
Deep Learning for Vision &
Language

Machine Learning II: SGD, Generalization, Regularization

About the class

• COMP 646: Deep Learning for Vision and Language

• Instructor: Vicente Ordóñez (Vicente Ordóñez Román)

• Website: https://www.cs.rice.edu/~vo9/deep-vislang

• Location: Herzstein Hall 210

• Times: Tuesdays and Thursdays
from 4pm to 5:15pm

• Office Hours: Tuesdays 10am to 11am (DH3098)

• Teaching Assistants: Arnold, Jefferson, Sangwon, Gaotian

• Discussion Forum: Piazza (Sign-up Link on Rice Canvas and
Class Website)

1

https://www.cs.rice.edu/~vo9/deep-vislang/

Teaching Assistants (TAs)

Jefferson
Hernandez

Arnold KazadiSangwon Seo GaotianWang

Mondays 2:30pm
DH 3036

Thursdays 11am
DH 3036

Wednesdays 10am
DH 3002

Wednesdays 3pm
DH 3036

Assignment 1
• Assignment 1 is released and is available on the class website.

3

Grading for this class: COMP 646

4

• Assignments: 30pts (3 assignments: 10pts + 10pts + 10pts)
• Class Project: 60pts
• Quiz: 10pts

Total: 100pts

• Grade cutoffs: no stricter than the following:
A [between 90% and 100%], B [between 80% and 90%),
C [between 70% and 80%), D [between 55% and 70%),
F [less than 55%)

𝑎!

𝑎"

𝑥!

𝑥"

𝑥#

𝑥$

!

!

Neural Network with One Layer

𝑥%

𝑎! = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(∑"𝑤!"𝑥" +𝑏!)

𝑊 = [𝑤&']

𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑧 =
1

1 + 𝑒!"

Gradient Descent

𝐿(𝑤, 𝑏) =-
'3!

4

𝑙(𝑤, 𝑏)
𝜆 = 0.01

for e = 0, num_epochs do

end

Initialize w and b randomly

𝑑𝐿(𝑤, 𝑏)/𝑑𝑤 𝑑𝐿(𝑤, 𝑏)/𝑑𝑏Compute: and

Update w:

Update b:

𝑤 = 𝑤 − 𝜆 𝑑𝐿(𝑤, 𝑏)/𝑑𝑤

𝑏 = 𝑏 − 𝜆 𝑑𝐿(𝑤, 𝑏)/𝑑𝑏

Print: 𝐿(𝑤, 𝑏) // Useful to see if this is becoming smaller or not.

expensive

Stochastic Gradient Descent (mini-batch)
𝜆 = 0.01

for e = 0, num_epochs do

end

Initialize w and b randomly

𝑑𝐿5(𝑤, 𝑏)/𝑑𝑤 𝑑𝐿5(𝑤, 𝑏)/𝑑𝑏Compute: and
Update w:

Update b:

𝑤 = 𝑤 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑤

𝑏 = 𝑏 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏

Print: 𝐿5(𝑤, 𝑏) // Useful to see if this is becoming smaller or not.

𝐿5(𝑤, 𝑏) =-
'3!

5

𝑙(𝑤, 𝑏)

for b = 0, num_batches do

end

Stochastic Gradient Descent

• How to choose the right batch size B?
• How to choose the right learning rate lambda?
• How to choose the right loss function, e.g. is least squares good

enough?
• How to choose the right function/classifier, e.g. linear, quadratic,

neural network with 1 layer, 2 layers, etc?

Training, Validation (Dev), Test Sets

Training Set Validation
Set Testing Set

Training, Validation (Dev), Test Sets

Used during development

Training Set Validation
Set Testing Set

Training, Validation (Dev), Test Sets

Only to be used for evaluating the model at the very end of development and any
changes to the model after running it on the test set, could be influenced by what you
saw happened on the test set, which would invalidate any future evaluation.

Training Set Validation
Set Testing Set

12

Gradient Descent

𝐿 𝑤

𝑤
w=8

2. Compute the gradient
(derivative) of L(w) at point
w = 12. (e.g. dL/dw = 6)

3. Recompute w as:

w = w – lambda * (dL / dw)

Source: Andrew Ng

In this class we will mostly rely on…
• K-nearest neighbors
• Linear classifiers
• Naïve Bayes classifiers
• Decision Trees
• Random Forests
• Boosted Decision Trees
• Neural Networks

14

Why?
• Decisions Trees

15

https://heartbeat.fritz.ai/understanding-the-mathematics-
behind-decision-trees-22d86d55906 by Nikita Sharma

https://heartbeat.fritz.ai/understanding-the-mathematics-behind-decision-trees-22d86d55906
https://heartbeat.fritz.ai/understanding-the-mathematics-behind-decision-trees-22d86d55906

Why?
• Decisions Trees

are great because
they are often
interpretable.
• However, they

usually deal
better with
categorical data –
not input pixel
data.

16

https://heartbeat.fritz.ai/understanding-the-mathematics-
behind-decision-trees-22d86d55906 by Nikita Sharma

https://heartbeat.fritz.ai/understanding-the-mathematics-behind-decision-trees-22d86d55906
https://heartbeat.fritz.ai/understanding-the-mathematics-behind-decision-trees-22d86d55906

How to pick the right model?

17

Linear Regression – 1 output, 1 input

𝑦

𝑥
(𝑥!, 𝑦!)

(𝑥", 𝑦")
(𝑥#, 𝑦#)

(𝑥$, 𝑦$)
(𝑥%, 𝑦%)

(𝑥&, 𝑦&) (𝑥', 𝑦')

(𝑥(, 𝑦()

Linear Regression – 1 output, 1 input

𝑦

𝑥
(𝑥!, 𝑦!)

(𝑥", 𝑦")
(𝑥#, 𝑦#)

(𝑥$, 𝑦$)
(𝑥%, 𝑦%)

(𝑥&, 𝑦&) (𝑥', 𝑦')

(𝑥(, 𝑦()

Model: 7𝑦 = 𝑤𝑥 + 𝑏

Linear Regression – 1 output, 1 input

𝑦

𝑥
(𝑥!, 𝑦!)

(𝑥", 𝑦")
(𝑥#, 𝑦#)

(𝑥$, 𝑦$)
(𝑥%, 𝑦%)

(𝑥&, 𝑦&) (𝑥', 𝑦')

(𝑥(, 𝑦()

Model: 7𝑦 = 𝑤𝑥 + 𝑏

Linear Regression – 1 output, 1 input

𝑦

𝑥
(𝑥!, 𝑦!)

(𝑥", 𝑦")
(𝑥#, 𝑦#)

(𝑥$, 𝑦$)
(𝑥%, 𝑦%)

(𝑥&, 𝑦&) (𝑥', 𝑦')

(𝑥(, 𝑦()

Model: 7𝑦 = 𝑤𝑥 + 𝑏 Loss: 𝐿 𝑤, 𝑏 =-
'3!

'36

7𝑦' − 𝑦' "

Quadratic Regression

𝑦

𝑥
(𝑥!, 𝑦!)

(𝑥", 𝑦")
(𝑥#, 𝑦#)

(𝑥$, 𝑦$)
(𝑥%, 𝑦%)

(𝑥&, 𝑦&) (𝑥', 𝑦')

(𝑥(, 𝑦()

Model: 7𝑦 = 𝑤!𝑥" +𝑤"𝑥 + 𝑏 Loss: 𝐿 𝑤, 𝑏 =-
'3!

'36

7𝑦' − 𝑦' "

n-polynomial Regression

𝑦

𝑥
(𝑥!, 𝑦!)

(𝑥", 𝑦")
(𝑥#, 𝑦#)

(𝑥$, 𝑦$)
(𝑥%, 𝑦%)

(𝑥&, 𝑦&) (𝑥', 𝑦')

(𝑥(, 𝑦()

Model: 7𝑦 = 𝑤4𝑥4 +⋯+𝑤!𝑥 + 𝑏 Loss: 𝐿 𝑤, 𝑏 =-
'3!

'36

7𝑦' − 𝑦' "

Overfitting

𝐿𝑜𝑠𝑠 𝑤 is high 𝐿𝑜𝑠𝑠 𝑤 is low 𝐿𝑜𝑠𝑠 𝑤 is zero!

OverfittingUnderfitting
High Bias High Variance

𝑓 is linear 𝑓 is cubic
𝑓 is a polynomial of

degree 9

Christopher M. Bishop – Pattern Recognition and Machine Learning

25

(mini-batch) Stochastic Gradient Descent (SGD)

𝑙(𝑤, 𝑏) =-
'∈5

𝐶𝑜𝑠𝑡 𝑤, 𝑏
𝜆 = 0.01

for e = 0, num_epochs do

end

Initialize w and b randomly

𝑑𝑙(𝑤, 𝑏)/𝑑𝑤 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏Compute: and
Update w:

Update b:

𝑤 = 𝑤 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑤

𝑏 = 𝑏 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏

Print: 𝑙(𝑤, 𝑏) // Useful to see if this is becoming smaller or not.
end

for b = 0, num_batches do

Regularization

• Large weights lead to large variance. i.e. model fits to the training
data too strongly.

• Solution: Minimize the loss but also try to keep the weight values
small by doing the following:

minimize 𝐿 𝑤, 𝑏 + 𝛼-
'

|𝑤'|"

Regularization

• Large weights lead to large variance. i.e. model fits to the training
data too strongly.

• Solution: Minimize the loss but also try to keep the weight values
small by doing the following:

minimize 𝐿 𝑤, 𝑏 + 𝛼-
'

|𝑤'|" Regularizer term
e.g. L2- regularizer

28

SGD with Regularization (L-2)

𝑙 𝑤, 𝑏 = 𝑙 𝑤, 𝑏 + 𝛼 ∑' |𝑤'|"
𝜆 = 0.01

for e = 0, num_epochs do

end

Initialize w and b randomly

𝑑𝑙(𝑤, 𝑏)/𝑑𝑤 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏Compute: and
Update w:

Update b:

𝑤 = 𝑤 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑤 − 𝜆𝛼𝑤

𝑏 = 𝑏 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏 − 𝜆𝛼𝑤

Print: 𝑙(𝑤, 𝑏) // Useful to see if this is becoming smaller or not.
end

for b = 0, num_batches do

29

Revisiting Another Problem with SGD

𝑙 𝑤, 𝑏 = 𝑙 𝑤, 𝑏 + 𝛼 ∑' |𝑤'|"
𝜆 = 0.01

for e = 0, num_epochs do

end

Initialize w and b randomly

𝑑𝑙(𝑤, 𝑏)/𝑑𝑤 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏Compute: and
Update w:

Update b:

𝑤 = 𝑤 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑤 − 𝜆𝛼𝑤

𝑏 = 𝑏 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏 − 𝜆𝛼𝑤

Print: 𝑙(𝑤, 𝑏) // Useful to see if this is becoming smaller or not.
end

for b = 0, num_batches do These are only
approximations to the
true gradient with
respect to 𝐿(𝑤, 𝑏)

30

Revisiting Another Problem with SGD

𝑙 𝑤, 𝑏 = 𝑙 𝑤, 𝑏 + 𝛼 ∑' |𝑤'|"
𝜆 = 0.01

for e = 0, num_epochs do

end

Initialize w and b randomly

𝑑𝑙(𝑤, 𝑏)/𝑑𝑤 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏Compute: and
Update w:

Update b:

𝑤 = 𝑤 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑤 − 𝜆𝛼𝑤

𝑏 = 𝑏 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏 − 𝜆𝛼𝑤

Print: 𝑙(𝑤, 𝑏) // Useful to see if this is becoming smaller or not.
end

for b = 0, num_batches do This could lead to “un-
learning” what has
been learned in some
previous steps of
training.

31

Solution: Momentum Updates

𝑙 𝑤, 𝑏 = 𝑙 𝑤, 𝑏 + 𝛼 ∑' |𝑤'|"
𝜆 = 0.01

for e = 0, num_epochs do

end

Initialize w and b randomly

𝑑𝑙(𝑤, 𝑏)/𝑑𝑤 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏Compute: and
Update w:

Update b:

𝑤 = 𝑤 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑤 − 𝜆𝛼𝑤

𝑏 = 𝑏 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏 − 𝜆𝛼𝑤

Print: 𝑙(𝑤, 𝑏) // Useful to see if this is becoming smaller or not.
end

for b = 0, num_batches do
Keep track of previous
gradients in an
accumulator variable!
and use a weighted
average with current
gradient.

32

Solution: Momentum Updates

𝑙 𝑤, 𝑏 = 𝑙 𝑤, 𝑏 + 𝛼 ∑' |𝑤'|"
𝜆 = 0.01

for e = 0, num_epochs do

end

Initialize w and b randomly

𝑑𝑙(𝑤, 𝑏)/𝑑𝑤Compute:

Update w: 𝑤 = 𝑤 − 𝜆 𝑣

Print: 𝑙(𝑤, 𝑏) // Useful to see if this is becoming smaller or not.
end

for b = 0, num_batches do Keep track of previous
gradients in an
accumulator variable!
and use a weighted
average with current
gradient.

𝜏 = 0.9

global 𝑣

Compute: 𝑣 = 𝜏𝑣 + 𝑑𝑙(𝑤, 𝑏)/𝑑𝑤 + 𝛼𝑤

https://distill.pub/2017/momentum/

More on Momentum

https://distill.pub/2017/momentum/

34

Supervised Learning - Classification

cat

cat

dog

bear

Training Data Test Data

.

.

.

.

.

.

35

Supervised Learning - Classification

cat

cat

dog

bear

Training Data

𝑦! = []

𝑦" = []

𝑦# = []

𝑦$ = []𝑥$ = []

𝑥# = []

𝑥" = []

𝑥! = []

.

.

.

36

Supervised Learning - Classification
Training Data

1

1

2

3𝑦! =

𝑦" =

𝑦# =

𝑦$ =𝑥$ = [𝑥$$ 𝑥$# 𝑥$" 𝑥$%]

𝑥# = [𝑥#$ 𝑥## 𝑥#" 𝑥#%]

𝑥" = [𝑥"$ 𝑥"# 𝑥"" 𝑥"%]

𝑥! = [𝑥!$ 𝑥!# 𝑥!" 𝑥!%]

.

.

.

!𝑦! = 𝑓(𝑥!; 𝜃)

We need to find a function that
maps x and y for any of them.

How do we ”learn” the parameters
of this function?

We choose ones that makes the
following quantity small:

0
"#$

%

𝐶𝑜𝑠𝑡(3𝑦", 𝑦")

inputs
targets /
labels /
ground truth

1

2

2

1&𝑦! =

&𝑦" =

&𝑦# =

&𝑦$ =

predictions

37

Questions?

