Deep Learning for Vision \& Language

Machine Learning I: Supervised vs Unsupervised Learning Linear Classifiers / Regressors
谷 RICE UNIVERSITY

Machine Learning

The study of algorithms that learn from data.

Supervised Learning vs Unsupervised Learning

Supervised Learning vs Unsupervised Learning

Supervised Learning vs Unsupervised Learning

Supervised Learning...

Classification

Face Detection

The screen was Language Parsing a sea of red

Structured Prediction

Supervised Learning...

$$
{ }_{c a t}^{c t}=f()
$$

Machine Learning - Regression vs Classification

$$
y=f(x)
$$

- Regression:
y is a continuous variable e.g. in some interval of values e.g. in (0,10]
- Classification:
y is a discrete variable e.g. could take a set of values $\{0,1,2,3,4\}$

Machine Learning - Regression vs Classification

$$
y=f(x)
$$

- Also notice that both y and x could be vectors - and they usually are for many problems we will study.
- Also notice that f can be any function from the simplest you can think of to the most complicated composition of functions.

For instance, Linear Regression and Classification

$y=w x+b$

- Note: (w, b) are the coefficients in the linear regression, and will also be referred as parameters.
- Also notice if x is a vector then w must also be a vector of coefficients.
- A lot of work in Machine Learning and optimization is finding the right set of parameters (w, b) that can map any pairs of (x, y) values for a given problem.

ML Classifier / Regression models

- K-nearest neighbors
- Linear classifier / Linear regression
- Naïve Bayes classifiers
- Decision Trees
- Random Forests
- Boosted Decision Trees
- Neural Networks

Supervised Learning - k-Nearest Neighbors

Supervised Learning - k-Nearest Neighbors

ML Classifier / Regression models

- K-nearest neighbors
- Linear classifier / Linear regression
- Naïve Bayes classifiers
- Decision Trees
- Random Forests
- Boosted Decision Trees
- Neural Networks

Linear Regression

Example: Hollywood movie data
 input variables x

production costs	promotional costs	genre of the movie	box office first week	total book sales
$x_{1}^{(1)}$	$x_{2}^{(1)}$	$x_{3}^{(1)}$	$x_{4}^{(1)}$	$x_{5}^{(1)}$
$x_{1}^{(2)}$	$x_{2}^{(2)}$	$x_{4}^{(2)}$	$x_{5}^{(2)}$	
$x_{1}^{(3)}$	$x_{2}^{(4)}$	$x_{3}^{(4)}$	$x_{4}^{(4)}$	$x_{5}^{(4)}$
$x_{1}^{(4)}$	$x_{2}^{(5)}$	$x_{3}^{(5)}$	$x_{4}^{(5)}$	$x_{5}^{(5)}$
$x_{1}^{(5)}$			$x_{5}^{(3)}$	

output variables y

total revenue USA	total revenue international
$x_{6}^{(1)}$	$x_{7}^{(1)}$
$x_{6}^{(2)}$	$x_{7}^{(2)}$
$x_{6}^{(3)}$	$x_{7}^{(3)}$
$x_{6}^{(4)}$	$x_{7}^{(4)}$
$x_{6}^{(5)}$	$x_{7}^{(5)}$

Linear Regression

Example: Hollywood movie data
 input variables x

production costs	promotional costs	genre of the movie	box office first week	total book sales
$x_{1}^{(1)}$	$x_{2}^{(1)}$	$x_{3}^{(1)}$	$x_{4}^{(1)}$	$x_{5}^{(1)}$
$x_{1}^{(2)}$	$x_{2}^{(2)}$	$x_{4}^{(2)}$	$x_{5}^{(2)}$	
$x_{1}^{(3)}$	$x_{2}^{(4)}$	$x_{3}^{(4)}$	$x_{4}^{(4)}$	$x_{5}^{(4)}$
$x_{1}^{(4)}$	$x_{2}^{(5)}$	$x_{3}^{(5)}$	$x_{4}^{(5)}$	$x_{5}^{(5)}$
$x_{1}^{(5)}$			$x_{5}^{(3)}$	

output variables y

total revenue USA	total revenue international
$y_{1}^{(1)}$	$y_{2}^{(1)}$
$y_{1}^{(2)}$	$y_{2}^{(2)}$
$y_{1}^{(3)}$	$y_{2}^{(3)}$
$y_{1}^{(4)}$	$y_{2}^{(4)}$
$y_{1}^{(5)}$	$y_{2}^{(5)}$

Linear Regression

Example: Hollywood movie data

input variables x
output variables y

	production costs	promotional costs	genre of the movie	box office first week	total book sales	total revenue USA	total revenue international
	$x_{1}^{(1)}$	$x_{2}^{(1)}$	$x_{3}^{(1)}$	$x_{4}^{(1)}$	$x_{5}^{(1)}$	$y_{1}^{(1)}$	$y_{2}^{(1)}$
data	$x_{1}^{(2)}$	$x_{2}^{(2)}$	$x_{3}^{(2)}$	$x_{4}^{(2)}$	$x_{5}^{(2)}$	$y_{1}^{(2)}$	$y_{2}^{(2)}$
test $x_{1}^{(3)}$	$x_{2}^{(3)}$	$x_{3}^{(3)}$	$x_{4}^{(3)}$	$x_{5}^{(3)}$	$y_{1}^{(3)}$	$y_{2}^{(3)}$	
data	$x_{1}^{(4)}$	$x_{2}^{(4)}$	$x_{3}^{(4)}$	$x_{4}^{(4)}$	$x_{5}^{(4)}$	$y_{1}^{(4)}$	$y_{2}^{(4)}$
$x_{1}^{(5)}$	$x_{2}^{(5)}$	$x_{3}^{(5)}$	$x_{4}^{(5)}$	$x_{5}^{(5)}$	$y_{1}^{(5)}$	$y_{2}^{(5)}$	

Linear Regression

$$
\begin{gathered}
\hat{y}=\sum_{i} w_{i} x_{i} \\
\hat{y}=W^{T} x
\end{gathered}
$$

Prediction, Inference, Testing

$$
D=\left\{\left(x^{(d)}, y^{(d)}\right)\right\}
$$

$$
L(W)=\sum_{d=1}^{|D|} l\left(\hat{y}^{(d)}, y^{(d)}\right)
$$

Training, Learning, Parameter estimation Objective

$$
W^{*}=\operatorname{argmin} L(W)
$$

Linear Regression

$$
\begin{gathered}
\hat{y}_{j}=\sum_{i} w_{i j} x_{i} \\
\hat{y}=W^{T} x
\end{gathered}
$$

Prediction, Inference, Testing

$$
D=\left\{\left(x^{(d)}, y^{(d)}\right)\right\}
$$

$$
L(W)=\sum_{d=1}^{|D|} \sum_{j} l\left(\hat{y}_{j}^{(d)}, y_{j}^{(d)}\right)
$$

Training, Learning, Parameter estimation Objective

$$
W^{*}=\operatorname{argmin} L(W)
$$

Linear Regression - Least Squares

$$
\begin{gathered}
\hat{y}_{j}=\sum_{i} w_{j i} x_{i} \\
\hat{y}=W^{T} x
\end{gathered}
$$

$$
D=\left\{\left(x^{(d)}, y^{(d)}\right)\right\} \quad L(W)=\sum_{d=1}^{|D|} \sum_{j}\left(\hat{y}_{j}{ }^{(d)}-y_{j}{ }^{(d)}\right)^{2}
$$

$$
W^{*}=\operatorname{argmin} L(W)
$$

Training, Learning, Parameter estimation Objective minimization

Linear Regression - Least Squares

$$
\begin{gathered}
L(W)=\sum_{d=1}^{|D|} \sum_{j}\left(\hat{y}_{j}^{(d)}-y^{(d)}\right)^{2} \\
\hat{y}_{j}^{(d)}=\sum_{i} w_{j i} x_{i}^{(d)} \\
L(W)=\sum_{d=1}^{|D|} \sum_{j}\left(\sum_{i} w_{j i} x_{i}^{(d)}-y^{(d)}\right)^{2}
\end{gathered}
$$

Linear Regression - Least Squares

$$
L(W)=\sum_{d=1}^{|D|} \sum_{j}\left(\sum_{i} w_{j i} x_{i}^{(d)}-y^{(d)}\right)^{2}
$$

$$
W^{*}=\operatorname{argmin} L(W)
$$

How to find the minimum of a function $L(W)$?

$$
\frac{\partial L(w)}{\partial w}=0
$$

Linear Regression - Least Squares

$$
\frac{\partial L(W)}{\partial w_{j i}}=\frac{\partial}{\partial w_{j i}}\left(\sum_{d=1}^{|D|} \sum_{j}\left(\sum_{i} w_{j i} x_{i}^{(d)}-y^{(d)}\right)^{2}\right)
$$

$$
\frac{\partial L(W)}{\partial w_{j i}}=0
$$

$$
W=\left(X^{T} X\right)^{-1} X^{T} Y
$$

ML Classifier / Regression models

- K-nearest neighbors
- Linear classifier / Linear regression
- Naïve Bayes classifiers
- Decision Trees
- Random Forests
- Boosted Decision Trees
- Neural Networks

Neural Network with One Layer

$\operatorname{sigmoid}(z)=\frac{1}{1+e^{-z}}$

$$
a_{j}=\operatorname{sigmoid}\left(\sum_{i} w_{j i} x_{i}+b_{j}\right)
$$

Neural Network with One Layer

$$
\begin{gathered}
L(W, b)=\sum_{d=1}^{|D|}\left(a^{(d)}-y^{(d)}\right)^{2} \\
a_{j}^{(d)}=\operatorname{sigmoid}\left(\sum_{i} w_{j i} x_{i}^{(d)}+b_{j}\right) \\
L(W, b)=\sum_{j, d}\left(\operatorname{sigmoid}\left(\sum_{i} w_{j i} x_{i}^{(d)}+b_{j}\right)-y_{j}^{(d)}\right)^{2}
\end{gathered}
$$

Neural Network with One Layer

$$
\begin{gathered}
L(W, b)=\sum_{j, d}\left(\operatorname{sigmoid}\left(\sum_{i} w_{j i} x_{i}^{(d)}+b_{j}\right)-y_{j}^{(d)}\right)^{2} \\
\frac{\partial L}{\partial w_{u v}}=0
\end{gathered}
$$

(1) We can compute this derivative but often there will be no closed-form solution for W when $\mathrm{dL} / \mathrm{dw}=0$
(2) Also, even for linear regression where the solution was $W=\left(X^{T} X\right)^{-1} X^{T} Y$, computing this expression might be expensive or infeasible. e. g. think of computing $\left(X^{T} X\right)^{-1}$ for a very large dataset with a million x_{i}

Gradient Descent

$L(w)$

1. Start with a random value
of w (e.g. w = 12)
2. Compute the gradient (derivative) of $\mathrm{L}(\mathrm{w})$ at point $w=12 .(e . g . d L / d w=6)$
3. Recompute w as:

$$
\mathrm{w}=\mathrm{w}-\operatorname{lambda} *(\mathrm{dL} / \mathrm{dw})
$$

Gradient Descent

Gradient Descent

2. Compute the gradient (derivative) of $\mathrm{L}(\mathrm{w})$ at point $w=12 .(e . g . d L / d w=6)$
3. Recompute was:

$$
\mathrm{w}=\mathrm{w}-\operatorname{lambda} *(\mathrm{dL} / \mathrm{dw})
$$

Gradient Descent

$\lambda=0.01$
Initialize w and b randomly

$$
L(w, b)=\sum_{i=1}^{n} l(w, b)
$$

for $\mathrm{e}=0$, num_epochs do
Compute: $\quad d L(w, b) / d w$ and $d L(w, b) / d b$
Update w: $\quad w=w-\lambda d L(w, b) / d w$
Update $\mathrm{b}: \quad b=b-\lambda d L(w, b) / d b$
Print: $L(w, b) \quad / /$ Useful to see if this is becoming smaller or not.
end

Stochastic Gradient Descent (mini-batch)

$\lambda=0.01$
Initialize w and b randomly

$$
L_{B}(w, b)=\sum_{i=1}^{B} l(w, b)
$$

for $\mathrm{e}=0$, num_epochs do
for $b=0$, num_batches do
Compute: $\quad d L_{B}(w, b) / d w$ and $d L_{B}(w, b) / d b$
Update $\mathrm{w}: \quad w=w-\lambda d l(w, b) / d w$
Update b: $\quad b=b-\lambda d l(w, b) / d b$
Print: $L_{B}(w, b)$ // Useful to see if this is becoming smaller or not.
end
end

In this class we will mostly rely on...

- K-nearest neighbors
- Linear classifiers
- Naïve Bayes classifiers
- Decision Trees
- Random Forests
- Boosted Decision Trees
- Neural Networks

Why?

- Decisions Trees

https://heartbeat.fritz.ai/understanding-the-mathematics-
behind-decision-trees-22d86d55906 by Nikita Sharma

Why?

- Decisions Trees are great because they are often interpretable.
- However, they usually deal better with categorical data not input pixel data.

Review

- Image Classification Assignment from the Deep Learning for Visual Recognition class
- NOTE: This is not an assignment for this class. Do at your own pace, no need to hand out anything. You can always ask us questions about it during office hours.

Regression vs Classification

Regression

- Labels are continuous variables - e.g. distance.
- Losses: Distance-based losses, e.g. sum of distances to true values.
- Evaluation: Mean distances, correlation coefficients, etc.

Classification

- Labels are discrete variables (1 out of K categories)
- Losses: Cross-entropy loss, margin losses, logistic regression (binary cross entropy)
- Evaluation: Classification accuracy, etc.

Supervised Learning - Classification

Train		Test Data
x^{3}	cat	
5	dog	NE
寒	cat	
		-
		-
60^{2}	bear	\%

Supervised Learning - Classification

Training Data

$$
\left.\begin{array}{ll}
x_{1}=[
\end{array}\right] \begin{array}{ll}
{\left[\begin{array}{ll}
\text { at }
\end{array}\right]} \\
x_{2}=\left[\begin{array}{ll}
2
\end{array}\right] & y_{2}=\left[\begin{array}{ll}
\operatorname{dog}
\end{array}\right] \\
x_{3}=\left[\begin{array}{ll}
\text { S }
\end{array}\right]
\end{array}
$$

$$
x_{n}=\left[\begin{array}{ll}
\text { and }
\end{array}\right] \quad y_{n}=[\text { bear }]
$$

Supervised Learning - Classification

Training Data
inputs
targets /
labels / predictions ground truth

$$
x_{n}=\left[\begin{array}{llll}
x_{n 1} & x_{n 2} & x_{n 3} & x_{n 4}
\end{array}\right] \quad y_{n}=3 \quad \hat{y}_{n}=1
$$

$$
\begin{aligned}
& x_{1}=\left[\begin{array}{llll}
x_{11} & x_{12} & x_{13} & x_{14}
\end{array}\right] \quad y_{1}=1 \quad \hat{y}_{1}=1 \\
& x_{2}=\left[\begin{array}{llll}
x_{21} & x_{22} & x_{23} & x_{24}
\end{array}\right] \quad y_{2}=2 \quad \hat{y}_{2}=2 \\
& x_{3}=\left[\begin{array}{llll}
x_{31} & x_{32} & x_{33} & x_{34}
\end{array}\right] \quad y_{3}=1 \quad \hat{y}_{3}=2
\end{aligned}
$$

We need to find a function that maps x and y for any of them.

$$
\widehat{y_{i}}=f\left(x_{i} ; \theta\right)
$$

How do we "learn" the parameters of this function?
We choose ones that makes the following quantity small:

$$
\sum_{i=1}^{n} \operatorname{Cost}\left(\widehat{y}_{i}, y_{i}\right)
$$

Stochastic Gradient Descent

- How to choose the right batch size B ?
- How to choose the right learning rate lambda?
- How to choose the right loss function, e.g. is least squares good enough?
- How to choose the right function/classifier, e.g. linear, quadratic, neural network with 1 layer, 2 layers, etc?

Linear Regression

Example: Hollywood movie data
input variables x
output variables y

training data	production costs	promotional costs	genre of the movie	box office first week	total book sales	total revenue USA	total revenue international
	$x_{1}^{(1)}$	$x_{2}^{(1)}$	$x_{3}^{(1)}$	$x_{4}^{(1)}$	$x_{5}^{(1)}$	$y_{1}^{(1)}$	$y_{2}^{(1)}$
	$x_{1}^{(2)}$	$x_{2}^{(2)}$	$x_{3}^{(2)}$	$x_{4}^{(2)}$	$x_{5}^{(2)}$	$y_{1}^{(2)}$	$y_{2}^{(2)}$
	$x_{1}^{(3)}$	$x_{2}^{(3)}$	$x_{3}^{(3)}$	$x_{4}^{(3)}$	$x_{5}^{(3)}$	$y_{1}^{(3)}$	$y_{2}^{(3)}$
test data	$x_{1}^{(4)}$	$x_{2}^{(4)}$	$x_{3}^{(4)}$	$x_{4}^{(4)}$	$x_{5}^{(4)}$	$y_{1}^{(4)}$	$y_{2}^{(4)}$
	$x_{1}^{(5)}$	$x_{2}^{(5)}$	$x_{3}^{(5)}$	$x_{4}^{(5)}$	$x_{5}^{(5)}$	$y_{1}^{(5)}$	$y_{2}^{(5)}$

Training, Validation (Dev), Test Sets

Training, Validation (Dev), Test Sets

Training, Validation (Dev), Test Sets

Training Set

Only to be used for evaluating the model at the very end of development and any changes to the model after running it on the test set, could be influenced by what you saw happened on the test set, which would invalidate any future evaluation.

How to pick the right model?

Linear Regression - 1 output, 1 input

$$
\begin{aligned}
& y
\end{aligned}
$$

Linear Regression - 1 output, 1 input

Model: $\quad \hat{y}=w x+b$

Linear Regression - 1 output, 1 input

Model: $\quad \hat{y}=w x+b$

Linear Regression - 1 output, 1 input

Quadratic Regression

Model: $\hat{y}=w_{1} x^{2}+w_{2} x+b \quad$ Loss: $\quad L(w, b)=\sum_{i=1}^{i=8}\left(\hat{y}_{i}-y_{i}\right)^{2}$

n-polynomial Regression

$$
\begin{aligned}
& \text { Loss: } \quad L(w, b)=\sum_{i=1}^{i=8}\left(\hat{y}_{i}-y_{i}\right)^{2}
\end{aligned}
$$

Model: $\hat{y}=w_{n} x^{n}+\cdots+w_{1} x+b$

Overfitting

f is linear

Loss (w) is high
Underfitting
High Bias
f is cubic

$\operatorname{Loss}(w)$ is low
f is a polynomial of degree 9

$\operatorname{Loss}(w)$ is zero!
Overfitting
High Variance

Questions?

