
Deep Learning for Vision & 
Language

Computer Vision I: Convolutional Neural Networks



About the class

• COMP 646: Deep Learning for Vision and Language

• Instructor: Vicente Ordóñez (Vicente Ordóñez Román)

• Website: https://www.cs.rice.edu/~vo9/deep-vislang

• Location: Herzstein Hall 210

• Times: Tuesdays and Thursdays
from 4pm to 5:15pm

• Office Hours: Tuesdays 10am to 11am (DH3098)

• Teaching Assistants: Arnold, Jefferson, Sangwon, Gaotian

• Discussion Forum: Piazza (Sign-up Link on Rice Canvas and 
Class Website)
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https://www.cs.rice.edu/~vo9/deep-vislang/


Teaching Assistants (TAs)

Jefferson
Hernandez

Arnold KazadiSangwon Seo Gaotian Wang

Mondays 2:30pm
DH 3036

Thursdays 11am
DH 3036

Wednesdays 10am
DH 3002

Wednesdays 3pm
DH 3036



Assignment 1
• Due next Monday at midnight (No extension for any reason but 

especially not due to errors/outages in Google Colab) 
– Please submit early.
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Forward pass (Forward-propagation)
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How to train the parameters?
[1    0    0]𝑦! =𝑥! = [𝑥!" 𝑥!# 𝑥!$ 𝑥!%] &𝑦! = [𝑓& 𝑓' 𝑓(]

𝑎! = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[!]𝑥' + 𝑏[!]' )

𝑓 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤[(]𝑎()!' + 𝑏[(]' )

𝑎" = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤["]𝑎!' + 𝑏["]' )

…

𝑎* = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[*]𝑎*)!' + 𝑏[+]' )

…

𝜕𝑙
𝜕𝑤[*]+,

𝜕𝑙
𝜕𝑏 * +

We need!

We can still use SGD
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𝑎+ = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[*]𝑎*)!' + 𝑏[*]' )
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Backward pass (Back-propagation)
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Softmax
+ Negative

Log
Likelihood
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𝜕𝑎+

= #𝑦+ − 𝑦+



Linear
layer



ReLU
layer



Two-layer Neural Network – Forward Pass



Two-layer Neural Network – Backward Pass



Automatic Differentiation

You only need to write code for the forward pass,
backward pass is computed automatically.

Pytorch (Facebook -- mostly):

Tensorflow (Google -- mostly):

MXNet (Amazon -- mostly): 

https://pytorch.org/

https://www.tensorflow.org/

https://mxnet.apache.org/versions/1.9.0/



Defining a Model in Pytorch (Two Layer NN)



1. Creating Model, Loss, Optimizer



2. Running forward and backward on a batch



Today: Computer Vision
• Why is it hard? 
• Image Processing 
• The Convolutional Operator: Filtering
• Convolutional Neural Networks
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Computer Vision

Birdsnap

Face Detection in 
Cameras



Human Vision / Human Brain

Machine Learning

Computer Vision

Robotics

Optics / 
Cameras

Geometry

Deep Learning



Who is using 
Computer 
Vision?

• Facebook – Oculus VR, Image Search, Image tagging, Content 
filtering, Instagram, etc.

• Google/Alphabet – Waymo, DeepMind, Image Search, Google 
Earth/Maps, Street View, Google Photos, etc.

• Adobe – Photoshop, Premiere, Lightroom, etc.
• Snap Inc – Snapchat, Smart Goggles, Filters, Face Detection, 

Style Transfer, etc.

• eBay Inc – Product Search, Product Matching, Content 
Filtering, Duplicate Removal, etc.

• Amazon – Warehouse robotics, Smart Stores, Product Search.
• IBM – Image Retrieval, Medical Applications, Product Quality.

• Microsoft – Hololens, Optical Character Recognition (OCR), 
Face Detection, Cloud Services.

• Apple – Face Verification, Enhanced cameras and chips for 
image processing.
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https://bristles.ai/

https://bristles.ai/
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https://bristles.ai/

https://bristles.ai/


26https://www.mercuryalert.ai/

https://www.mercuryalert.ai/


Phiar.ai (now part of Google)
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Images
• Can be viewed as a matrix with pixel values
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Images
• Or as a function in a 2D domain
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z = 𝑓(𝑥, 𝑦)



Color Images
• Can be viewed as tensors (3-dimensional arrays)
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Channels are usually RGB: Red, Green, and Blue

Other color spaces: HSV, HSL, LUV, XYZ, Lab, CMYK, etc

sizeof(T) = 3 x height x width

T =



Why is it hard?
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This is just as hard for computers

32



Why is Computer Vision hard?
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Ambiguities due to 
viewpoints



Why is Computer Vision hard?

34

Ambiguities due to 
viewpoints



Why is Computer Vision hard?
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Issues with 
Illumination



Why is Computer Vision hard?
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Background
clutter



Why is Computer Vision hard?
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Intra-class
variation



Computer Vision vs Image Processing
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• Computer Vision:        Image                 Knowledge

deer
cat



Computer Vision vs Image Processing
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• Image Processing:        Image                 Image



Basic Image Processing
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𝐼 𝛼𝐼

𝛼 > 1

Primer on Image Processing: https://bit.ly/3lGEdwv

https://bit.ly/3lGEdwv


Common tasks in Computer Vision
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deer
cat
trees
grass

Image tagging



Common tasks in Computer Vision
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deer
cat

Object detection



Common tasks in Computer Vision
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deer
cat
trees
grass

Semantic segmentation



This class -> Vision and Language Tasks!
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Reasoning about Language!

a cat is chasing a 
young deer



Most important operation for Computer Vision
• The Convolution Operation
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http://www.cs.virginia.edu/~vicente/recognition/animation.gif

http://www.cs.virginia.edu/~vicente/recognition/animation.gif


Most important operation for Computer Vision
• The Convolution Operation
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Convolutional filter
Convolutional kernel

Filter
Kernel



Most important operation for Computer Vision
• The Convolution Operation

47
𝑔 𝑥, 𝑦 =5
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𝑘 𝑢, 𝑣 𝑓(𝑥 − 𝑢, 𝑦 − 𝑣)

𝑓(𝑥, 𝑦) g(𝑥, 𝑦)
𝑘(𝑥, 𝑦)



Image filtering: Convolution operator
e.g. mean filter

Image Credit: http://what-when-how.com/introduction-to-video-and-image-processing/neighborhood-processing-introduction-to-video-and-image-processing-part-1/

𝑘(𝑥, 𝑦)

𝑘(𝑥, 𝑦) =  

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9



Image filtering: Convolution operator
e.g. mean filter

Image Credit: http://what-when-how.com/introduction-to-video-and-image-processing/neighborhood-processing-introduction-to-video-and-image-processing-part-1/

𝑘(𝑥, 𝑦)

𝑘(𝑥, 𝑦) =  

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9
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Slide credit: David Lowe (UBC)

],[g ××

Example: box filter
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What does it do?
• Replaces each pixel with 

an average of its 
neighborhood

• Achieve smoothing effect 
(remove sharp features)

111

111

111

Slide credit: David Lowe (UBC)

],[g ××

Box Filter



Image filtering: e.g. Mean Filter



Image filtering: Convolution operator
Important filter: gaussian filter (gaussian blur)

Image Credit: http://what-when-how.com/introduction-to-video-and-image-processing/neighborhood-processing-introduction-to-video-and-image-processing-part-1/

𝑘(𝑥, 𝑦)

𝑘(𝑥, 𝑦) =  

1/16 1/8 1/16

1/8 1/4 1/8

1/16 1/8 1/16



• Weight contributions of neighboring pixels by nearness

0.003   0.013   0.022   0.013   0.003
0.013   0.059   0.097   0.059   0.013
0.022   0.097   0.159   0.097   0.022
0.013   0.059   0.097   0.059   0.013
0.003   0.013   0.022   0.013   0.003

5 x 5, s = 1

Slide credit: Christopher Rasmussen

Important filter: Gaussian



Image filtering: Convolution operator
e.g. gaussian filter (gaussian blur)

Image Credit: http://what-when-how.com/introduction-to-video-and-image-processing/neighborhood-processing-introduction-to-video-and-image-processing-part-1/



Practical matters
• What about near the edge?

• the filter window falls off the edge of the image
• need to extrapolate
• methods:

• clip filter (black)
• wrap around
• copy edge
• reflect across edge

Source: S. Marschner



Convolution: Useful Operator for Image Processing

• Not all image filtering – region neighborhood operators can be 
expressed as convolutions.

• They also can be used to extract information about edges and shapes 
.e.g. for image recognition

• Convolutional operations are at the basis of convolutional neural 
networks.
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Image filtering: Convolution operator
Important Filter: Sobel operator

Image Credit: http://what-when-how.com/introduction-to-video-and-image-processing/neighborhood-processing-introduction-to-video-and-image-processing-part-1/

𝑘(𝑥, 𝑦)

𝑘(𝑥, 𝑦) =  

1 0 -1

2 0 -2

1 0 -1



Other filters

-101

-202

-101

Vertical Edge
(absolute value)

Sobel

Slide by James Hays



Other filters

-1-2-1

000

121

Horizontal Edge
(absolute value)

Sobel

Slide by James Hays



Sobel operators are equivalent to 2D partial 
derivatives of the image
• Vertical sobel operator – Partial derivative in X (width)
• Horizontal sobel operator – Partial derivative in Y (height)

• Can compute magnitude and phase at each location.

• Useful for detecting edges



https://en.wikipedia.org/wiki/Sobel_operator



Sobel filters are (approximate) partial derivatives 
of the image

𝜕𝑓(𝑥, 𝑦)
𝜕𝑥

= lim
=→?

𝑓 𝑥 + ℎ, 𝑦 − 𝑓(𝑥, 𝑦)
ℎ

𝑓(𝑥, 𝑦) be your input image, then the partial derivative is:Let

𝜕𝑓(𝑥, 𝑦)
𝜕𝑥

= lim
=→?

𝑓 𝑥 + ℎ, 𝑦 − 𝑓(𝑥 − ℎ, 𝑦)
2ℎ

Also:



But digital images are not continuous, they are 
discrete

Δ@𝑓[𝑥, 𝑦] = 𝑓[𝑥 + 1, 𝑦] − 𝑓[𝑥, 𝑦]

𝑓[𝑥, 𝑦] be your input image, then the partial derivative is:Let

Δ@𝑓[𝑥, 𝑦] = 𝑓[𝑥 + 1, 𝑦] − 𝑓[𝑥 − 1, 𝑦]Also:



But digital images are not continuous, they are 
discrete

Δ@𝑓[𝑥, 𝑦] = 𝑓[𝑥 + 1, 𝑦] − 𝑓[𝑥, 𝑦]

𝑓[𝑥, 𝑦] be your input image, then the partial derivative is:Let

Δ@𝑓[𝑥, 𝑦] = 𝑓[𝑥 + 1, 𝑦] − 𝑓[𝑥 − 1, 𝑦]Also:

-1 1

-1 0 1

k(x, y) =

k(x, y) =



Sobel Operators Smooth in Y and then 
Differentiate in X

1 0 -1k(x, y) =

1

2

1

* =

1 0 -1

2 0 -2

1 0 -1

Similarly to differentiate in Y



Image Features: HoG

Scikit-image implementation

Paper by Navneet Dalal & Bill Triggs presented at CVPR 2005 for detecting people. 



Image Features: HoG

Paper by Navneet Dalal & Bill Triggs presented at CVPR 2005 for detecting people.
Figure from Zhuolin Jiang, Zhe Lin, Larry S. Davis, ICCV 2009 for human action recognition.

+ Block Normalization



Image Features: GIST

The “gist” of a scene: Oliva & Torralba, 2001



Image Features: GIST

Oriented edge response at multiple scales (5 spatial scales, 6 
edge orientations) Hays and Efros, SIGGRAPH 

2007



Image Features: GIST

Aggregated edge responses over 4x4 windows
Hays and Efros, SIGGRAPH 
2007



The 2D Convolutional Layer in a Neural Network



The 2D Convolutional Layer in a Neural Network



Weights

The 2D Convolutional Layer in a Neural Network
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Weights

The 2D Convolutional Layer in a Neural Network



4 1

Weights

The 2D Convolutional Layer in a Neural Network



Convolutional Layer (with 4 filters)

Input: 1x224x224 Output: 4x224x224

if zero padding,
and stride = 1

weights:
4x1x9x9



Convolutional Layer (with 4 filters)

Input: 1x224x224 Output: 4x112x112

if zero padding,
but stride = 2

weights:
4x1x9x9



Convolutional Layer in pytorch



Convolutional Network: LeNet

Yann LeCun



LeNet in Pytorch



SpatialMaxPooling Layer

take the max in this neighborhood

8
8

8

8 8



LeNet Summary
• 2 Convolutional Layers + 3 Linear Layers

• + Non-linear functions: ReLUs or Sigmoids
+ Max-pooling operations



New Architectures Proposed
• Alexnet (Kriszhevsky et al NIPS 2012) [Required Reading]

• VGG (Simonyan and Zisserman 2014)

• GoogLeNet (Szegedy et al CVPR 2015)

• ResNet (He et al CVPR 2016)

• DenseNet (Huang et al CVPR 2017)



Convolutional Layers as Matrix Multiplication

https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/



Convolutional Layers as Matrix Multiplication

https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/



Convolutional Layers as Matrix Multiplication

https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/

Pros?
Cons?



CNN Computations are Computationally Expensive
• However highly parallelizable
• GPU Computing is used in practice
• CPU Computing in fact is prohibitive for training these models



The Alexnet network (Krizhevsky et al NIPS 2012)



The Problem: Classification
Classify an image into 1000 possible classes:

e.g. Abyssinian cat, Bulldog, French Terrier, Cormorant, Chickadee, 
red fox, banjo, barbell, hourglass, knot, maze, viaduct, etc.

cat, tabby cat  (0.71)
Egyptian cat (0.22)
red fox (0.11)
…..



The Data: ILSVRC
Imagenet Large Scale Visual Recognition Challenge (ILSVRC): Annual Competition

1000 Categories

~1000 training images per Category

~1 million images in total for training

~50k images for validation

Only images released for the test set but no annotations, 
evaluation is performed centrally by the organizers (max 2 per week)



The Evaluation Metric: Top K-error

cat, tabby cat  (0.61)
Egyptian cat (0.22)
red fox (0.11)
Abyssinian cat (0.10)
French terrier (0.03)
…..

True label: Abyssinian cat

Top-1 error: 1.0 Top-1 accuracy: 0.0

Top-2 error: 1.0 Top-2 accuracy: 0.0

Top-3 error: 1.0 Top-3 accuracy: 0.0

Top-4 error: 0.0 Top-4 accuracy: 1.0

Top-5 error: 0.0 Top-5 accuracy: 1.0



Top-5 error on this competition (2012)



Alexnet

https://www.saagie.com/fr/blog/object-detection-part1



Pytorch Code for Alexnet

• In-class analysis

https://github.com/pytorch/vision/blob/master/torchvision/models/alexnet.py

https://github.com/pytorch/vision/blob/master/torchvision/models/alexnet.py


Dropout Layer

Srivastava et al 2014



What is happening?

https://www.saagie.com/fr/blog/object-detection-part1



Feature 
extraction 

(SIFT)

Feature 
encoding

(Bag of words)

Classification
(SVM or softmax)

SIFT + FV + SVM (or softmax)

Convolutional Network
(includes both feature extraction and classifier)

Deep Learning



Preprocessing and Data Augmentation



Preprocessing and Data Augmentation

256

256



Preprocessing and Data Augmentation

224x224



Preprocessing and Data Augmentation

224x224



True label: Abyssinian cat



•Using ReLUs instead of Sigmoid or Tanh
•Momentum + Weight Decay
•Dropout (Randomly sets Unit outputs to zero during training) 
•GPU Computation!

Other Important Aspects


