
Deep Learning for Vision & 
Language

Machine Learning II: SGD, Generalization, Regularization



About the class

• COMP 646: Deep Learning for Vision and Language

• Instructor: Vicente Ordóñez (Vicente Ordóñez Román)

• Website: https://www.cs.rice.edu/~vo9/deep-vislang

• Location: Herzstein Hall 210

• Times: Tuesdays and Thursdays
from 4pm to 5:15pm

• Office Hours: Tuesdays 10am to 11am (DH3098)

• Teaching Assistants: Arnold, Jefferson, Sangwon, Gaotian

• Discussion Forum: Piazza (Sign-up Link on Rice Canvas and 
Class Website)
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https://www.cs.rice.edu/~vo9/deep-vislang/


Teaching Assistants (TAs)

Jefferson
Hernandez

Arnold KazadiSangwon Seo GaotianWang

Mondays 2:30pm
DH 3036

Thursdays 11am
DH 3036

Wednesdays 10am
DH 3002

Wednesdays 3pm
DH 3036



Assignment 1
• Assignment 1 is released and is available on the class website.
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Grading for this class: COMP 646
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• Assignments: 30pts (3 assignments: 10pts + 10pts + 10pts)
• Class Project: 60pts
• Quiz: 10pts

Total: 100pts

• Grade cutoffs: no stricter than the following: 
A [between 90% and 100%], B [between 80% and 90%), 
C [between 70% and 80%), D [between 55% and 70%), 
F [less than 55%) 
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Gradient Descent

𝐿(𝑤, 𝑏) =-
'3!
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𝑙(𝑤, 𝑏)
𝜆 = 0.01

for e = 0, num_epochs do

end

Initialize w and b randomly

𝑑𝐿(𝑤, 𝑏)/𝑑𝑤 𝑑𝐿(𝑤, 𝑏)/𝑑𝑏Compute: and

Update w:

Update b:

𝑤 = 𝑤 − 𝜆 𝑑𝐿(𝑤, 𝑏)/𝑑𝑤

𝑏 = 𝑏 − 𝜆 𝑑𝐿(𝑤, 𝑏)/𝑑𝑏

Print: 𝐿(𝑤, 𝑏) // Useful to see if this is becoming smaller or not. 

expensive



Stochastic Gradient Descent (mini-batch) 
𝜆 = 0.01

for e = 0, num_epochs do

end

Initialize w and b randomly

𝑑𝐿5(𝑤, 𝑏)/𝑑𝑤 𝑑𝐿5(𝑤, 𝑏)/𝑑𝑏Compute: and
Update w:

Update b:

𝑤 = 𝑤 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑤

𝑏 = 𝑏 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏

Print: 𝐿5(𝑤, 𝑏) // Useful to see if this is becoming smaller or not. 

𝐿5(𝑤, 𝑏) =-
'3!
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𝑙(𝑤, 𝑏)

for b = 0, num_batches do

end



Stochastic Gradient Descent

• How to choose the right batch size B?
• How to choose the right learning rate lambda?
• How to choose the right loss function, e.g. is least squares good 

enough?
• How to choose the right function/classifier, e.g. linear, quadratic, 

neural network with 1 layer, 2 layers, etc?



Training, Validation (Dev), Test Sets

Training Set Validation 
Set Testing Set



Training, Validation (Dev), Test Sets

Used during development

Training Set Validation 
Set Testing Set



Training, Validation (Dev), Test Sets

Only to be used for evaluating the model at the very end of development and any 
changes to the model after running it on the test set, could be influenced by what you 
saw happened on the test set, which would invalidate any future evaluation.

Training Set Validation 
Set Testing Set
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Gradient Descent

𝐿 𝑤

𝑤
w=8

2. Compute the gradient 
(derivative) of L(w) at point
w = 12. (e.g. dL/dw = 6)

3. Recompute w as:

w = w – lambda * (dL / dw)



Source: Andrew Ng



In this class we will mostly rely on…
• K-nearest neighbors
• Linear classifiers
• Naïve Bayes classifiers
• Decision Trees
• Random Forests
• Boosted Decision Trees
• Neural Networks
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Why?
• Decisions Trees
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https://heartbeat.fritz.ai/understanding-the-mathematics-
behind-decision-trees-22d86d55906 by Nikita Sharma

https://heartbeat.fritz.ai/understanding-the-mathematics-behind-decision-trees-22d86d55906
https://heartbeat.fritz.ai/understanding-the-mathematics-behind-decision-trees-22d86d55906


Why?
• Decisions Trees 

are great because 
they are often 
interpretable.
• However, they 

usually deal 
better with 
categorical data –
not input pixel 
data.
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https://heartbeat.fritz.ai/understanding-the-mathematics-
behind-decision-trees-22d86d55906 by Nikita Sharma

https://heartbeat.fritz.ai/understanding-the-mathematics-behind-decision-trees-22d86d55906
https://heartbeat.fritz.ai/understanding-the-mathematics-behind-decision-trees-22d86d55906


How to pick the right model?
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Linear Regression – 1 output, 1 input
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Linear Regression – 1 output, 1 input
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Linear Regression – 1 output, 1 input

𝑦
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(𝑥!, 𝑦!)
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(𝑥#, 𝑦#)

(𝑥$, 𝑦$)
(𝑥%, 𝑦%)

(𝑥&, 𝑦&) (𝑥', 𝑦')

(𝑥(, 𝑦()

Model: 7𝑦 = 𝑤𝑥 + 𝑏 Loss: 𝐿 𝑤, 𝑏 =-
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Quadratic Regression 

𝑦

𝑥
(𝑥!, 𝑦!)

(𝑥", 𝑦")
(𝑥#, 𝑦#)

(𝑥$, 𝑦$)
(𝑥%, 𝑦%)

(𝑥&, 𝑦&) (𝑥', 𝑦')

(𝑥(, 𝑦()

Model: 7𝑦 = 𝑤!𝑥" +𝑤"𝑥 + 𝑏 Loss: 𝐿 𝑤, 𝑏 =-
'3!

'36

7𝑦' − 𝑦' "



n-polynomial Regression 

𝑦

𝑥
(𝑥!, 𝑦!)

(𝑥", 𝑦")
(𝑥#, 𝑦#)

(𝑥$, 𝑦$)
(𝑥%, 𝑦%)

(𝑥&, 𝑦&) (𝑥', 𝑦')

(𝑥(, 𝑦()

Model: 7𝑦 = 𝑤4𝑥4 +⋯+𝑤!𝑥 + 𝑏 Loss: 𝐿 𝑤, 𝑏 =-
'3!

'36

7𝑦' − 𝑦' "



Overfitting 

𝐿𝑜𝑠𝑠 𝑤 is high 𝐿𝑜𝑠𝑠 𝑤 is low 𝐿𝑜𝑠𝑠 𝑤 is zero!

OverfittingUnderfitting
High Bias High Variance

𝑓 is linear 𝑓 is cubic
𝑓 is a polynomial of 

degree 9

Christopher M. Bishop – Pattern Recognition and Machine Learning
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(mini-batch) Stochastic Gradient Descent (SGD)

𝑙(𝑤, 𝑏) =-
'∈5

𝐶𝑜𝑠𝑡 𝑤, 𝑏
𝜆 = 0.01

for e = 0, num_epochs do

end

Initialize w and b randomly

𝑑𝑙(𝑤, 𝑏)/𝑑𝑤 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏Compute: and
Update w:

Update b:

𝑤 = 𝑤 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑤

𝑏 = 𝑏 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏

Print: 𝑙(𝑤, 𝑏) // Useful to see if this is becoming smaller or not. 
end

for b = 0, num_batches do



Regularization

• Large weights lead to large variance. i.e. model fits to the training 
data too strongly.

• Solution: Minimize the loss but also try to keep the weight values 
small by doing the following: 

minimize 𝐿 𝑤, 𝑏 + 𝛼-
'

|𝑤'|"



Regularization

• Large weights lead to large variance. i.e. model fits to the training 
data too strongly.

• Solution: Minimize the loss but also try to keep the weight values 
small by doing the following: 

minimize 𝐿 𝑤, 𝑏 + 𝛼-
'

|𝑤'|" Regularizer term 
e.g. L2- regularizer
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SGD with Regularization (L-2)

𝑙 𝑤, 𝑏 = 𝑙 𝑤, 𝑏 + 𝛼 ∑' |𝑤'|"
𝜆 = 0.01

for e = 0, num_epochs do

end

Initialize w and b randomly

𝑑𝑙(𝑤, 𝑏)/𝑑𝑤 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏Compute: and
Update w:

Update b:

𝑤 = 𝑤 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑤 − 𝜆𝛼𝑤

𝑏 = 𝑏 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏 − 𝜆𝛼𝑤

Print: 𝑙(𝑤, 𝑏) // Useful to see if this is becoming smaller or not. 
end

for b = 0, num_batches do
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Revisiting Another Problem with SGD

𝑙 𝑤, 𝑏 = 𝑙 𝑤, 𝑏 + 𝛼 ∑' |𝑤'|"
𝜆 = 0.01

for e = 0, num_epochs do

end

Initialize w and b randomly

𝑑𝑙(𝑤, 𝑏)/𝑑𝑤 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏Compute: and
Update w:

Update b:

𝑤 = 𝑤 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑤 − 𝜆𝛼𝑤

𝑏 = 𝑏 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏 − 𝜆𝛼𝑤

Print: 𝑙(𝑤, 𝑏) // Useful to see if this is becoming smaller or not. 
end

for b = 0, num_batches do These are only 
approximations to the 
true gradient with 
respect to 𝐿(𝑤, 𝑏)
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Revisiting Another Problem with SGD

𝑙 𝑤, 𝑏 = 𝑙 𝑤, 𝑏 + 𝛼 ∑' |𝑤'|"
𝜆 = 0.01

for e = 0, num_epochs do

end

Initialize w and b randomly

𝑑𝑙(𝑤, 𝑏)/𝑑𝑤 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏Compute: and
Update w:

Update b:

𝑤 = 𝑤 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑤 − 𝜆𝛼𝑤

𝑏 = 𝑏 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏 − 𝜆𝛼𝑤

Print: 𝑙(𝑤, 𝑏) // Useful to see if this is becoming smaller or not. 
end

for b = 0, num_batches do This could lead to “un-
learning” what has 
been learned in some 
previous steps of 
training.
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Solution: Momentum Updates

𝑙 𝑤, 𝑏 = 𝑙 𝑤, 𝑏 + 𝛼 ∑' |𝑤'|"
𝜆 = 0.01

for e = 0, num_epochs do

end

Initialize w and b randomly

𝑑𝑙(𝑤, 𝑏)/𝑑𝑤 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏Compute: and
Update w:

Update b:

𝑤 = 𝑤 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑤 − 𝜆𝛼𝑤

𝑏 = 𝑏 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏 − 𝜆𝛼𝑤

Print: 𝑙(𝑤, 𝑏) // Useful to see if this is becoming smaller or not. 
end

for b = 0, num_batches do
Keep track of previous 
gradients in an 
accumulator variable! 
and use a weighted 
average with current 
gradient.
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Solution: Momentum Updates

𝑙 𝑤, 𝑏 = 𝑙 𝑤, 𝑏 + 𝛼 ∑' |𝑤'|"
𝜆 = 0.01

for e = 0, num_epochs do

end

Initialize w and b randomly

𝑑𝑙(𝑤, 𝑏)/𝑑𝑤Compute: 

Update w: 𝑤 = 𝑤 − 𝜆 𝑣

Print: 𝑙(𝑤, 𝑏) // Useful to see if this is becoming smaller or not. 
end

for b = 0, num_batches do Keep track of previous 
gradients in an 
accumulator variable! 
and use a weighted 
average with current 
gradient.

𝜏 = 0.9

global 𝑣

Compute: 𝑣 = 𝜏𝑣 + 𝑑𝑙(𝑤, 𝑏)/𝑑𝑤 + 𝛼𝑤



https://distill.pub/2017/momentum/

More on Momentum

https://distill.pub/2017/momentum/
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Supervised Learning - Classification

cat

cat

dog

bear

Training Data Test Data

.

.

.

.

.

.
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Supervised Learning - Classification

cat

cat

dog

bear

Training Data

𝑦! = [ ]

𝑦" = [ ]

𝑦# = [ ]

𝑦$ = [ ]𝑥$ = [ ]

𝑥# = [ ]

𝑥" = [ ]

𝑥! = [ ]

.

.

.



36

Supervised Learning - Classification
Training Data

1

1

2

3𝑦! =

𝑦" =

𝑦# =

𝑦$ =𝑥$ = [𝑥$$ 𝑥$# 𝑥$" 𝑥$%]

𝑥# = [𝑥#$ 𝑥## 𝑥#" 𝑥#%]

𝑥" = [𝑥"$ 𝑥"# 𝑥"" 𝑥"%]

𝑥! = [𝑥!$ 𝑥!# 𝑥!" 𝑥!%]

.

.

.

!𝑦! = 𝑓(𝑥!; 𝜃)

We need to find a function that
maps x and y for any of them.

How do we ”learn” the parameters
of this function?

We choose ones that makes the 
following quantity small:

0
"#$

%

𝐶𝑜𝑠𝑡(3𝑦", 𝑦")

inputs
targets /
labels /
ground truth

1

2

2

1&𝑦! =

&𝑦" =

&𝑦# =

&𝑦$ =

predictions
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Questions?


