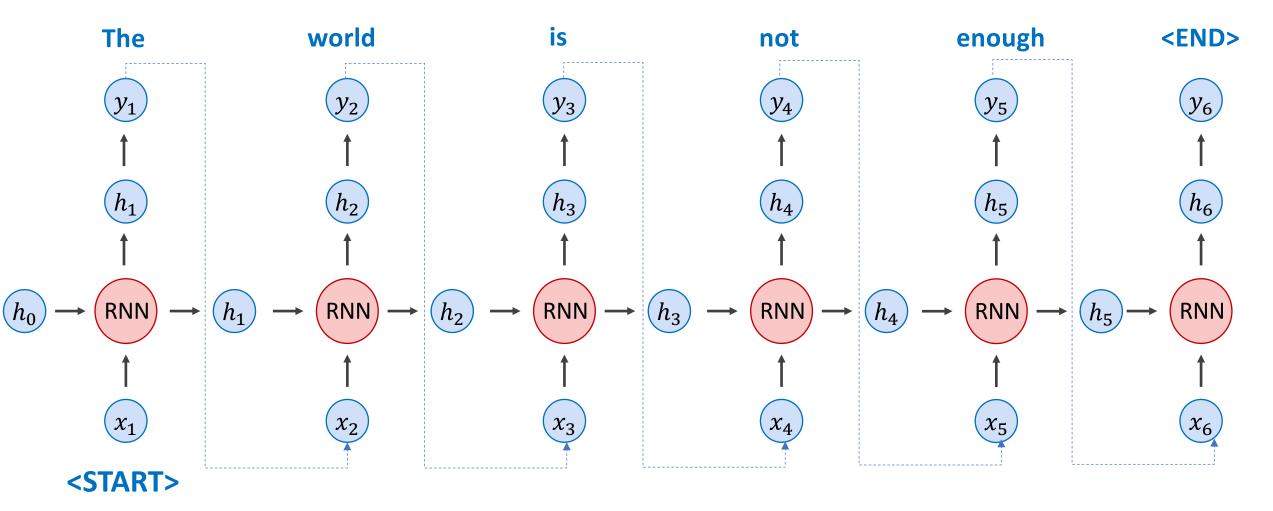
Auto-regressive model – Sequence to Sequence during Training, Auto-regressive during test



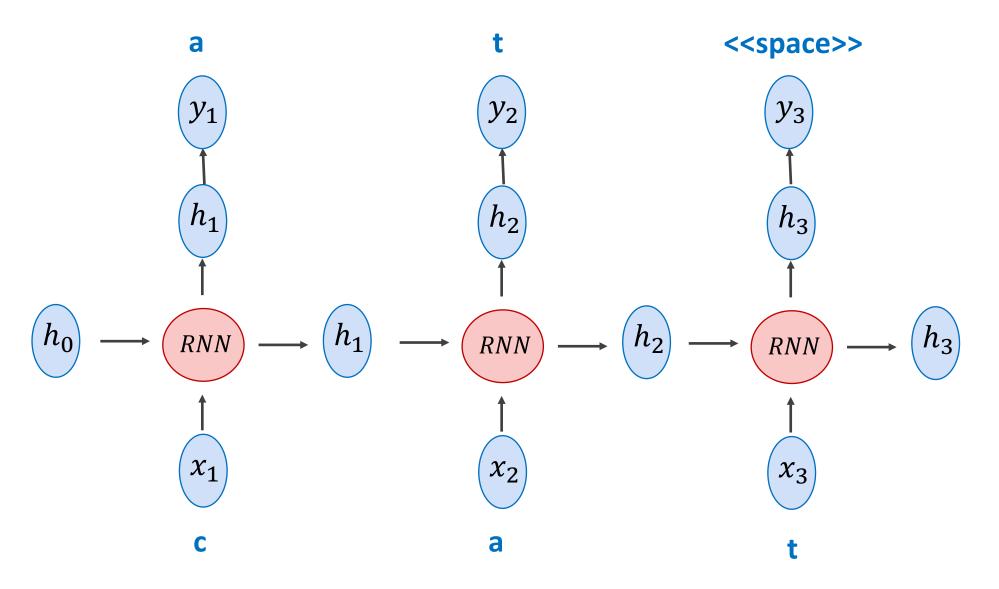
Auto-regressive model – Sequence to Sequence during Training, Auto-regressive during test



Auto-regressive model – Sequence to Sequence during Training, Auto-regressive during test



Character-level Models



Generating Sequences With Recurrent Neural Networks

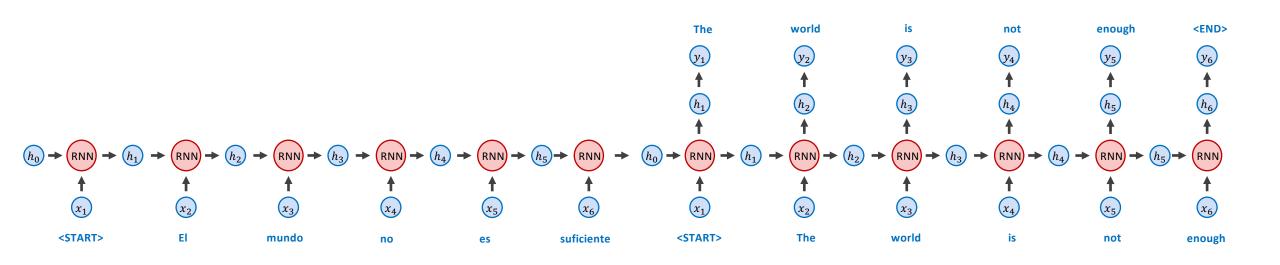
Alex Graves Department of Computer Science University of Toronto graves@cs.toronto.edu

Abstract

This paper shows how Long Short-term Memory recurrent neural networks can be used to generate complex sequences with long-range structure, simply by predicting one data point at a time. The approach is demonstrated for text (where the data are discrete) and online handwriting (where the data are real-valued). It is then extended to handwriting synthesis by allowing the network to condition its predictions on a text sequence. The resulting system is able to generate highly realistic cursive handwriting in a wide variety of styles.

How can it be used? – e.g. Machine Translation Sequence to Sequence – Encoding – Decoding – Many to Many mapping

DURING TRAINING



How can it be used? – e.g. Machine Translation Sequence to Sequence Models

Input training examples don't need to be the same length! In this case outputs can be.

input

output

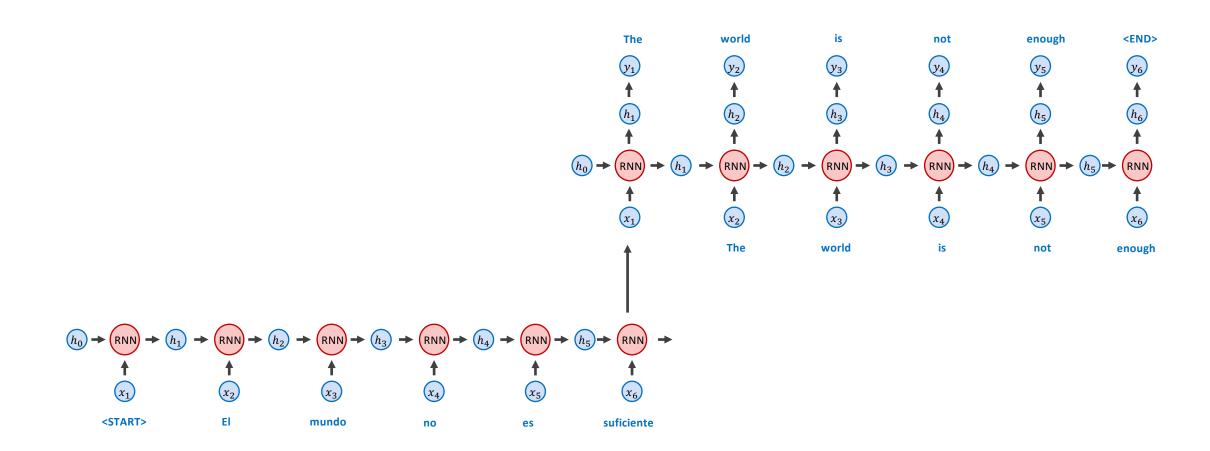
<START> este restaurante tiene buena comida <START> this restaurant has good food

<START> el mundo no es suficiente <START> the world is not enough this restaurant has good food <END>

the world is not enough <END>

How can it be used? – e.g. Machine Translation Sequence to Sequence – Encoding – Decoding – Many to Many mapping

DURING TRAINING – (Alternative)



Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation

Kyunghyun Cho Bart van Merriënboer Caglar Gulcehre Université de Montréal

Dzmitry Bahdanau Jacobs University, Germany d.bahdanau@jacobs-university.de

firstname.lastname@umontreal.ca

Holger Schwenk **Yoshua Bengio** Université du Maine, France Université de Montréal, CIFAR Senior Fellow

firstname.lastname@lium.univ-lemans.fr

Fethi Bougares

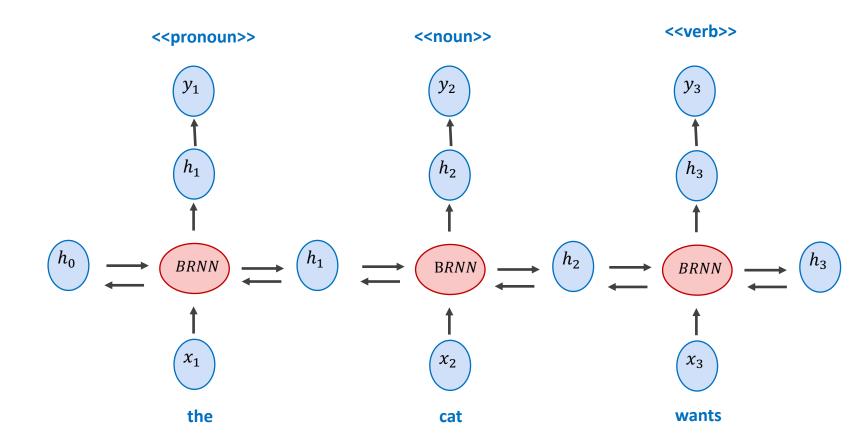
find.me@on.the.web

NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE

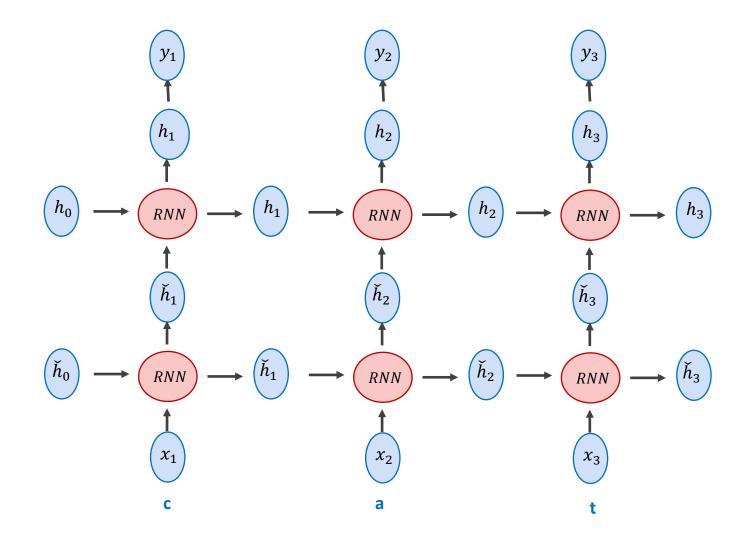
Dzmitry Bahdanau Jacobs University Bremen, Germany

KyungHyun Cho Yoshua Bengio* Université de Montréal

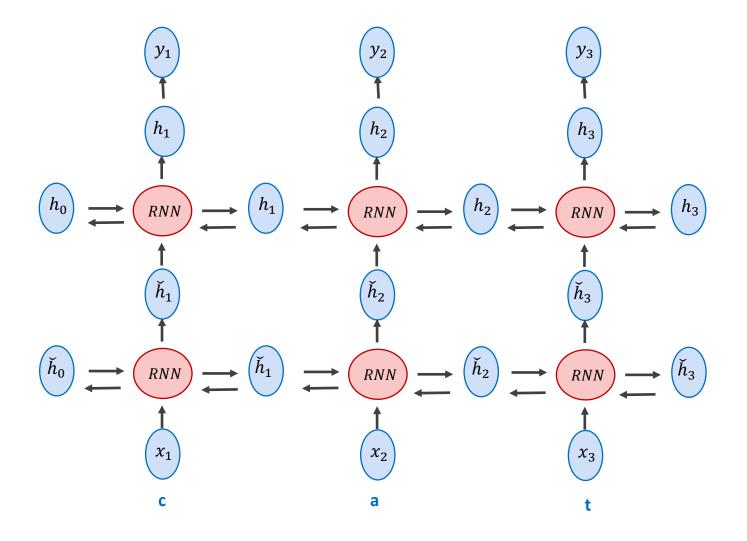
Bidirectional Recurrent Neural Network



Stacked Recurrent Neural Network



Stacked Bidirectional Recurrent Neural Network



RNN in Pytorch

Recurrent layers

class torch.nn.RNN(*args, **kwargs) [source]

Applies a multi-layer Elman RNN with tanh or ReLU non-linearity to an input sequence.

For each element in the input sequence, each layer computes the following function:

 $h_t = \tanh(w_{ih} * x_t + b_{ih} + w_{hh} * h_{(t-1)} + b_{hh})$

where h_t is the hidden state at time t, and x_t is the hidden state of the previous layer at time t or *input*_t for the first layer. If nonlinearity='relu', then *ReLU* is used instead of *tanh*.

Parameters: • input_size - The number of expected features in the input x

- hidden_size The number of features in the hidden state h
- num_layers Number of recurrent layers.
- nonlinearity The non-linearity to use ['tanh'|'relu']. Default: 'tanh'
- bias If False, then the layer does not use bias weights b_ih and b_hh. Default: True
- batch_first If True, then the input and output tensors are provided as (batch, seq, feature)
- dropout If non-zero, introduces a dropout layer on the outputs of each RNN layer except the last layer
- **bidirectional** If True, becomes a bidirectional RNN. Default: False

LSTM Cell (Long Short-Term Memory)

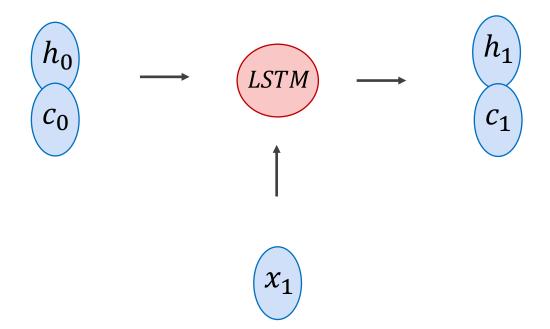
$$i_t = \sigma \left(W_{xi} x_t + W_{hi} h_{t-1} + W_{ci} c_{t-1} + b_i \right)$$
(7)

$$f_t = \sigma \left(W_{xf} x_t + W_{hf} h_{t-1} + W_{cf} c_{t-1} + b_f \right)$$
(8)

$$c_t = f_t c_{t-1} + i_t \tanh \left(W_{xc} x_t + W_{hc} h_{t-1} + b_c \right)$$
(9)

$$o_t = \sigma \left(W_{xo} x_t + W_{ho} h_{t-1} + W_{co} c_t + b_o \right)$$
(10)

$$h_t = o_t \tanh(c_t) \tag{11}$$



LSTM in Pytorch

class torch.nn.LSTM(*args, **kwargs) [source]

Applies a multi-layer long short-term memory (LSTM) RNN to an input sequence.

For each element in the input sequence, each layer computes the following function:

$$i_{t} = \text{sigmoid}(W_{ii}x_{t} + b_{ii} + W_{hi}h_{(t-1)} + b_{hi})$$

$$f_{t} = \text{sigmoid}(W_{if}x_{t} + b_{if} + W_{hf}h_{(t-1)} + b_{hf})$$

$$g_{t} = \tanh(W_{ig}x_{t} + b_{ig} + W_{hc}h_{(t-1)} + b_{hg})$$

$$o_{t} = \text{sigmoid}(W_{io}x_{t} + b_{io} + W_{ho}h_{(t-1)} + b_{ho})$$

$$c_{t} = f_{t} * c_{(t-1)} + i_{t} * g_{t}$$

$$h_{t} = o_{t} * \tanh(c_{t})$$

where h_t is the hidden state at time t, c_t is the cell state at time t, x_t is the hidden state of the previous layer at time t or $input_t$ for the first layer, and i_t , f_t , g_t , o_t are the input, forget, cell, and out gates, respectively.

- hidden_size The number of features in the hidden state h
- **num_layers** Number of recurrent layers.
- **bias** If False, then the layer does not use bias weights b_ih and b_hh. Default: True
- batch_first If True, then the input and output tensors are provided as (batch, seq, feature)
- dropout If non-zero, introduces a dropout layer on the outputs of each RNN layer except the last layer
- bidirectional If True, becomes a bidirectional RNN. Default: False

GRU in Pytorch

class torch.nn.GRU(*args, **kwargs) [source]

Applies a multi-layer gated recurrent unit (GRU) RNN to an input sequence.

For each element in the input sequence, each layer computes the following function:

$$r_{t} = \text{sigmoid}(W_{ir}x_{t} + b_{ir} + W_{hr}h_{(t-1)} + b_{hr})$$

$$z_{t} = \text{sigmoid}(W_{iz}x_{t} + b_{iz} + W_{hz}h_{(t-1)} + b_{hz})$$

$$n_{t} = \tanh(W_{in}x_{t} + b_{in} + r_{t} * (W_{hn}h_{(t-1)} + b_{hn}))$$

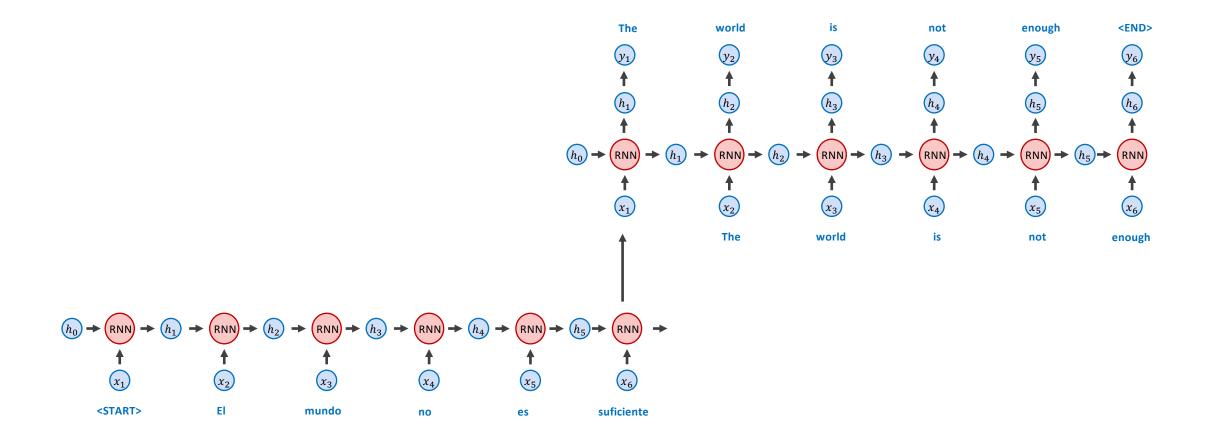
$$h_{t} = (1 - z_{t}) * n_{t} + z_{t} * h_{(t-1)}$$

where h_t is the hidden state at time t, x_t is the hidden state of the previous layer at time t or $input_t$ for the first layer, and r_t , z_t , n_t are the reset, input, and new gates, respectively.

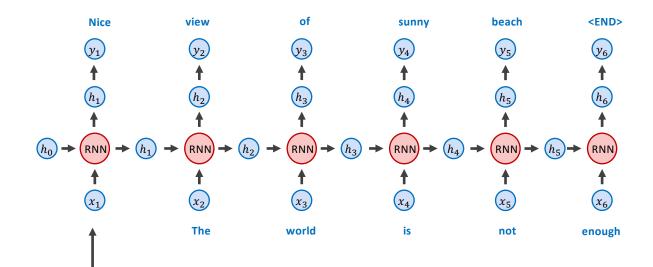
Parameters:	• input_size – The number of expected features in the input x
-------------	---

- hidden_size The number of features in the hidden state h
- **num_layers** Number of recurrent layers.
- bias If False, then the layer does not use bias weights b_ih and b_hh. Default: True
- batch_first If True, then the input and output tensors are provided as (batch, seq, feature)
- dropout If non-zero, introduces a dropout layer on the outputs of each RNN layer except the last layer
- bidirectional If True, becomes a bidirectional RNN. Default: False

RNNs for Image Caption Generation



RNNs for Image Caption Generation



References (a lot of them)

- Vinyals et al. Show and Tell: A Neural Image Caption Generator https://arxiv.org/abs/1411.4555
- Mao et al. Deep Captioning with Multimodal Recurrent Neural Networks (m-RNN). <u>https://arxiv.org/abs/1412.6632</u>
- Karpathy and Fei-Fei. Deep Visual-Semantic Alignments for Generating Image Descriptions. <u>https://arxiv.org/abs/1412.2306</u>
- Fang et al. From Captions to Visual Concepts and Back. <u>https://arxiv.org/abs/1411.4952</u>
- Yin and Ordonez. Obj2Text: Generating Visually Descriptive Language from Object Layouts. <u>https://arxiv.org/abs/1707.07102</u> (not exactly targeting image captioning specifically but locally grown paper so let me self-promote)

Questions?