
Deep Learning for Vision &
Language

Natural Language Processing III: Recurrent Neural Networks

Second Assignment
• Due Next Monday and third and final assignment to follow soon.

• Submit your project proposal – think about the amount of work it
would take to a) Create an assignment 4, b) Solve assignment 4. Often
in research and entrepreneurship asking a good question/finding the
right problem is more important than giving a great answer/solution.

1

Recurrent Neural Networks
• These are models for handling sequences of things.

• Each input is not a vector but a sequence of input vectors.

• e.g. Each input can be a “word embedding” or any “word”
representation – we will use in our first examples one-hot encoded
tokens but in practice continuous dense word embeddings are used.

2

Recurrent Neural Network Cell

𝑥!

𝑅𝑁𝑁ℎ" ℎ!

Recurrent Neural Network Cell

𝑥!

𝑅𝑁𝑁ℎ" ℎ!

ℎ! = tanh(𝑊##ℎ" +𝑊#$𝑥!)

Recurrent Neural Network Cell

𝑥!

𝑅𝑁𝑁ℎ" ℎ!

ℎ! = tanh(𝑊##ℎ" +𝑊#$𝑥!)

ℎ!

𝑦!

𝑦! = softmax(𝑊#%ℎ!)

Recurrent Neural Network Cell

𝑅𝑁𝑁

𝑥! = [0 0 1 0 0]

ℎ" = [0 0 0 0 0 0 0]

𝑦! = [0.1, 0.05, 0.05, 0.1, 0.7]

ℎ! = [0.1 0.2 0 − 0.3 − 0.1]

ℎ! = [0.1 0.2 0 − 0.3 − 0.1]

ℎ! = tanh(𝑊##ℎ" +𝑊#$𝑥!)

𝑦! = softmax(𝑊#%ℎ!)

Recurrent Neural Network Cell

𝑅𝑁𝑁

𝑥! = [0 0 1 0 0]

ℎ" = [0 0 0 0 0 0 0]

𝑦! = [0.1, 0.05, 0.05, 0.1, 0.7]

ℎ! = [0.1 0.2 0 − 0.3 − 0.1]

ℎ! = [0.1 0.2 0 − 0.3 − 0.1]

a b c d e

e (0.7)

c

Recurrent Neural Network Cell

𝑥!

𝑅𝑁𝑁ℎ" ℎ!

ℎ!

𝑦!

ℎ! = tanh(𝑊##ℎ" +𝑊#$𝑥!)

𝑦! = softmax(𝑊#%ℎ!)

Recurrent Neural Network Cell

𝑥!

𝑅𝑁𝑁ℎ" ℎ!

ℎ!

ℎ! = tanh(𝑊##ℎ" +𝑊#$𝑥!)

Recurrent Neural Network Cell

𝑥!

𝑅𝑁𝑁ℎ" ℎ!

ℎ! = tanh(𝑊##ℎ" +𝑊#$𝑥!)

(Unrolled) Recurrent Neural Network

𝑥!

𝑅𝑁𝑁ℎ" ℎ!

𝑥&

𝑅𝑁𝑁 ℎ&

𝑥'

𝑅𝑁𝑁 ℎ'

How can it be used? – e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems

𝑥!

𝑅𝑁𝑁ℎ" ℎ!

ℎ!

𝑥&

𝑅𝑁𝑁 ℎ&

ℎ&

𝑥'

𝑅𝑁𝑁 ℎ'

ℎ'

my car works

<<noun>> <<verb>>

𝑦! 𝑦& 𝑦'

<<possessive>>

How can it be used? – e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems

my car works <<possessive>> <<noun>> <<verb>>

my dog ate the assignment <<possessive>> <<noun>> <<verb>> <<pronoun>> <<noun>>

my mother saved the day <<possessive>> <<noun>> <<verb>> <<pronoun>> <<noun>>

the smart kid solved the problem <<pronoun>> <<qualifier>> <<noun>> <<verb>> <<pronoun>> <<noun>>

Training examples don’t need to be the same length!

input output

How can it be used? – e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems

L(my car works) = 3 L (<<possessive>> <<noun>> <<verb>>) = 3

L(my dog ate the assignment) = 5 L (<<possessive>> <<noun>> <<verb>> <<pronoun>> <<noun>>) = 5

L(my mother saved the day) = 5 L (<<possessive>> <<noun>> <<verb>> <<pronoun>> <<noun>>) = 5

L(the smart kid solved the problem) = 6 L (<<pronoun>> <<qualifier>> <<noun>> <<verb>> <<pronoun>> <<noun>>) = 6

Training examples don’t need to be the same length!

input output

How can it be used? – e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems

T: 1000 x 3 T: 20 x 3

T: 1000 x 5 T: 20 x 5

T: 1000 x 5 T: 20 x 5

T: 1000 x 6 T: 20 x 6

Training examples don’t need to be the same length!

input output

If we assume a vocabulary of a 1000 possible words and 20 possible output tags

How can it be used? – e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems

T: 1000 x 3 T: 20 x 3

T: 1000 x 5 T: 20 x 5

T: 1000 x 5 T: 20 x 5

T: 1000 x 6 T: 20 x 6

Training examples don’t need to be the same length!

input output

If we assume a vocabulary of a 1000 possible words and 20 possible output tags

How do we create batches if inputs and outputs have different shapes?

How can it be used? – e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems

T: 1000 x 3 T: 20 x 3

T: 1000 x 5 T: 20 x 5

T: 1000 x 5 T: 20 x 5

T: 1000 x 6 T: 20 x 6

Training examples don’t need to be the same length!

input output

If we assume a vocabulary of a 1000 possible words and 20 possible output tags

How do we create batches if inputs and outputs have different shapes?

Solution 1: Forget about batches, just process things one by one.

How can it be used? – e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems

T: 1000 x 3 T: 20 x 3

T: 1000 x 5 T: 20 x 5

T: 1000 x 5 T: 20 x 5

T: 1000 x 6 T: 20 x 6

Training examples don’t need to be the same length!

input output

If we assume a vocabulary of a 1000 possible words and 20 possible output tags

How do we create batches if inputs and outputs have different shapes?

Solution 2: Zero padding. We can put the above vectors in T: 4 x 1000 x 6

How can it be used? – e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems

T: 1000 x 3 T: 20 x 3

T: 1000 x 5 T: 20 x 5

T: 1000 x 5 T: 20 x 5

T: 1000 x 6 T: 20 x 6

Training examples don’t need to be the same length!

input output

If we assume a vocabulary of a 1000 possible words and 20 possible output tags

How do we create batches if inputs and outputs have different shapes?

Solution 3: Advanced. Dynamic Batching or Auto-batching
https://dynet.readthedocs.io/en/latest/tutorials_notebooks/Autobatching.html

https://dynet.readthedocs.io/en/latest/tutorials_notebooks/Autobatching.html

How can it be used? – e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems

Solution 4: Pytorch
stacking, padding, and
sorting combination

How can it be used? – e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems

Solution 4: Pytorch
stacking, padding, and
sorting combination

Pytorch RNN

𝑥!

𝑅𝑁𝑁ℎ" ℎ!

𝑥&

𝑅𝑁𝑁 ℎ&

𝑥'

𝑅𝑁𝑁 ℎ(

ℎ(

the cat likes

positive /
negative sentiment rating

𝑦

How can it be used? – e.g. Scoring the Sentiment of a Text Sequence
Many-to-one Sequence to score problems

𝑅𝑁𝑁…

<<EOS>>

𝑥(

How can it be used? – e.g. Sentiment Scoring
Many to one Mapping Problems

this restaurant has good food Positive

this restaurant is bad Negative

this restaurant is the worst Negative

this restaurant is well recommended Positive

Input training examples don’t need to be the same length!
In this case outputs can be.

input output

How can it be used? – e.g. Text Generation
Auto-regressive model – Sequence to Sequence during Training, Auto-regressive during test

RNNℎ!

<START>

𝑥"

ℎ"

𝑦"

ℎ"

The

RNN

The

𝑥#

ℎ#

𝑦#

ℎ#

world

RNN

world

𝑥$

ℎ$

𝑦$

ℎ$

is

RNN

is

𝑥%

ℎ%

𝑦%

ℎ%

not

RNN

not

𝑥&

ℎ&

𝑦&

ℎ&

enough

RNN

enough

𝑥'

ℎ'

𝑦'

<END>

DURING TRAINING

How can it be used? – e.g. Text Generation
Auto-regressive Models

<START> this restaurant has good food

<START> this restaurant is bad

<START> this restaurant is the worst

<START> this restaurant is well recommended

Input training examples don’t need to be the same length!
In this case outputs can be.

input output

this restaurant has good food <END>

this restaurant is bad <END>

this restaurant is the worst <END>

this restaurant is well recommended <END>

How can it be used? – e.g. Text Generation
Auto-regressive model – Sequence to Sequence during Training, Auto-regressive during test

RNNℎ!

<START>

𝑥"

DURING TESTING

How can it be used? – e.g. Text Generation
Auto-regressive model – Sequence to Sequence during Training, Auto-regressive during test

RNNℎ!

<START>

𝑥"

ℎ"

𝑦"

ℎ"

The

DURING TESTING

How can it be used? – e.g. Text Generation
Auto-regressive model – Sequence to Sequence during Training, Auto-regressive during test

RNNℎ!

<START>

𝑥"

ℎ"

𝑦"

ℎ"

The

RNN

𝑥#

DURING TESTING

How can it be used? – e.g. Text Generation
Auto-regressive model – Sequence to Sequence during Training, Auto-regressive during test

RNNℎ!

<START>

𝑥"

ℎ"

𝑦"

ℎ"

The

RNN

𝑥#

ℎ#

𝑦#

ℎ#

world

DURING TESTING

How can it be used? – e.g. Text Generation
Auto-regressive model – Sequence to Sequence during Training, Auto-regressive during test

RNNℎ!

<START>

𝑥"

ℎ"

𝑦"

ℎ"

The

RNN

𝑥#

ℎ#

𝑦#

ℎ#

world

RNN

𝑥$

ℎ$

𝑦$

ℎ$

is

RNN

𝑥%

ℎ%

𝑦%

ℎ%

not

RNN

𝑥&

ℎ&

𝑦&

ℎ&

enough

RNN

𝑥'

ℎ'

𝑦'

<END>

DURING TESTING

Character-level Models

𝑥!

𝑅𝑁𝑁ℎ" ℎ!

ℎ!

𝑥&

𝑅𝑁𝑁 ℎ&

ℎ&

𝑥'

𝑅𝑁𝑁 ℎ'

ℎ'

c a t

a t <<space>>

𝑦! 𝑦& 𝑦'

How can it be used? – e.g. Machine Translation
Sequence to Sequence – Encoding – Decoding – Many to Many mapping

RNNℎ!

<START>

𝑥"

ℎ"

𝑦"

ℎ"

The

RNN

The

𝑥#

ℎ#

𝑦#

ℎ#

world

RNN

world

𝑥$

ℎ$

𝑦$

ℎ$

is

RNN

is

𝑥%

ℎ%

𝑦%

ℎ%

not

RNN

not

𝑥&

ℎ&

𝑦&

ℎ&

enough

RNN

enough

𝑥'

ℎ'

𝑦'

<END>

DURING TRAINING

RNNℎ!

<START>

𝑥"

ℎ" RNN

El

𝑥#

ℎ# RNN

mundo

𝑥$

ℎ$ RNN

no

𝑥%

ℎ% RNN

es

𝑥&

ℎ& RNN

suficiente

𝑥'

How can it be used? – e.g. Machine Translation
Sequence to Sequence Models

<START> este restaurante tiene buena comida

Input training examples don’t need to be the same length!
In this case outputs can be.

input output

this restaurant has good food <END>

<START> this restaurant has good food

<START> el mundo no es suficiente the world is not enough <END>

<START> the world is not enough

How can it be used? – e.g. Machine Translation
Sequence to Sequence – Encoding – Decoding – Many to Many mapping

RNNℎ!

𝑥"

ℎ"

𝑦"

ℎ"

The

RNN

The

𝑥#

ℎ#

𝑦#

ℎ#

world

RNN

world

𝑥$

ℎ$

𝑦$

ℎ$

is

RNN

is

𝑥%

ℎ%

𝑦%

ℎ%

not

RNN

not

𝑥&

ℎ&

𝑦&

ℎ&

enough

RNN

enough

𝑥'

ℎ'

𝑦'

<END>

DURING TRAINING – (Alternative)

RNNℎ!

<START>

𝑥"

ℎ" RNN

El

𝑥#

ℎ# RNN

mundo

𝑥$

ℎ$ RNN

no

𝑥%

ℎ% RNN

es

𝑥&

ℎ& RNN

suficiente

𝑥'

Bidirectional Recurrent Neural Network

𝑥!

𝐵𝑅𝑁𝑁ℎ" ℎ!

ℎ!

𝑥#

B𝑅𝑁𝑁 ℎ#

ℎ#

𝑥$

𝐵𝑅𝑁𝑁 ℎ$

ℎ$

the cat wants

<<pronoun>> <<noun>> <<verb>>

𝑦! 𝑦# 𝑦$

Stacked Recurrent Neural Network

𝑥!

𝑅𝑁𝑁

+ℎ!

𝑥#

𝑅𝑁𝑁

𝑥$

𝑅𝑁𝑁

c a t

𝑦! 𝑦# 𝑦$

𝑅𝑁𝑁ℎ" ℎ!

ℎ!

𝑅𝑁𝑁 ℎ#

ℎ#

𝑅𝑁𝑁 ℎ$

ℎ$

+ℎ# +ℎ$

+ℎ" +ℎ! +ℎ# +ℎ$

Stacked Bidirectional Recurrent Neural Network

𝑥!

𝑅𝑁𝑁

+ℎ!

𝑥#

𝑅𝑁𝑁

𝑥$

𝑅𝑁𝑁

c a t

𝑦! 𝑦# 𝑦$

𝑅𝑁𝑁ℎ" ℎ!

ℎ!

𝑅𝑁𝑁 ℎ#

ℎ#

𝑅𝑁𝑁 ℎ$

ℎ$

+ℎ# +ℎ$

+ℎ" +ℎ! +ℎ# +ℎ$

RNN in Pytorch

LSTM Cell (Long Short-Term Memory)

𝑥!

𝐿𝑆𝑇𝑀
ℎ" ℎ!

𝑐" 𝑐!

LSTM in Pytorch

GRU in Pytorch

RNNs for Image Caption Generation

RNNℎ!

𝑥"

ℎ"

𝑦"

ℎ"

The

RNN

The

𝑥#

ℎ#

𝑦#

ℎ#

world

RNN

world

𝑥$

ℎ$

𝑦$

ℎ$

is

RNN

is

𝑥%

ℎ%

𝑦%

ℎ%

not

RNN

not

𝑥&

ℎ&

𝑦&

ℎ&

enough

RNN

enough

𝑥'

ℎ'

𝑦'

<END>

RNNℎ!

<START>

𝑥"

ℎ" RNN

El

𝑥#

ℎ# RNN

mundo

𝑥$

ℎ$ RNN

no

𝑥%

ℎ% RNN

es

𝑥&

ℎ& RNN

suficiente

𝑥'

RNNs for Image Caption Generation

RNNℎ!

𝑥"

ℎ"

𝑦"

ℎ"

Nice

RNN

The

𝑥#

ℎ#

𝑦#

ℎ#

view

RNN

world

𝑥$

ℎ$

𝑦$

ℎ$

of

RNN

is

𝑥%

ℎ%

𝑦%

ℎ%

sunny

RNN

not

𝑥&

ℎ&

𝑦&

ℎ&

beach

RNN

enough

𝑥'

ℎ'

𝑦'

<END>

CNN

References (a lot of them)
• Vinyals et al. Show and Tell: A Neural Image Caption Generator https://arxiv.org/abs/1411.4555

• Mao et al. Deep Captioning with Multimodal Recurrent Neural Networks (m-RNN).
https://arxiv.org/abs/1412.6632

• Karpathy and Fei-Fei. Deep Visual-Semantic Alignments for Generating Image Descriptions.
https://arxiv.org/abs/1412.2306

• Fang et al. From Captions to Visual Concepts and Back. https://arxiv.org/abs/1411.4952

• Yin and Ordonez. Obj2Text: Generating Visually Descriptive Language from Object Layouts.
https://arxiv.org/abs/1707.07102 (not exactly targeting image captioning specifically but locally
grown paper so let me self-promote)

47

https://arxiv.org/abs/1411.4555
https://arxiv.org/abs/1412.6632
https://arxiv.org/abs/1412.2306
https://arxiv.org/abs/1411.4952
https://arxiv.org/abs/1707.07102

48

Questions?

