
Deep Learning for Vision &
Language

Computer Vision I: Convolutional Neural Networks

About the class

• COMP 646: Deep Learning for Vision and Language

• Instructor: Vicente Ordóñez (Vicente Ordóñez Román)

• Website: https://www.cs.rice.edu/~vo9/deep-vislang

• Location: Herzstein Hall 210

• Times: Tuesdays and Thursdays
from 4pm to 5:15pm

• Office Hours: Tuesdays 10am to 11am (DH3098)

• Teaching Assistants: Arnold, Jefferson, Sangwon, Gaotian

• Discussion Forum: Piazza (Sign-up Link on Rice Canvas and
Class Website)

1

https://www.cs.rice.edu/~vo9/deep-vislang/

Teaching Assistants (TAs)

Jefferson
Hernandez

Arnold KazadiSangwon Seo Gaotian Wang

Mondays 2:30pm
DH 3036

Thursdays 11am
DH 3036

Wednesdays 10am
DH 3002

Wednesdays 3pm
DH 3036

Assignment 1
• Due next Monday at midnight (No extension for any reason but

especially not due to errors/outages in Google Colab)
– Please submit early.

3

Forward pass (Forward-propagation)

𝑎!

𝑎"

𝑎#

𝑎$

!

𝑥!

𝑥"

𝑥#

𝑥$

!

!

!

!

#𝑦" 𝑦!

! #𝑦!

Forward pass (Forward-propagation)

𝑎!

𝑎"

𝑎#

𝑎$

!

𝑥!

𝑥"

𝑥#

𝑥$

!

!

!

!

#𝑦! 𝑦!

𝑧! =#
!"#

$
𝑤%!&𝑥! + 𝑏%

𝑎! = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑧!)

𝑝% =#
!"#

$
𝑤'!𝑎! + 𝑏'

𝑦% = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑝!)

𝐿𝑜𝑠𝑠 = 𝐿(𝑦%, 6𝑦%)

6

How to train the parameters?
[1 0 0]𝑦! =𝑥! = [𝑥!" 𝑥!# 𝑥!$ 𝑥!%] &𝑦! = [𝑓& 𝑓' 𝑓(]

𝑎! = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[!]𝑥' + 𝑏[!]')

𝑓 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤[(]𝑎()!' + 𝑏[(]')

𝑎" = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤["]𝑎!' + 𝑏["]')

…

𝑎* = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[*]𝑎*)!' + 𝑏[+]')

…

𝜕𝑙
𝜕𝑤[*]+,

𝜕𝑙
𝜕𝑏 * +

We need!

We can still use SGD

7

How to train the parameters?
[1 0 0]𝑦! =𝑥! = [𝑥!" 𝑥!# 𝑥!$ 𝑥!%] &𝑦! = [𝑓& 𝑓' 𝑓(]

𝑎! = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[!]𝑥' + 𝑏[!]')

𝑓 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤[(]𝑎()!' + 𝑏[(]
')

𝑎" = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤["]𝑎!' + 𝑏["]')…

…

𝜕𝑙
𝜕𝑤[*]+,

𝜕𝑙
𝜕𝑏 * +

We need!

We can still use SGD

𝑙 = 𝑙𝑜𝑠𝑠(𝑓, 𝑦)

𝑎+ = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[*]𝑎*)!' + 𝑏[*]')

8

How to train the parameters?
[1 0 0]𝑦! =𝑥! = [𝑥!" 𝑥!# 𝑥!$ 𝑥!%] &𝑦! = [𝑓& 𝑓' 𝑓(]

𝑎! = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[!]𝑥' + 𝑏[!]')

𝑓 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤[(]𝑎()!' + 𝑏[(]
')

𝑎" = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤["]𝑎!' + 𝑏["]')…

…

𝜕𝑙
𝜕𝑤[*]+,

𝜕𝑙
𝜕𝑏 * +

We need!

We can still use SGD

𝑙 = 𝑙𝑜𝑠𝑠(𝑓, 𝑦)

𝑎+ = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[*]𝑎*)!' + 𝑏[*]')

9

How to train the parameters?
[1 0 0]𝑦! =𝑥! = [𝑥!" 𝑥!# 𝑥!$ 𝑥!%] &𝑦! = [𝑓& 𝑓' 𝑓(]

𝑎! = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[!]𝑥' + 𝑏[!]')

𝑓 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤[(]𝑎()!' + 𝑏[(]
')

𝑎" = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤["]𝑎!' + 𝑏["]')…

𝑎+ = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[*]𝑎*)!' + 𝑏[*]')

…

𝜕𝑙
𝜕𝑤[*]+,

=
𝜕𝑙

𝜕𝑎()!
𝜕𝑎()!
𝜕𝑎()"

…
𝜕𝑎*)"
𝜕𝑎*)!

𝜕𝑎*)!
𝜕𝑤 * +,

𝑙 = 𝑙𝑜𝑠𝑠(𝑓, 𝑦)

Backward pass (Back-propagation)

𝑎!

𝑎"

𝑎#

𝑎$

!

𝑥!

𝑥"

𝑥#

𝑥$

!

!

!

!

#𝑦! 𝑦!

𝜕𝐿
𝜕𝑧!

=
𝜕
𝜕𝑧!

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑧!)
𝜕𝐿
𝜕𝑎(

)*
)+!

=)
)+!

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑝!)
)*
) ,-!

)*
) ,-!

=)
) ,-!

𝐿(𝑦%, 6𝑦%)

𝜕𝐿
𝜕𝑥(

= (
𝜕
𝜕𝑥(

#
!"#

$
𝑤%!&𝑥! + 𝑏%)

𝜕𝐿
𝜕𝑧!

𝜕𝐿
𝜕𝑤%!&

=
𝜕𝑧!
𝜕𝑤%!&

𝜕𝐿
𝜕𝑧!

𝜕𝐿
𝜕𝑎(

= (
𝜕
𝜕𝑎(

#
!"#

$
𝑤'!𝑎! + 𝑏')

𝜕𝐿
𝜕𝑝%

𝜕𝐿
𝜕𝑤'!

=
𝜕𝑝%
𝜕𝑤'!

𝜕𝐿
𝜕𝑝%

Softmax
+ Negative

Log
Likelihood

𝜕ℓ
𝜕𝑎+

= #𝑦+ − 𝑦+

Linear
layer

ReLU
layer

Two-layer Neural Network – Forward Pass

Two-layer Neural Network – Backward Pass

Automatic Differentiation

You only need to write code for the forward pass,
backward pass is computed automatically.

Pytorch (Facebook -- mostly):

Tensorflow (Google -- mostly):

MXNet (Amazon -- mostly):

https://pytorch.org/

https://www.tensorflow.org/

https://mxnet.apache.org/versions/1.9.0/

Defining a Model in Pytorch (Two Layer NN)

1. Creating Model, Loss, Optimizer

2. Running forward and backward on a batch

Today: Computer Vision
• Why is it hard?
• Image Processing
• The Convolutional Operator: Filtering
• Convolutional Neural Networks

20

Computer Vision

Birdsnap

Face Detection in
Cameras

Human Vision / Human Brain

Machine Learning

Computer Vision

Robotics

Optics /
Cameras

Geometry

Deep Learning

Who is using
Computer
Vision?

• Facebook – Oculus VR, Image Search, Image tagging, Content
filtering, Instagram, etc.

• Google/Alphabet – Waymo, DeepMind, Image Search, Google
Earth/Maps, Street View, Google Photos, etc.

• Adobe – Photoshop, Premiere, Lightroom, etc.
• Snap Inc – Snapchat, Smart Goggles, Filters, Face Detection,

Style Transfer, etc.

• eBay Inc – Product Search, Product Matching, Content
Filtering, Duplicate Removal, etc.

• Amazon – Warehouse robotics, Smart Stores, Product Search.
• IBM – Image Retrieval, Medical Applications, Product Quality.

• Microsoft – Hololens, Optical Character Recognition (OCR),
Face Detection, Cloud Services.

• Apple – Face Verification, Enhanced cameras and chips for
image processing.

23

24
https://bristles.ai/

https://bristles.ai/

25
https://bristles.ai/

https://bristles.ai/

26https://www.mercuryalert.ai/

https://www.mercuryalert.ai/

Phiar.ai (now part of Google)
27

Images
• Can be viewed as a matrix with pixel values

28

Images
• Or as a function in a 2D domain

29

z = 𝑓(𝑥, 𝑦)

Color Images
• Can be viewed as tensors (3-dimensional arrays)

30

Channels are usually RGB: Red, Green, and Blue

Other color spaces: HSV, HSL, LUV, XYZ, Lab, CMYK, etc

sizeof(T) = 3 x height x width

T =

Why is it hard?

31

This is just as hard for computers

32

Why is Computer Vision hard?

33

Ambiguities due to
viewpoints

Why is Computer Vision hard?

34

Ambiguities due to
viewpoints

Why is Computer Vision hard?

35

Issues with
Illumination

Why is Computer Vision hard?

36

Background
clutter

Why is Computer Vision hard?

37

Intra-class
variation

Computer Vision vs Image Processing

38

• Computer Vision: Image Knowledge

deer
cat

Computer Vision vs Image Processing

39

• Image Processing: Image Image

Basic Image Processing

40

𝐼 𝛼𝐼

𝛼 > 1

Primer on Image Processing: https://bit.ly/3lGEdwv

https://bit.ly/3lGEdwv

Common tasks in Computer Vision

41

deer
cat
trees
grass

Image tagging

Common tasks in Computer Vision

42

deer
cat

Object detection

Common tasks in Computer Vision

43

deer
cat
trees
grass

Semantic segmentation

This class -> Vision and Language Tasks!

44

Reasoning about Language!

a cat is chasing a
young deer

Most important operation for Computer Vision
• The Convolution Operation

45

http://www.cs.virginia.edu/~vicente/recognition/animation.gif

http://www.cs.virginia.edu/~vicente/recognition/animation.gif

Most important operation for Computer Vision
• The Convolution Operation

46

Convolutional filter
Convolutional kernel

Filter
Kernel

Most important operation for Computer Vision
• The Convolution Operation

47
𝑔 𝑥, 𝑦 =5

!

5
"

𝑘 𝑢, 𝑣 𝑓(𝑥 − 𝑢, 𝑦 − 𝑣)

𝑓(𝑥, 𝑦) g(𝑥, 𝑦)
𝑘(𝑥, 𝑦)

Image filtering: Convolution operator
e.g. mean filter

Image Credit: http://what-when-how.com/introduction-to-video-and-image-processing/neighborhood-processing-introduction-to-video-and-image-processing-part-1/

𝑘(𝑥, 𝑦)

𝑘(𝑥, 𝑦) =

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

Image filtering: Convolution operator
e.g. mean filter

Image Credit: http://what-when-how.com/introduction-to-video-and-image-processing/neighborhood-processing-introduction-to-video-and-image-processing-part-1/

𝑘(𝑥, 𝑦)

𝑘(𝑥, 𝑦) =

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

111

111

111

Slide credit: David Lowe (UBC)

],[g ××

Example: box filter

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Credit: S. Seitz

],[],[],[
,

lnkmflkgnmh
lk

++=å

[.,.]h[.,.]f

Image filtering
111

111

111

],[g ××

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

Image filtering
111

111

111

],[g ××

Credit: S. Seitz

],[],[],[
,

lnkmflkgnmh
lk

++=å

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

Image filtering
111

111

111

],[g ××

Credit: S. Seitz

],[],[],[
,

lnkmflkgnmh
lk

++=å

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

Image filtering
111

111

111

],[g ××

Credit: S. Seitz

],[],[],[
,

lnkmflkgnmh
lk

++=å

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

Image filtering
111

111

111

],[g ××

Credit: S. Seitz

],[],[],[
,

lnkmflkgnmh
lk

++=å

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

Image filtering
111

111

111

],[g ××

Credit: S. Seitz

?

],[],[],[
,

lnkmflkgnmh
lk

++=å

0 10 20 30 30

50

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

Image filtering
111

111

111

],[g ××

Credit: S. Seitz

?

],[],[],[
,

lnkmflkgnmh
lk

++=å

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

[.,.]h[.,.]f

Image filtering
111
111
111],[g ××

Credit: S. Seitz

],[],[],[
,

lnkmflkgnmh
lk

++=å

What does it do?
• Replaces each pixel with

an average of its
neighborhood

• Achieve smoothing effect
(remove sharp features)

111

111

111

Slide credit: David Lowe (UBC)

],[g ××

Box Filter

Image filtering: e.g. Mean Filter

Image filtering: Convolution operator
Important filter: gaussian filter (gaussian blur)

Image Credit: http://what-when-how.com/introduction-to-video-and-image-processing/neighborhood-processing-introduction-to-video-and-image-processing-part-1/

𝑘(𝑥, 𝑦)

𝑘(𝑥, 𝑦) =

1/16 1/8 1/16

1/8 1/4 1/8

1/16 1/8 1/16

• Weight contributions of neighboring pixels by nearness

0.003 0.013 0.022 0.013 0.003
0.013 0.059 0.097 0.059 0.013
0.022 0.097 0.159 0.097 0.022
0.013 0.059 0.097 0.059 0.013
0.003 0.013 0.022 0.013 0.003

5 x 5, s = 1

Slide credit: Christopher Rasmussen

Important filter: Gaussian

Image filtering: Convolution operator
e.g. gaussian filter (gaussian blur)

Image Credit: http://what-when-how.com/introduction-to-video-and-image-processing/neighborhood-processing-introduction-to-video-and-image-processing-part-1/

Practical matters
• What about near the edge?

• the filter window falls off the edge of the image
• need to extrapolate
• methods:

• clip filter (black)
• wrap around
• copy edge
• reflect across edge

Source: S. Marschner

Convolution: Useful Operator for Image Processing

• Not all image filtering – region neighborhood operators can be
expressed as convolutions.

• They also can be used to extract information about edges and shapes
.e.g. for image recognition

• Convolutional operations are at the basis of convolutional neural
networks.

65

Image filtering: Convolution operator
Important Filter: Sobel operator

Image Credit: http://what-when-how.com/introduction-to-video-and-image-processing/neighborhood-processing-introduction-to-video-and-image-processing-part-1/

𝑘(𝑥, 𝑦)

𝑘(𝑥, 𝑦) =

1 0 -1

2 0 -2

1 0 -1

Other filters

-101

-202

-101

Vertical Edge
(absolute value)

Sobel

Slide by James Hays

Other filters

-1-2-1

000

121

Horizontal Edge
(absolute value)

Sobel

Slide by James Hays

Sobel operators are equivalent to 2D partial
derivatives of the image
• Vertical sobel operator – Partial derivative in X (width)
• Horizontal sobel operator – Partial derivative in Y (height)

• Can compute magnitude and phase at each location.

• Useful for detecting edges

https://en.wikipedia.org/wiki/Sobel_operator

Sobel filters are (approximate) partial derivatives
of the image

𝜕𝑓(𝑥, 𝑦)
𝜕𝑥

= lim
=→?

𝑓 𝑥 + ℎ, 𝑦 − 𝑓(𝑥, 𝑦)
ℎ

𝑓(𝑥, 𝑦) be your input image, then the partial derivative is:Let

𝜕𝑓(𝑥, 𝑦)
𝜕𝑥

= lim
=→?

𝑓 𝑥 + ℎ, 𝑦 − 𝑓(𝑥 − ℎ, 𝑦)
2ℎ

Also:

But digital images are not continuous, they are
discrete

Δ@𝑓[𝑥, 𝑦] = 𝑓[𝑥 + 1, 𝑦] − 𝑓[𝑥, 𝑦]

𝑓[𝑥, 𝑦] be your input image, then the partial derivative is:Let

Δ@𝑓[𝑥, 𝑦] = 𝑓[𝑥 + 1, 𝑦] − 𝑓[𝑥 − 1, 𝑦]Also:

But digital images are not continuous, they are
discrete

Δ@𝑓[𝑥, 𝑦] = 𝑓[𝑥 + 1, 𝑦] − 𝑓[𝑥, 𝑦]

𝑓[𝑥, 𝑦] be your input image, then the partial derivative is:Let

Δ@𝑓[𝑥, 𝑦] = 𝑓[𝑥 + 1, 𝑦] − 𝑓[𝑥 − 1, 𝑦]Also:

-1 1

-1 0 1

k(x, y) =

k(x, y) =

Sobel Operators Smooth in Y and then
Differentiate in X

1 0 -1k(x, y) =

1

2

1

* =

1 0 -1

2 0 -2

1 0 -1

Similarly to differentiate in Y

Image Features: HoG

Scikit-image implementation

Paper by Navneet Dalal & Bill Triggs presented at CVPR 2005 for detecting people.

Image Features: HoG

Paper by Navneet Dalal & Bill Triggs presented at CVPR 2005 for detecting people.
Figure from Zhuolin Jiang, Zhe Lin, Larry S. Davis, ICCV 2009 for human action recognition.

+ Block Normalization

Image Features: GIST

The “gist” of a scene: Oliva & Torralba, 2001

Image Features: GIST

Oriented edge response at multiple scales (5 spatial scales, 6
edge orientations) Hays and Efros, SIGGRAPH

2007

Image Features: GIST

Aggregated edge responses over 4x4 windows
Hays and Efros, SIGGRAPH
2007

The 2D Convolutional Layer in a Neural Network

The 2D Convolutional Layer in a Neural Network

Weights

The 2D Convolutional Layer in a Neural Network

4

Weights

The 2D Convolutional Layer in a Neural Network

4 1

Weights

The 2D Convolutional Layer in a Neural Network

Convolutional Layer (with 4 filters)

Input: 1x224x224 Output: 4x224x224

if zero padding,
and stride = 1

weights:
4x1x9x9

Convolutional Layer (with 4 filters)

Input: 1x224x224 Output: 4x112x112

if zero padding,
but stride = 2

weights:
4x1x9x9

Convolutional Layer in pytorch

Convolutional Network: LeNet

Yann LeCun

LeNet in Pytorch

SpatialMaxPooling Layer

take the max in this neighborhood

8
8

8

8 8

LeNet Summary
• 2 Convolutional Layers + 3 Linear Layers

• + Non-linear functions: ReLUs or Sigmoids
+ Max-pooling operations

New Architectures Proposed
• Alexnet (Kriszhevsky et al NIPS 2012) [Required Reading]

• VGG (Simonyan and Zisserman 2014)

• GoogLeNet (Szegedy et al CVPR 2015)

• ResNet (He et al CVPR 2016)

• DenseNet (Huang et al CVPR 2017)

Convolutional Layers as Matrix Multiplication

https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/

Convolutional Layers as Matrix Multiplication

https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/

Convolutional Layers as Matrix Multiplication

https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/

Pros?
Cons?

CNN Computations are Computationally Expensive
• However highly parallelizable
• GPU Computing is used in practice
• CPU Computing in fact is prohibitive for training these models

The Alexnet network (Krizhevsky et al NIPS 2012)

The Problem: Classification
Classify an image into 1000 possible classes:

e.g. Abyssinian cat, Bulldog, French Terrier, Cormorant, Chickadee,
red fox, banjo, barbell, hourglass, knot, maze, viaduct, etc.

cat, tabby cat (0.71)
Egyptian cat (0.22)
red fox (0.11)
…..

The Data: ILSVRC
Imagenet Large Scale Visual Recognition Challenge (ILSVRC): Annual Competition

1000 Categories

~1000 training images per Category

~1 million images in total for training

~50k images for validation

Only images released for the test set but no annotations,
evaluation is performed centrally by the organizers (max 2 per week)

The Evaluation Metric: Top K-error

cat, tabby cat (0.61)
Egyptian cat (0.22)
red fox (0.11)
Abyssinian cat (0.10)
French terrier (0.03)
…..

True label: Abyssinian cat

Top-1 error: 1.0 Top-1 accuracy: 0.0

Top-2 error: 1.0 Top-2 accuracy: 0.0

Top-3 error: 1.0 Top-3 accuracy: 0.0

Top-4 error: 0.0 Top-4 accuracy: 1.0

Top-5 error: 0.0 Top-5 accuracy: 1.0

Top-5 error on this competition (2012)

Alexnet

https://www.saagie.com/fr/blog/object-detection-part1

Pytorch Code for Alexnet

• In-class analysis

https://github.com/pytorch/vision/blob/master/torchvision/models/alexnet.py

https://github.com/pytorch/vision/blob/master/torchvision/models/alexnet.py

Dropout Layer

Srivastava et al 2014

What is happening?

https://www.saagie.com/fr/blog/object-detection-part1

Feature
extraction

(SIFT)

Feature
encoding

(Bag of words)

Classification
(SVM or softmax)

SIFT + FV + SVM (or softmax)

Convolutional Network
(includes both feature extraction and classifier)

Deep Learning

Preprocessing and Data Augmentation

Preprocessing and Data Augmentation

256

256

Preprocessing and Data Augmentation

224x224

Preprocessing and Data Augmentation

224x224

True label: Abyssinian cat

•Using ReLUs instead of Sigmoid or Tanh
•Momentum + Weight Decay
•Dropout (Randomly sets Unit outputs to zero during training)
•GPU Computation!

Other Important Aspects

