

Deep Learning for Vision & Language

Computer Vision I: Convolutional Neural Networks

About the class

- COMP 646: Deep Learning for Vision and Language
- Instructor: Vicente Ordóñez (Vicente Ordóñez Román)
- Website: https://www.cs.rice.edu/~vo9/deep-vislang
- Location: Herzstein Hall 210
- Times: Tuesdays and Thursdays from 4pm to 5:15pm
- Office Hours: Tuesdays 10am to 11am (DH3098)
- Teaching Assistants: Arnold, Jefferson, Sangwon, Gaotian
- Discussion Forum: Piazza (Sign-up Link on Rice Canvas and Class Website)

Teaching Assistants (TAs)

Jefferson Hernandez

Mondays 2:30pm DH 3036 Sangwon Seo

Wednesdays 10am DH 3002 Gaotian Wang

Wednesdays 3pm DH 3036 Arnold Kazadi

Thursdays 11am DH 3036

Assignment 1

- Due next Monday at midnight (No extension for any reason but especially not due to errors/outages in Google Colab)
 - Please submit early.

Forward pass (Forward-propagation)

Forward pass (Forward-propagation)

 $x_i = \begin{bmatrix} x_{i1} & x_{i2} & x_{i3} & x_{i4} \end{bmatrix} \qquad y_i = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \qquad \hat{y}_i = \begin{bmatrix} f_c & f_d & f_b \end{bmatrix}$

$$a_{1} = sigmoid(w_{[1]}x^{T} + b_{[1]}^{T})$$
$$a_{2} = sigmoid(w_{[2]}a_{1}^{T} + b_{[2]}^{T})$$

. . .

...

We can still use SGD

$$a_k = sigmoid(w_{[k]}a_{k-1}^T + b_{[i]}^T)$$

We need!

$$\frac{\partial l}{\partial w_{[k]ij}} \qquad \frac{\partial l}{\partial b_{[k]i}}$$

 $f = softmax(w_{[n]}a_{n-1}^{T} + b_{[n]}^{T})$

 $x_i = \begin{bmatrix} x_{i1} & x_{i2} & x_{i3} & x_{i4} \end{bmatrix} \qquad y_i = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \qquad \hat{y}_i = \begin{bmatrix} f_c & f_d & f_b \end{bmatrix}$

$$a_{1} = sigmoid(w_{[1]}x^{T} + b_{[1]}^{T})$$

$$a_{2} = sigmoid(w_{[2]}a_{1}^{T} + b_{[2]}^{T})$$

...

We can still use SGD

$$a_i = sigmoid(w_{[k]}a_{k-1}^T + b_{[k]}^T)$$

$$f = softmax(w_{[n]}a_{n-1}^{T} + b_{[n]}^{T})$$

. . .

l = loss(f, y)

We need!
$$\frac{\partial l}{\partial w_{[k]ij}} \qquad \frac{\partial l}{\partial b_{[k]i}}$$

 $x_i = \begin{bmatrix} x_{i1} & x_{i2} & x_{i3} & x_{i4} \end{bmatrix} \qquad y_i = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \qquad \hat{y}_i = \begin{bmatrix} f_c & f_d & f_b \end{bmatrix}$

$$a_{1} = sigmoid(w_{[1]}x^{T} + b_{[1]}^{T})$$

$$a_{2} = sigmoid(w_{[2]}a_{1}^{T} + b_{[2]}^{T})$$

...

We can still use SGD

We need!

$$a_i = sigmoid(w_{[k]}a_{k-1}^T + b_{[k]}^T)$$

$$f = softmax(w_{[n]}a_{n-1}^T + b_{[n]}^T)$$

. . .

l = loss(f, y)

$$\frac{\partial l}{\partial w_{[k]ij}} \qquad \frac{\partial l}{\partial b_{[k]i}}$$

 $x_i = \begin{bmatrix} x_{i1} & x_{i2} & x_{i3} & x_{i4} \end{bmatrix} \qquad y_i = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \qquad \hat{y}_i = \begin{bmatrix} f_c & f_d & f_b \end{bmatrix}$

$$a_{1} = sigmoid(w_{[1]}x^{T} + b_{[1]}^{T})$$

$$a_{2} = sigmoid(w_{[2]}a_{1}^{T} + b_{[2]}^{T})$$

...

$$a_i = sigmoid(w_{[k]}a_{k-1}^T + b_{[k]}^T)$$

$$\frac{\partial l}{\partial w_{[k]ij}} = \frac{\partial l}{\partial a_{n-1}} \frac{\partial a_{n-1}}{\partial a_{n-2}} \dots \frac{\partial a_{k-2}}{\partial a_{k-1}} \frac{\partial a_{k-1}}{\partial w_{[k]ij}}$$

$$f = softmax(w_{[n]}a_{n-1}^{T} + b_{[n]}^{T})$$

. . .

l = loss(f, y)

This class combines Softmax + Negative-log likelihood loss. # Similar to the previous lab, but this implementation works for # batches of inputs and not just individual input vectors. # Here "inputs" is batchSize x sizePredictionScores, and # "labels" is a vector of size batchSize. class toynn_CrossEntropyLoss(object):

```
# Forward pass: -log softmax(input_{label})
def forward(self, scores, labels):
```

```
# 1. Computing the softmax: exp(x) / sum (exp(x))
max_val = scores.max() # This is to avoid variable overflows.
exp_inputs = (scores - max_val).exp()
# This is different than in the previous lab. Avoiding for loops here.
denominators = exp_inputs.sum(1).repeat(scores.size(1), 1).t()
self.predictions = torch.mul(exp_inputs, 1 / denominators)
```

```
# 2. Computing the loss: -log(y_label).
# Check what gather does. Just avoiding another for loop here.
return -self.predictions.log().gather(1, labels.view(-1, 1)).mean()
```

```
# Backward pass: y_hat - y
def backward(self, scores, labels):
```

```
# Here we avoid computing softmax again in backward pass.
grad_inputs = self.predictions.clone()
```

```
# Ok, Here we will use a for loop (but it is avoidable too).
for i in range(0, scores.size(0)):
    grad inputs[i][labels[i]] = grad inputs[i][labels[i]] - 1
```

```
return grad_inputs
```

Softmax + Negative Log Likelihood

```
\ell = -\log\Big(\frac{\exp(a_{label})}{\sum_{k=1}^{10} \exp(a_k)}\Big)
```

```
\frac{\partial \ell}{\partial a_i} = \hat{y}_i - y_i
```

```
class toynn Linear(object):
    def init (self, numInputs, numOutputs):
        # Allocate tensors for the weight and bias parameters.
        self.weight = torch.Tensor(numInputs, numOutputs).normal (0, 0.01)
        self.weight grads = torch.Tensor(numInputs, numOutputs)
        self.bias = torch.Tensor(numOutputs).zero ()
                                                                                   Linear
        self.bias grads = torch.Tensor(numOutputs)
                                                                                   layer
   # Forward pass, inputs is a matrix of size batchSize x numInputs.
   # Notice that compared to the previous assignment, each input vector
   # is a row in this matrix.
    def forward(self, inputs):
       # This one needs no change, it just becomes
       # a matrix x matrix multiplication
       # as opposed to just vector x matrix multiplication as we had before.
        return torch.matmul(inputs, self.weight) + self.bias
   # Backward pass, in addition to compute gradients for the weight and bias.
   # It has to compute gradients with respect to inputs.
    def backward(self, inputs, scores grads):
        self.weight grads = torch.matmul(inputs.t(), scores grads)
        self.bias grads = scores grads.sum(0)
       return torch.matmul(scores grads, self.weight.t())
```

```
class toynn_ReLU(object):
```

```
# Forward operation: f(x_i) = max(0, x_i)
def forward(self, inputs):
    outputs = inputs.clone()
    outputs[outputs < 0] = 0
    return outputs
# Make sure the backward page is absolutely sloped.</pre>
```

ReLU layer

```
# Make sure the backward pass is absolutely clear.
def backward(self, inputs, outputs_grad):
    inputs_grad = outputs_grad.clone() # 1 * previous_grads
    inputs_grad[inputs < 0] = 0 # or zero.
    return inputs_grad
```

Two-layer Neural Network – Forward Pass

```
# Setup the input variable x.
img, label = trainset[0]
x = img.view(1, 1 * 28 * 28)
```

```
# Setup the number of inputs, hidden neurons, and outputs.
nInputs = 1 * 28 * 28
nHidden = 512
nOutputs = 10
```

```
# Create the model here.
linear_fn1 = toynn_Linear(nInputs, nHidden)
relu_fn = toynn_ReLU()
linear_fn2 = toynn_Linear(nHidden, nOutputs)
```

```
# Make predictions.
x = linear_fn1.forward(x)
x = relu_fn.forward(x)
x = linear_fn2.forward(x)
```

```
# Show the prediction scores for each class.
# Yes, pytorch tensors already come with a softmax function.
# We need it here because we hard-coded the softmax inside
# the loss function.
print(x.softmax(dim = 1))
```

Two-layer Neural Network – Backward Pass

```
# Create the model here.
linear_fn1 = toynn_Linear(nInputs, nHidden)
relu_fn = toynn_ReLU()
linear_fn2 = toynn_Linear(nHidden, nOutputs)
loss_fn = toynn_CrossEntropyLoss()
```

```
# Make predictions (forward pass).
a = linear_fn1.forward(x)
z = relu_fn.forward(a)
yhat = linear fn2.forward(z)
```

```
# Compute loss.
loss = loss_fn.forward(yhat, label)
yhat grads = loss fn.backward(yhat, label)
```

```
# Compute gradients (backward pass).
z_grads = linear_fn2.backward(z, yhat_grads)
a_grads = relu_fn.backward(a, z_grads)
x_grads = linear_fn1.backward(x, a_grads)
```

```
# Update parameters:
learningRate = 0.2
linear_fn1.weight.add_(-learningRate, linear_fn1.weight_grads)
linear_fn1.bias.add_(-learningRate, linear_fn1.bias_grads)
linear_fn2.weight.add_(-learningRate, linear_fn2.weight_grads)
linear_fn2.bias.add (-learningRate, linear_fn2.bias_grads)
```

Automatic Differentiation

You only need to write code for the forward pass, backward pass is computed automatically.

Pytorch (Facebook -- mostly):

Tensorflow (Google -- mostly):

MXNet (Amazon -- mostly):

https://pytorch.org/

https://www.tensorflow.org/

https://mxnet.apache.org/versions/1.9.0/

Defining a Model in Pytorch (Two Layer NN)

```
import torch.nn as nn
import torch.nn.functional as F
class TwoLayerNN(nn.Module):
 def init_(self):
    super(TwoLayerNN, self). init ()
    self.linear1 = nn.Linear(1 * 28 * 28, 512)
    self.linear2 = nn.Linear(512, 10)
 def forward(self, x):
    x = x.view(batchSize, 1 * 28 * 28)
    z = F.relu(self.linear1(x))
    return self.linear2(z)
```

1. Creating Model, Loss, Optimizer

```
# Create the model.
model = TwoLayerNN()
loss_fn = nn.CrossEntropyLoss()
```

2. Running forward and backward on a batch

```
# Forward pass. (Prediction stage)
scores = model(inputs)
loss = loss_fn(scores, labels)
```

```
# Zero the gradients in the network.
optimizer.zero grad()
```

```
#Backward pass. (Gradient computation stage)
loss.backward()
```

```
# Parameter updates (SGD step) -- if done with torch.optim!
optimizer.step()
```

Today: Computer Vision

- Why is it hard?
- Image Processing
- The Convolutional Operator: Filtering
- Convolutional Neural Networks

Create an algorithm to distinguish dogs from cats

Face Detection in Cameras

Computer Vision

Human Vision / Human Brain

Machine Learning

Computer Vision

Deep Learning

Optics / Cameras

Geometry

Robotics

Who is using Computer Vision?

- Facebook Oculus VR, Image Search, Image tagging, Content filtering, Instagram, etc.
- Google/Alphabet Waymo, DeepMind, Image Search, Google Earth/Maps, Street View, Google Photos, etc.
- Adobe Photoshop, Premiere, Lightroom, etc.
- Snap Inc Snapchat, Smart Goggles, Filters, Face Detection, Style Transfer, etc.
- eBay Inc Product Search, Product Matching, Content Filtering, Duplicate Removal, etc.
- Amazon Warehouse robotics, Smart Stores, Product Search.
- IBM Image Retrieval, Medical Applications, Product Quality.
- Microsoft Hololens, Optical Character Recognition (OCR), Face Detection, Cloud Services.
- Apple Face Verification, Enhanced cameras and chips for image processing.

https://bristles.ai/

https://bristles.ai/

https://www.mercuryalert.ai/

Phiar.ai (now part of Google)

Images

• Can be viewed as a matrix with pixel values

Images

• Or as a function in a 2D domain

$$\mathbf{z} = f(\mathbf{x}, \mathbf{y})$$

Color Images

• Can be viewed as tensors (3-dimensional arrays)

sizeof(T) = 3 x height x width

Channels are usually RGB: Red, Green, and Blue

Other color spaces: HSV, HSL, LUV, XYZ, Lab, CMYK, etc

Why is it hard?

TRUNK SHOW (page 24)

This is just as hard for computers

Why is Computer Vision hard?

Ambiguities due to viewpoints

Why is Computer Vision hard?

Ambiguities due to viewpoints

Why is Computer Vision hard?

Issues with Illumination

slide credit: S. Ullman
Why is Computer Vision hard?

Background clutter

Why is Computer Vision hard?

Intra-class variation

slide by Fei-Fei, Fergus & Torralba

Computer Vision vs Image Processing

• Computer Vision: Image → Knowledge

Computer Vision vs Image Processing

• Image Processing: Image → Image

Basic Image Processing

Primer on Image Processing: <u>https://bit.ly/3IGEdwv</u>

Common tasks in Computer Vision

Image tagging

deer cat trees grass

Common tasks in Computer Vision

Object detection

Common tasks in Computer Vision

Semantic segmentation

This class -> Vision and Language Tasks!

Reasoning about Language!

 a cat is chasing a young deer

Most important operation for Computer Vision

• The Convolution Operation

http://www.cs.virginia.edu/~vicente/recognition/animation.gif

Most important operation for Computer Vision

• The Convolution Operation

Convolutional filter Convolutional kernel Filter

Kernel

Most important operation for Computer Vision

• The Convolution Operation

f(x,y)

g(x, y)

$$g(x,y) = \sum_{v} \sum_{u} k(u,v) f(x - u, y - v)$$

47

Image filtering: Convolution operator e.g. mean filter

Image Credit: http://what-when-how.com/introduction-to-video-and-image-processing/neighborhood-processing-introduction-to-video-and-image-processing-part-1/

Image filtering: Convolution operator e.g. mean filter

Image Credit: http://what-when-how.com/introduction-to-video-and-image-processing/neighborhood-processing-introduction-to-video-and-image-processing-part-1/

Example: box filter

Slide credit: David Lowe (UBC)

 $h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$

 $h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

 $h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

 $h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

 $h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
	•	•	00	-				•	
0	0	0	90	0	90	90	90	0	0
0	0	0	90 90	90	90 90	90 90	90 90	0	0
0	0	0	90 90 0	0 90 0	90 90 0	90 90 0	90 90 0	0	0
0 0 0	0 0 0	0 0 0 90	90 90 0	0 90 0	90 90 0	90 90 0	90 90 0	0 0 0	0 0 0

 $h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

 $h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$

_									_
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

 $h[m,n] = \sum_{k=1}^{n} g[k,l] f[m+k,n+l]$ k,l

Box Filter

What does it do?

- Replaces each pixel with an average of its neighborhood
- Achieve smoothing effect (remove sharp features)

Image filtering: e.g. Mean Filter

Image filtering: Convolution operator Important filter: gaussian filter (gaussian blur)

Image Credit: http://what-when-how.com/introduction-to-video-and-image-processing/neighborhood-processing-introduction-to-video-and-image-processing-part-1/

Important filter: Gaussian

• Weight contributions of neighboring pixels by nearness

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$$

Slide credit: Christopher Rasmussen

Image filtering: Convolution operator e.g. gaussian filter (gaussian blur)

Image Credit: http://what-when-how.com/introduction-to-video-and-image-processing/neighborhood-processing-introduction-to-video-and-image-processing-part-1/

Practical matters

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge

Convolution: Useful Operator for Image Processing

- Not all image filtering region neighborhood operators can be expressed as convolutions.
- They also can be used to extract information about edges and shapes .e.g. for image recognition
- Convolutional operations are at the basis of convolutional neural networks.

Image filtering: Convolution operator Important Filter: Sobel operator

Image Credit: http://what-when-how.com/introduction-to-video-and-image-processing/neighborhood-processing-introduction-to-video-and-image-processing-part-1/

k(x,y) =

Other filters

1	0	-1
2	0	-2
1	0	-1

Sobel

Vertical Edge (absolute value)

Slide by James Hays

Other filters

1	2	1	
0	0	0	
-1	-2	-1	

Sobel

Horizontal Edge (absolute value)

Slide by James Hays

Sobel operators are equivalent to 2D partial derivatives of the image

- Vertical sobel operator Partial derivative in X (width)
- Horizontal sobel operator Partial derivative in Y (height)
- Can compute magnitude and phase at each location.
- Useful for detecting edges

https://en.wikipedia.org/wiki/Sobel_operator

Sobel filters are (approximate) partial derivatives of the image

Let f(x, y) be your input image, then the partial derivative is:

$$\frac{\partial f(x,y)}{\partial x} = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$$

Also:
$$\frac{\partial f(x,y)}{\partial x} = \lim_{h \to 0} \frac{f(x+h,y) - f(x-h,y)}{2h}$$
But digital images are not continuous, they are discrete

Let f[x, y] be your input image, then the partial derivative is:

$$\Delta_x f[x, y] = f[x + 1, y] - f[x, y]$$

Also:
$$\Delta_x f[x, y] = f[x + 1, y] - f[x - 1, y]$$

But digital images are not continuous, they are discrete

Let f[x, y] be your input image, then the partial derivative is:

$$\Delta_x f[x, y] = f[x + 1, y] - f[x, y] \qquad k(x, y) = -1 \qquad 1$$

Also:
$$\Delta_x f[x, y] = f[x + 1, y] - f[x - 1, y]$$
 k(x, y) = -1 0 1

Sobel Operators Smooth in Y and then Differentiate in X

Similarly to differentiate in Y

Image Features: HoG

Input image

Histogram of Oriented Gradients

Paper by Navneet Dalal & Bill Triggs presented at CVPR 2005 for detecting people.

Scikit-image implementation

Image Features: HoG

+ Block Normalization

Paper by Navneet Dalal & Bill Triggs presented at CVPR 2005 for detecting people. Figure from Zhuolin Jiang, Zhe Lin, Larry S. Davis, ICCV 2009 for human action recognition.

Image Features: GIST

The "gist" of a scene: Oliva & Torralba, 2001

Image Features: GIST

Oriented edge response at multiple scales (5 spatial scales, 6 edge orientations)

Hays and Efros, SIG 2007

Image Features: GIST

Aggregated edge responses over 4x4 windows

Hays and Efros, SIG 2007

Convolutional Layer (with 4 filters)

if zero padding, and stride = 1

Convolutional Layer (with 4 filters)

if zero padding, but stride = 2

Convolutional Layer in pytorch

class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True) [source]

Convolutional Network: LeNet

LeNet in Pytorch

```
# LeNet is French for The Network, and is taken from Yann Lecun's 98 paper
# on digit classification http://yann.lecun.com/exdb/lenet/
# This was also a network with just two convolutional layers.
class LeNet(nn.Module):
   def init (self):
        super(LeNet, self). init ()
        # Convolutional layers.
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.conv2 = nn.Conv2d(6, 16, 5)
       # Linear layers.
        self.fc1 = nn.Linear(16*5*5, 120)
       self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)
   def forward(self, x):
       out = F.relu(self.conv1(x))
       out = F.max pool2d(out, 2)
       out = F.relu(self.conv2(out))
       out = F.max pool2d(out, 2)
        # This flattens the output of the previous layer into a vector.
       out = out.view(out.size(0), -1)
       out = F.relu(self.fc1(out))
       out = F.relu(self.fc2(out))
       out = self.fc3(out)
        return out
```


LeNet Summary

- 2 Convolutional Layers + 3 Linear Layers
- + Non-linear functions: ReLUs or Sigmoids
 + Max-pooling operations

New Architectures Proposed

- Alexnet (Kriszhevsky et al NIPS 2012) [Required Reading]
- VGG (Simonyan and Zisserman 2014)
- GoogLeNet (Szegedy et al CVPR 2015)
- ResNet (He et al CVPR 2016)
- DenseNet (Huang et al CVPR 2017)

Convolutional Layers as Matrix Multiplication

https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/

Convolutional Layers as Matrix Multiplication

Input Image

https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/

Convolutional Layers as Matrix Multiplication

https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/

CNN Computations are Computationally Expensive

- However highly parallelizable
- GPU Computing is used in practice
- CPU Computing in fact is prohibitive for training these models

The Alexnet network (Krizhevsky et al NIPS 2012)

ImageNet Classification with Deep Convolutional Neural Networks

Alex Krizhevsky

University of Toronto kriz@cs.utoronto.ca Ilya Sutskever University of Toronto ilya@cs.utoronto.ca **Geoffrey E. Hinton**

University of Toronto hinton@cs.utoronto.ca

The Problem: Classification

Classify an image into 1000 possible classes: e.g. Abyssinian cat, Bulldog, French Terrier, Cormorant, Chickadee, red fox, banjo, barbell, hourglass, knot, maze, viaduct, etc.

cat, tabby cat (0.71) Egyptian cat (0.22) red fox (0.11)

••••

The Data: ILSVRC

Imagenet Large Scale Visual Recognition Challenge (ILSVRC): Annual Competition

1000 Categories

~1000 training images per Category

~1 million images in total for training

~50k images for validation

Only images released for the test set but no annotations, evaluation is performed centrally by the organizers (max 2 per week)

The Evaluation Metric: Top K-error

True label: Abyssinian cat

Top-1 error: 1.0	Top-1 accuracy: 0.0
Top-2 error: 1.0	Top-2 accuracy: 0.0
Top-3 error: 1.0	Top-3 accuracy: 0.0
Top-4 error: 0.0	Top-4 accuracy: 1.0
Top-5 error: 0.0	Top-5 accuracy: 1.0

cat, tabby cat (0.61) Egyptian cat (0.22) red fox (0.11) Abyssinian cat (0.10) French terrier (0.03)

....

Top-5 error on this competition (2012)

Alexnet

https://www.saagie.com/fr/blog/object-detection-part1

Pytorch Code for Alexnet

• In-class analysis

https://github.com/pytorch/vision/blob/master/torchvision/models/alexnet.py

Dropout Layer

(a) Standard Neural Net

(b) After applying dropout.

Srivastava et al 2014

What is happening?

https://www.saagie.com/fr/blog/object-detection-part1

SIFT + FV + SVM (or softmax)

Deep Learning

٠

Convolutional Network (includes both feature extraction and classifier)

Preprocessing and Data Augmentation

Preprocessing and Data Augmentation

Preprocessing and Data Augmentation

224x224

Preprocessing and Data Augmentation

224x224

True label: Abyssinian cat

Other Important Aspects

- Using ReLUs instead of Sigmoid or Tanh
- Momentum + Weight Decay
- Dropout (Randomly sets Unit outputs to zero during training)
- GPU Computation!

Model	Top-1	Top-5
Sparse coding [2]	47.1%	28.2%
SIFT + FVs [24]	45.7%	25.7%
CNN	37.5%	17.0%