
Deep Learning for Vision & 
Language

Machine Learning I: Supervised vs Unsupervised Learning
Linear Classifiers / Regressors



Machine Learning
The study of algorithms that learn from data.
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Machine Learning – Regression vs Classification

• Regression: 
y is a continuous variable e.g. in some interval of values e.g. in (0, 10]

• Classification: 
y is a discrete variable e.g. could take a set of values {0, 1, 2, 3, 4}
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𝑦 = 𝑓(𝑥)



Machine Learning – Regression vs Classification

• Also notice that both y and x could be vectors – and they usually are 
for many problems we will study.

• Also notice that f can be any function from the simplest you can think 
of to the most complicated composition of functions.
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𝑦 = 𝑓(𝑥)



For instance, Linear Regression and Classification

• Note: (w, b) are the coefficients in the linear regression, and will also be referred 
as parameters. 

• Also notice if x is a vector then w must also be a vector of coefficients.

• A lot of work in Machine Learning and optimization is finding the right set of 
parameters (w, b) that can map any pairs of (x,y) values for a given problem. 
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𝑦 = 𝑤𝑥 + 𝑏



ML Classifier / Regression models
• K-nearest neighbors
• Linear classifier / Linear regression
• Naïve Bayes classifiers
• Decision Trees
• Random Forests
• Boosted Decision Trees
• Neural Networks
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Supervised Learning – k-Nearest Neighbors
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ML Classifier / Regression models
• K-nearest neighbors
• Linear classifier / Linear regression
• Naïve Bayes classifiers
• Decision Trees
• Random Forests
• Boosted Decision Trees
• Neural Networks
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Linear Regression
Example: Hollywood movie data
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Linear Regression
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Linear Regression
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Linear Regression
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Linear Regression – Least Squares
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Linear Regression – Least Squares
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Linear Regression – Least Squares
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How to find the minimum of a function L(W)?
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Linear Regression – Least Squares
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ML Classifier / Regression models
• K-nearest neighbors
• Linear classifier / Linear regression
• Naïve Bayes classifiers
• Decision Trees
• Random Forests
• Boosted Decision Trees
• Neural Networks
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Neural Network with One Layer
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Neural Network with One Layer

𝐿 𝑊, 𝑏 =&
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(1) We can compute this derivative but often there will be no
closed-form solution for W when dL/dw = 0 

(2) Also, even for linear regression where the solution was 𝑊 = (𝑋!𝑋)"#𝑋!𝑌, computing this
expression might be expensive or infeasible. e. g. think of computing (𝑋!𝑋)"# for a very large 
dataset with a million 𝑥$
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Gradient Descent

𝐿 𝑤

𝑤

1. Start with a random value 
of w (e.g. w = 12)

w=12

2. Compute the gradient 
(derivative) of L(w) at point
w = 12. (e.g. dL/dw = 6)

3. Recompute w as:

w = w – lambda * (dL / dw)
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Gradient Descent
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Gradient Descent

𝐿 𝑤

𝑤
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2. Compute the gradient 
(derivative) of L(w) at point
w = 12. (e.g. dL/dw = 6)

3. Recompute w as:

w = w – lambda * (dL / dw)



Gradient Descent

𝐿(𝑤, 𝑏) =4
3/#

A

𝑙(𝑤, 𝑏)
𝜆 = 0.01

for e = 0, num_epochs do

end

Initialize w and b randomly

𝑑𝐿(𝑤, 𝑏)/𝑑𝑤 𝑑𝐿(𝑤, 𝑏)/𝑑𝑏Compute: and

Update w:

Update b:

𝑤 = 𝑤 − 𝜆 𝑑𝐿(𝑤, 𝑏)/𝑑𝑤

𝑏 = 𝑏 − 𝜆 𝑑𝐿(𝑤, 𝑏)/𝑑𝑏

Print: 𝐿(𝑤, 𝑏) // Useful to see if this is becoming smaller or not. 

expensive



Stochastic Gradient Descent (mini-batch) 
𝜆 = 0.01

for e = 0, num_epochs do

end

Initialize w and b randomly

𝑑𝐿B(𝑤, 𝑏)/𝑑𝑤 𝑑𝐿B(𝑤, 𝑏)/𝑑𝑏Compute: and
Update w:

Update b:

𝑤 = 𝑤 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑤

𝑏 = 𝑏 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏

Print: 𝐿B(𝑤, 𝑏) // Useful to see if this is becoming smaller or not. 

𝐿B(𝑤, 𝑏) =4
3/#

B

𝑙(𝑤, 𝑏)

for b = 0, num_batches do

end



In this class we will mostly rely on…
• K-nearest neighbors
• Linear classifiers
• Naïve Bayes classifiers
• Decision Trees
• Random Forests
• Boosted Decision Trees
• Neural Networks
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Why?
• Decisions Trees
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https://heartbeat.fritz.ai/understanding-the-mathematics-
behind-decision-trees-22d86d55906 by Nikita Sharma

https://heartbeat.fritz.ai/understanding-the-mathematics-behind-decision-trees-22d86d55906
https://heartbeat.fritz.ai/understanding-the-mathematics-behind-decision-trees-22d86d55906


Why?
• Decisions Trees 

are great because 
they are often 
interpretable.
• However, they 

usually deal 
better with 
categorical data –
not input pixel 
data.
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https://heartbeat.fritz.ai/understanding-the-mathematics-
behind-decision-trees-22d86d55906 by Nikita Sharma

https://heartbeat.fritz.ai/understanding-the-mathematics-behind-decision-trees-22d86d55906
https://heartbeat.fritz.ai/understanding-the-mathematics-behind-decision-trees-22d86d55906


Review 
• Image Classification Assignment from the Deep Learning for Visual 

Recognition class

• NOTE: This is not an assignment for this class. Do at your own pace, 
no need to hand out anything. You can always ask us questions about 
it during office hours.
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Regression vs Classification

Regression
• Labels are continuous 

variables – e.g. distance.
• Losses: Distance-based losses, 

e.g. sum of distances to true 
values.

• Evaluation: Mean distances, 
correlation coefficients, etc.

Classification
• Labels are discrete variables (1 

out of K categories)
• Losses: Cross-entropy loss, 

margin losses, logistic regression 
(binary cross entropy)

• Evaluation: Classification 
accuracy, etc.
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Supervised Learning - Classification
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Supervised Learning - Classification
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Supervised Learning - Classification
Training Data

1

1

2

3𝑦% =
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.
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.

)𝑦! = 𝑓(𝑥!; 𝜃)

We need to find a function that
maps x and y for any of them.

How do we ”learn” the parameters
of this function?

We choose ones that makes the 
following quantity small:

&
"%&

J

𝐶𝑜𝑠𝑡(D𝑦", 𝑦")

inputs
targets /
labels /
ground truth

1

2

2

1&𝑦% =

&𝑦& =

&𝑦' =

&𝑦# =

predictions



Stochastic Gradient Descent

• How to choose the right batch size B?
• How to choose the right learning rate lambda?
• How to choose the right loss function, e.g. is least squares good 

enough?
• How to choose the right function/classifier, e.g. linear, quadratic, 

neural network with 1 layer, 2 layers, etc?



Linear Regression
Example: Hollywood movie data
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Training, Validation (Dev), Test Sets

Training Set Validation 
Set Testing Set



Training, Validation (Dev), Test Sets

Used during development

Training Set Validation 
Set Testing Set



Training, Validation (Dev), Test Sets

Only to be used for evaluating the model at the very end of development and any 
changes to the model after running it on the test set, could be influenced by what you 
saw happened on the test set, which would invalidate any future evaluation.

Training Set Validation 
Set Testing Set



How to pick the right model?
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Linear Regression – 1 output, 1 input
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Linear Regression – 1 output, 1 input
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Linear Regression – 1 output, 1 input
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Linear Regression – 1 output, 1 input
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Quadratic Regression 
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n-polynomial Regression 

𝑦

𝑥
(𝑥#, 𝑦#)

(𝑥$, 𝑦$)
(𝑥%, 𝑦%)

(𝑥&, 𝑦&)
(𝑥', 𝑦')

(𝑥(, 𝑦() (𝑥), 𝑦))

(𝑥*, 𝑦*)
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Overfitting 

𝐿𝑜𝑠𝑠 𝑤 is high 𝐿𝑜𝑠𝑠 𝑤 is low 𝐿𝑜𝑠𝑠 𝑤 is zero!

OverfittingUnderfitting
High Bias High Variance

𝑓 is linear 𝑓 is cubic
𝑓 is a polynomial of 

degree 9

Christopher M. Bishop – Pattern Recognition and Machine Learning
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Questions?


