4‘ AR i W e i ks, Wl e DB o G i v i

A ML SO s e il N ™ I AN .
- e e i S S i . WM o Pl . . »
N Ml Bl A I A Bl M . W WP N e -
el TR e el ol NSt B BB, N o el
Tt T BT i i, e S . M @
B S i
- A . - * 4 . el I I . W et

Deep Learning for Vision &
Language

Natural Language Processing Il: Representations/Tokenization

How to represent a word?

one-hot encodings

1 0 0 0 0 0 0 0O O O]

0 1 0 0 0 0 0 0 0 O]
0 01 0 0 0 0 0 0 O]
0 0 01 0 0 0 0 0 O]
0 0 0 01 0 0 0O 0 O]

0 0 0 0 01 0 O O O]

0 0 0 0 0 01 0 0 O]

dog

cat

person

holding

tree

6

computer

using

How to represent a word?

How to represent a phrase/sentence?

bag-of-words representation

person holding dog {1, 3, 4} 1 0 1. 1 0 0 0 0 0 O]

person holding cat {2, 3, 4} 0 1 1 1 0 0 0 0 0 0]

person using computer {3, 7, 6} 0 0 1 0 0 1 1 0 0 O]
» 5

person using computer

3,3,7,6,2
person holding cat { bfo 12101100 0]

What if vocabulary is very large?

Sparse Representation

bag-of-words representation

person holding dog {1, 3, 4} indices=1[1, 3,4] values=[1, 1, 1]
person holding cat {2, 3, 4} indices=12, 3,4] wvalues=[1, 1, 1]
person using computer {3, 7, 6} indices=[3, 7,6] values=1[1, 1, 1]

erson using computer
P 5 P {3,3,7,6,2} indices=1[3,7,6,2] values=[2,1,1,1]
person holding cat

Recap

* Bag-of-words encodings for text (e.g. sentences, paragraphs,
captions, etc)

You can take a set of sentences/documents and classify
them, cluster them, or compute distances between them
using this representation.

Problem with this bag-of-words representation

my friend makes a nice meal

These would be the same using bag-of-words

my nice friend makes a meal

Bag of Bi-grams

indices =[10132, 21342, 43233, 53123, 64233]
values=11,1,1,1, 1]

my friend makes a nice meal {my friend, friend makes, makes a,

a nice, nice meal}

indices = [10232, 43133, 21342, 43233, 54233]
values=11,1,1, 1, 1]
my nice friend makes a meal {my nice, nice friend, friend makes,

makes a, a meal}

A dense vector-representation would be very inefficient
Think about tri-grams and n-grams

Recommended reading: n-gram language models

Yejin Choi’s course on Natural Language Processing
http://www3.cs.stonybrook.edu/~ychoi/cse628/lecture/02-ngram.pdf

http://www3.cs.stonybrook.edu/~ychoi/cse628/lecture/02-ngram.pdf

Modern way of representing Phrases/Text

I

Pre-trained Neural Network

Continuous Bag of Words (CBOW) — Word embeddings
Seguence-based representations (RNNs, LSTMs)
Transformer-based representations (e.g. BERT, GPT-2, T5, etc)

]

my friend makes a nice meal

Back to how to represent a word?

Problem: distance between words using one-hot encodings always the same

dog 1 1 0 0 0 0 0 0 0 0 O
cat 2 0 1 0 0 0 0 0 0 0 O
person 3 0 01 0 0 0 0 0 O O]

Idea: Instead of one-hot-encoding use a histogram of commonly co-occurring words.

Distributional Semantics

Dogs are man’s best friend.

| saw a dog on a leash walking in the park.
His dog is his best companion.

He walks his dog in the late afternoon

sleeps

2
gﬁfggtmm
£ 8 38 8§ 8 8 5
dog 3 2 3 4 2 4 3 5 6

Sits

N

Distributional Semantics

dog 5 5 05 0 0 5 5 0 2 ..
cat 5141 4(21o B4 0 3 .7
person 5 5 1 5 0 2 5 5 0 0 ..]
O
nmi’ g 2 2 5
= 2 3 ¢ v E _
S $ s s5sgzho g

This vocabulary can be extremely large

Toward more Compact Representations

dog 5 5 05 0 0 5 5 0 2 ..
cat 514 [(1]41(2 0 3[4 0 3 .7
person 5 5 1 5 0 2 5 5 0 0 ..]
O
nmi’ g 2 2 5
= 2 3 ¢ v E _
S $ s s5sgzho g

This vocabulary can be extremely large

dog

Toward more Compact Representations

5 0 0 0]
5 1 0 0
0 0 0 1
5 1 0 0
0 0 0 0
= 0 = wl | o + W2 | + w3 0 +
5 0 0 0
5 1 0 0
0 0 0 1
2 0 1 0
legs, running, tail, fur, mirror, window,

walking ears door

dog

Toward more Compact Representations

= |: wl w2 w3

The basis vectors can be found using Principal Component Analysis (PCA)

This is known as Latent Semantic Analysis in NLP

dog

Toward more Compact Representations:
Word Embeddings

—

= |: wl w2 w3

The weights w1, ..., wn are found using a neural network

Word2Vec: https://arxiv.org/abs/1301.3781

https://arxiv.org/abs/1301.3781

Word2Vec — CBOW Version

* First, create a huge matrix of word embeddings initialized with
random values — where each row is a vector for a different word in
the vocabulary.

17

Efficient Estimation of Word Representations in
Vector Space

Tomas Mikolov
Google Inc., Mountain View, CA

tmikolov@google.com

Greg Corrado
Google Inc., Mountain View, CA

gcorradolgoogle.com

Kai Chen
Google Inc., Mountain View, CA

kaichenf@google.com

Jeffrey Dean
Google Inc., Mountain View, CA
jeff@google.com

Word2Vec — CBOW Version

* Then, collect a lot of text, and solve the following regression problem

for a large corpus of text:
“the big dog plays ball”

INPUT PROJECTION OUTPUT
W —
the w(t-2)
w, |
bi w(t-1) ||
g
\SUM
/ 4% "0 dog
plays w(t+1)
ba” w(t+2)
Wy, |

cBOW

Pre-trained Language Models

o ' ' ' ' ' ' '

plays with ball

Pre-trained Language Models

Transformer Model

o ' ' ' ' ' ' '

plays with ball

Pre-trained Language Models

y =dog

Softmax classifier
across n possible words

T

Transformer Model

plays with ball

1-hot vectors

The

Pre-trained Language Models

y = with

Softmax classifier
across n possible words

1

Transformer Model

1-hot vectors ' ' ' '
The big dog

plays

ball

23

Pre-trained Language Models

yi1= blg Vo= with
Softmax classifier Softmax classifier
across n possible words across n possible words

T 1

Transformer Model

1-hot vectors

The dog plays

ball

24

Generative Language Models

y = ball

Softmax classifier
across n possible words

1

Transformer Model

o ' ' ' ' ' '

plays with

Practical Issues - Tokenization

* For each text representation we usually need to separate a sentence
into tokens — we have assumed words in this lecture (or pairs of
words) — but tokens could also be characters and anything in-

between.

* Word segmentation can be used as tokenization.

* In the assignment | was lazy | just did “my sentence”.split(“ “) and called it a
day.

* However, even English is more difficult than that because of punctuation,
double spaces, quotes, etc. For English | would recommend you too look up
the great word tokenization tools in libraries such as Python’s NLTK and Spacy
before you try to come up with your own word tokenizer.

26

Issues with Word based Tokenization

* We already mentioned that tokenization can be hard even when
word-based for other languages that don’t use spaces in-between
words.

* Word tokenization can also be bad for languages where the words can
be “glued” together like German or Turkish.

« Remember finfhundertfinfundfinfzig? It wouldn’t be feasible to have a word
embedding for every number in the German language.

* It is problematic to handle words that are not in the vocabulary e.g. a
common practice is to use a special <OOV> (out of vocabulary) token
for those words that don’t show up in the vocabulary.

27

Tokenization can be complex

* Think of Japanese

* Three vocabularies/sets of symbols:
Katakana and Hiragana symbols represent syllables / sounds
{=ku, £ =gi, 7 =na, 7=a
Kanji represent ideas / words (Chinese characters).
H =day, sun, X = big, 1= convex [M] = concave

* They can be combined — e.g. tomorrow = B3 H

* Each symbol also has some structure within the symbols. They are not
independently created. e.g. bright= B3 % U\, rising sun = /i

* And of course there are no spaces in between the characters.

28

Solution: Sub-word Tokenization

v Tokenizers

* Byte-pair Encoding Tokenization (BPE)

 Start from small strings and based on Provides an implementation of today's most used
SuU bstring counts iteratively use Iarger tokenizers, with a focus on performance and versatility.
sequences until you define a vocabulary that Main features:
maximizes informative subtokens. That way + Train new vocabularies and tokenize, using today's

most used tokenizers.

most will correspond to words at the end.

¢ Extremely fast (both training and tokenization),
thanks to the Rust implementation. Takes less than

(] Byte_ | eve | B P E TO ke n i Ze r é(;s'econds to tokenize a GB of text on a server's
* Do the same but at the byte representation : Eae?gt:eff;:i:fi ey ee
|€V€| N Ot at th e S u bst ri ng re p rese ntatl O 1] Ieve I . ¢ Normalization comes with alignments tracking. It's

always possible to get the part of the original
sentence that corresponds to a given token.

¢ Does all the pre-processing: Truncate, Pad, add the
special tokens your model needs.

We will discuss these more as we discuss Transformer Models

huggingface/tokenizers
29

Algorithm 1 Learn BPE operations

import re, collections

BPE Tokenization Overview ...

pairs = collections.defaultdict (int)
for word, freq in vocab.items():
symbols = word.split ()
for i in range(len(symbols)-1):
pairs([symbols[i],symbols[i+1l]] += freq
return pairs

Neural Machine Translation of Rare Words with Subword Units
def merge vocab(pair, v_in):

v_out = {}
b1 = re. ' jod i
Rico Sennrich and Barr:y Hadfiow.and Algxandra Birch plgri:coigii:i?%q\s??li(ﬁ;i;r)n + r'(21\8) ")
School of Informatics, University of Edinburgh for word in v _in:
{rico.sennrich,a.birch}@ed.ac.uk,bhaddow@inf.ed.ac.uk w_out = p.sub(''.join(pair), word)
v_out([w out] = v_in[word]

return v out

vocab = {'l o w </w>'" : 5, 'l ower</w'.:2,
* Learn BPE operations (python code on the . merge;njlg e s t </w>'i6, 'wides t</w'i3}

rlght) — from the paper. for i in range (num merges) :

pairs = get stats(vocab)
best = max(pairs, key=pairs.get)
vocab = merge vocab(best, vocab)

e Use said operations to construct your sub- print (best)
word vocabulary.

* Treat each sub-word token as a “word” in

any models we will discuss. https://colab.research.google.com/drive/1gUjL_h2tXdTtPSfxbB
P-6MkKE BMckbgm?usp=sharing

30

https://colab.research.google.com/drive/1gUjL_h2tXdTtPSfxbBP-6MkE_BMck6gm?usp=sharing
https://colab.research.google.com/drive/1gUjL_h2tXdTtPSfxbBP-6MkE_BMck6gm?usp=sharing

Tokenization used in GPT-3

https://platform.openai.com/tokenizer

The cat is in the house The geologist made an effort to rationalize the explanation

Tokens Characters Tokens Characters

6 23 1 59

. - The geologist made an effort to rationalize the explanation
The cat is in the house " " .

[464, 3797, 318, 287, 262, 2156] [464, 4903, 7451, 925, 281, 3626, 284, 9377, 10896, 262, 7468]

finfhundertfinfundfinfzig

Tokens Characters
21 29 Tokens Characters

8 30

La ardilla va a la universidad

funfhundertfinfundfinfzig

La ardilla va a la universidad
[69, 9116, 77, 69, 3907, 71, 4625, 83, 3987, 69, 9116, 77, 69, 3907, 917,

3907, 69, 9116, 77, 69, 38262] [14772, 33848, 50649, 46935, 257, 8591, 5820, 32482]

31

https://platform.openai.com/tokenizer

Tokenization used in GPT-3

https://platform.openai.com/tokenizer

oY) —
REE
Tokens Characters

8 3

00000000

[162, 115, 109, 161, 109, 97, 27764, 99]

(NN HI(RN?
Tokens Characters

20 10

000000000 0000000097

[48071, 243, 156, 100, 229, 48071, 106, 48871, 101, 220, 48071, 228,

48071, 249, 156, 100, 229, 48071, 101, 30]

6U600TSH SHLD
Tokens Characters

21 7

[156, 186, 113, 156, 106, 96, 156, 106, 243, 156, 187, 235, 156, 106,
243, 156, 186, 106, 156, 107, 235]

32

https://platform.openai.com/tokenizer

Questions?

33

