Deep Learning for Vision \& Language
 Machine Learning II: SGD, Generalization, Regularization

:

About the class

- COMP 646: Deep Learning for Vision and Language
- Instructor: Vicente Ordóñez (Vicente Ordóñez Román)
- Website: https://www.cs.rice.edu/~vo9/deep-vislang
- Location: Herzstein Hall 210
- Times: Tuesdays and Thursdays from 4pm to 5:15pm
- Office Hours: Tuesdays 10am to 11am (DH3098)
- Teaching Assistants: Arnold, Jefferson, Sangwon, Gaotian
- Discussion Forum: Piazza (Sign-up Link on Rice Canvas and Class Website)

Teaching Assistants (TAs)

Jefferson

Hernandez
Mondays 2:30pm
DH 3036

Sangwon Seo

Wednesdays 10am DH 3002

Gaotian Wang

Wednesdays 3pm DH 3036

Arnold Kazadi

Thursdays 11am
DH 3036

Assignment 1

- Assignment 1 is released and is available on the class website.

Grading for this class: COMP 646

- Assignments: 30pts (3 assignments: 10pts $+10 p t s+10 p t s)$
- Class Project: 60pts
- Quiz: 10pts

Total: 100pts

- Grade cutoffs: no stricter than the following:

A [between 90% and 100%], B [between 80% and 90%), C [between 70\% and 80\%), D [between 55\% and 70\%), F [less than 55\%)

Neural Network with One Layer

$\operatorname{sigmoid}(z)=\frac{1}{1+e^{-z}}$

$$
a_{j}=\operatorname{sigmoid}\left(\sum_{i} w_{j i} x_{i}+b_{j}\right)
$$

Gradient Descent

$\lambda=0.01$
Initialize w and b randomly

$$
L(w, b)=\sum_{i=1}^{n} l(w, b)
$$

for $\mathrm{e}=0$, num_epochs do
Compute: $\quad d L(w, b) / d w$ and $d L(w, b) / d b$
Update w: $\quad w=w-\lambda d L(w, b) / d w$
Update $\mathrm{b}: \quad b=b-\lambda d L(w, b) / d b$
Print: $L(w, b) \quad / /$ Useful to see if this is becoming smaller or not.
end

Stochastic Gradient Descent (mini-batch)

$\lambda=0.01$
Initialize w and b randomly

$$
L_{B}(w, b)=\sum_{i=1}^{B} l(w, b)
$$

for $\mathrm{e}=0$, num_epochs do
for $b=0$, num_batches do
Compute: $\quad d L_{B}(w, b) / d w$ and $d L_{B}(w, b) / d b$
Update $\mathrm{w}: \quad w=w-\lambda d l(w, b) / d w$
Update b: $\quad b=b-\lambda d l(w, b) / d b$
Print: $L_{B}(w, b)$ // Useful to see if this is becoming smaller or not.
end
end

Stochastic Gradient Descent

- How to choose the right batch size B ?
- How to choose the right learning rate lambda?
- How to choose the right loss function, e.g. is least squares good enough?
- How to choose the right function/classifier, e.g. linear, quadratic, neural network with 1 layer, 2 layers, etc?

Training, Validation (Dev), Test Sets

Training, Validation (Dev), Test Sets

Used during development

Training, Validation (Dev), Test Sets

Training Set

Only to be used for evaluating the model at the very end of development and any changes to the model after running it on the test set, could be influenced by what you saw happened on the test set, which would invalidate any future evaluation.

Gradient Descent

2. Compute the gradient (derivative) of $\mathrm{L}(\mathrm{w})$ at point $w=12 .(e . g . d L / d w=6)$
3. Recompute was:

$$
\mathrm{w}=\mathrm{w}-\mathrm{lambda} *(\mathrm{dL} / \mathrm{dw})
$$

Source: Andrew Ng

In this class we will mostly rely on...

- K-nearest neighbors
- Linear classifiers
- Naïve Bayes classifiers
- Decision Trees
- Random Forests
- Boosted Decision Trees
- Neural Networks

Why?

- Decisions Trees

https://heartbeat.fritz.ai/understanding-the-mathematics-

Why?

- Decisions Trees are great because they are often interpretable.
- However, they usually deal better with categorical data not input pixel data.

How to pick the right model?

Linear Regression - 1 output, 1 input

$$
\begin{aligned}
& y
\end{aligned}
$$

Linear Regression - 1 output, 1 input

Model: $\quad \hat{y}=w x+b$

Linear Regression - 1 output, 1 input

Model: $\quad \hat{y}=w x+b$

Linear Regression - 1 output, 1 input

Quadratic Regression

Model: $\hat{y}=w_{1} x^{2}+w_{2} x+b \quad$ Loss: $\quad L(w, b)=\sum_{i=1}^{i=8}\left(\hat{y}_{i}-y_{i}\right)^{2}$

n-polynomial Regression

$$
\begin{aligned}
& \text { Loss: } \quad L(w, b)=\sum_{i=1}^{i=8}\left(\hat{y}_{i}-y_{i}\right)^{2}
\end{aligned}
$$

Model: $\hat{y}=w_{n} x^{n}+\cdots+w_{1} x+b$

Overfitting

f is linear

Loss (w) is high
Underfitting
High Bias
f is cubic

$\operatorname{Loss}(w)$ is low
f is a polynomial of degree 9

$\operatorname{Loss}(w)$ is zero!
Overfitting
High Variance

(mini-batch) Stochastic Gradient Descent (SGD)

$\lambda=0.01$
Initialize w and b randomly

$$
l(w, b)=\sum_{i \in B} \operatorname{Cost}(w, b)
$$

for $\mathrm{e}=0$, num_epochs do
for $b=0$, num_batches do
Compute: $\quad d l(w, b) / d w$ and $d l(w, b) / d b$
Update $\mathrm{w}: \quad w=w-\lambda d l(w, b) / d w$
Update b: $\quad b=b-\lambda d l(w, b) / d b$
Print: $l(w, b) \quad / /$ Useful to see if this is becoming smaller or not.
end
end

Regularization

- Large weights lead to large variance. i.e. model fits to the training data too strongly.
- Solution: Minimize the loss but also try to keep the weight values small by doing the following:

$$
\text { minimize } \quad L(w, b)+\alpha \sum_{i}\left|w_{i}\right|^{2}
$$

Regularization

- Large weights lead to large variance. i.e. model fits to the training data too strongly.
- Solution: Minimize the loss but also try to keep the weight values small by doing the following:
minimize

Regularizer term
e.g. L2- regularizer

SGD with Regularization (L-2)

$\lambda=0.01$

$$
l(w, b)=l(w, b)+\alpha \sum_{i}\left|w_{i}\right|^{2}
$$

Initialize w and b randomly
for $\mathrm{e}=0$, num_epochs do
for $b=0$, num_batches do
Compute: $\quad d l(w, b) / d w$ and $d l(w, b) / d b$
Update $\mathrm{w}: \quad w=w-\lambda d l(w, b) / d w-\lambda \alpha w$
Update $\mathrm{b}: \quad b=b-\lambda d l(w, b) / d b-\lambda \alpha w$
Print: $l(w, b) \quad / /$ Useful to see if this is becoming smaller or not.
end
end

Revisiting Another Problem with SGD

$$
\lambda=0.01
$$

$$
l(w, b)=l(w, b)+\alpha \sum_{i}\left|w_{i}\right|^{2}
$$

Initialize w and b randomly
for $\mathrm{e}=0$, num_epochs do
for $b=0$, num_batches do

Compute:	$d l(w, b) / d w$	and
Update w	$w l(w, b) / d b$	
	$w=w-\lambda d l(w, b) / d w-\lambda \alpha w$	

Update b: $\quad b=b-\lambda d l(w, b) / d b-\lambda \alpha w$
Print: $\quad l(w, b) \quad / /$ Useful to see if this is becoming smaller or not.
end
end

Revisiting Another Problem with SGD

$\lambda=0.01$

$$
l(w, b)=l(w, b)+\alpha \sum_{i}\left|w_{i}\right|^{2}
$$

Initialize w and b randomly
for $\mathrm{e}=0$, num_epochs do
for $b=0$, num_batches do
Compute: $d l(w, b) / d w$ and $d l(w, b) / d b$
Update w: $\quad w=w-\lambda d l(w, b) / d w-\lambda \alpha w$
Update b: $\quad b=b-\lambda d l(w, b) / d b-\lambda \alpha w$

This could lead to "unlearning" what has been learned in some previous steps of training.

Print: $l(w, b) \quad / /$ Useful to see if this is becoming smaller or not.
end
end

Solution: Momentum Updates

$\lambda=0.01$

$$
l(w, b)=l(w, b)+\alpha \sum_{i}\left|w_{i}\right|^{2}
$$

Initialize w and b randomly
for $\mathrm{e}=0$, num_epochs do
for $b=0$, num_batches do

Compute:	$d l(w, b) / d w$	and	$d l(w, b) / d b$
Update w:	$w=w-\lambda d l(w, b) / d w-\lambda \alpha w$		accumulator variable! and use a weighted average with current
Update b:	$b=b-\lambda d l(w, b) / d b-\lambda \alpha w$		gradient.

Print: $l(w, b) \quad / /$ Useful to see if this is becoming smaller or not.
end
end

Solution: Momentum Updates

$\lambda=0.01 \quad \tau=0.9$
Initialize w and b randomly

$$
l(w, b)=l(w, b)+\alpha \sum_{i}\left|w_{i}\right|^{2}
$$

global v
for $\mathrm{e}=0$, num_epochs do
for $\mathrm{b}=0$, num_batches do
Compute: $\quad d l(w, b) / d w$
Compute: $\quad v=\tau v+d l(w, b) / d w+\alpha w$
Update w: $\quad w=w-\lambda v$

Keep track of previous gradients in an accumulator variable! and use a weighted average with current gradient.

Print: $l(w, b) \quad / /$ Useful to see if this is becoming smaller or not.
end
end

More on Momentum

https://distill.pub/2017/momentum/

Supervised Learning - Classification

Supervised Learning - Classification

Training Data

$$
\begin{aligned}
& x_{2}=[\text { Re }] \quad y_{2}=[\operatorname{dog}] \\
& x_{3}=[\text { 盟 }] \\
& y_{3}=\left[\begin{array}{ll}
\text { cat }
\end{array}\right]
\end{aligned}
$$

Supervised Learning - Classification

Training Data
inputs

$$
x_{n}=\left[\begin{array}{llll}
x_{n 1} & x_{n 2} & x_{n 3} & x_{n 4}
\end{array}\right] \quad y_{n}=3 \quad \hat{y}_{n}=1
$$

$$
\begin{aligned}
& x_{1}=\left[\begin{array}{llll}
x_{11} & x_{12} & x_{13} & x_{14}
\end{array}\right] \\
& x_{2}=\left[\begin{array}{llll}
x_{21} & x_{22} & x_{23} & x_{24}
\end{array}\right] \\
& x_{3}=\left[\begin{array}{llll}
x_{31} & x_{32} & x_{33} & x_{34}
\end{array}\right] \quad y_{3}=1 \quad \hat{y}_{3}=2 \\
& y_{1}=1 \quad \hat{y}_{1}=1 \\
& y_{2}=2 \quad \hat{y}_{2}=2 \\
& \hat{y}_{3}=\hat{y}_{3}=
\end{aligned}
$$

We need to find a function that maps x and y for any of them.

$$
\widehat{y_{i}}=f\left(x_{i} ; \theta\right)
$$

How do we "learn" the parameters of this function?
We choose ones that makes the following quantity small:

$$
\sum_{i=1}^{n} \operatorname{Cost}\left(\widehat{y}_{i}, y_{i}\right)
$$

Questions?

