4‘ AR i W e i ks, Wl e DB o G i v i

A ML SO s e il N ™ I AN .
- e e i S S i . WM o Pl . . »
N Ml Bl A I A Bl M . W WP N e -
el TR e el ol NSt B BB, N o el
Tt T BT i i, e S . M @
B S i
- A . - * 4 . el I I . W et

Deep Learning for Vision &
Language

Computer Vision Il: Convolutional Neural Network Architectures

About the class

COMP 646: Deep Learning for Vision and Language
Instructor: Vicente Orddiez (Vicente Orddfiez Roman)

Website: https://www.cs.rice.edu/~vo9/deep-vislang

Location: Zoom — Rice Canvas has the links OR
Duncan Hall 1070

Times: Mondays, Wednesdays, and Fridays
from 1pm to 1:50pm Central Time

Office Hours: Fridays 2 to 3pm
Teaching Assistants: Brian Hoepfl, Liuba Orlov Savko

Discussion Forum: Rice Canvas

https://www.cs.rice.edu/~vo9/deep-vislang/

TAs and Office Hours

Brian Hopfl
Wednesdays 2:30pm to 4:30pm (today)
Next week Location: McMurtry commons
Contact email: beh3@rice.edu

Liuba Orlov Savko
Fridays 4pm to 5pm
Location: Sid’s Place (2" Floor Duncan near fridge)
Contact email: lo13@rice.edu

ILSVRC:

Imagenet Large Scale Visual Recognition Challenge
[Russakovsky et al 2014]

The Problem: Classification

Classify an image into 1000 possible classes:
e.g. Abyssinian cat, Bulldog, French Terrier, Cormorant, Chickadee,
red fox, banjo, barbell, hourglass, knot, maze, viaduct, etc.

cat, tabby cat (0.71)
Egyptian cat (0.22)
red fox (0.11)

The Data: ILSVRC

Imagenet Large Scale Visual Recognition Challenge (ILSVRC): Annual Competition

1000 Categories
~1000 training images per Category
~1 million images in total for training

~50k images for validation

Only images released for the test set but no annotations,
evaluation is performed centrally by the organizers (max 2 per week)

The Evaluation Metric: Top K-error

True label: Abyssinian cat

1.0
1.0

1.0
0.0
0.0

cat, tabby cat (0.61)
Egyptian cat (0.22)
red fox (0.11)
Abyssinian cat (0.10)
French terrier (0.03)

0.0
0.0

0.0
1.0
1.0

Top-5 error on this competition (2012)

TASK 1 - CLASSIFICATION

CNN SIFT+FV SVM1 SVM2 NCM

I

Alexnet (Krizhevsky et al NIPS 2012)

ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky Ilya Sutskever Geoffrey E. Hinton
University of Toronto University of Toronto University of Toronto
kpizl@es uteronto.ea 1lyaldes.ubtoirento.ea hifitenles.utorento.ea

Alexnet

https://www.saagie.com/fr/blog/object-detection-partl

Pytorch Code for Alexnet

* In-class analysis

https://github.com/pytorch/vision/blob/master/torchvision/models/alexnet.py

https://github.com/pytorch/vision/blob/master/torchvision/models/alexnet.py

Dropout Layer

Happens for every batch for a different set of connections

only during training

Important

model.train()

model.eval()

‘\

/‘\.’l‘\
‘s,g%& wn»w..“»m
¢ A~ EAXNA
RN
DONG AN
:"‘4‘:"‘4—‘

a\Ya\N

"N

(b) After applying dropout.

Standard Neural Net

Ve
]
p o —

Srivastava et al 2014

Preprocessing and Data Augmentation

Preprocessing and Data Augmentation

=

256 —

Preprocessing and Data Augmentation

224x224

Preprocessing and Data Augmentation

224x224

i)
(©
o
-

O

Im
(7))
(7]
>

O

<

)

o)

L
Q
>
| -

T

Some Important Aspects

* Using RelLUs instead of Sigmoid or Tanh

* Momentum + Weight Decay

* Dropout (Randomly sets Unit outputs to zero during training)
* GPU Computation!

Model Top-1 | Top-5

Sparse coding [2] | 47.1% | 28.2%
SIFT + FVs [24] | 45.7% | 25.7%
CNN 37.5% | 17.0%

What is happening?

Deep Neural Network

N @ O
AL >

AR SR L A

R A @2 A @IS

RN R RSO/ S\ NN

L e 28 -‘ OO

RRX RO S8,
A, %

\.0‘0. \.0‘0’. '27:,' ' "69’"0'-‘

K PRI

2 @
G oL AT o ’ N
,"(-‘"s‘a‘v‘s\v .

et 3
k7 "é-‘\“) — PR "'! (7 D ,‘k /’ >
1A SN S = NS, o
AN .?ﬁe;-.io;‘«?ix,\sg‘ ?-ieéio;g\g;a::(./,/’
NSRS RS
\ . 77 25X . ;,‘.}/'IA‘ s .
NW\IZRNIHER

Output Layer

Input Layer

Hidden Layer 1 Hidden Layer 2 Hidden Layer 3

edges combinations of edges object models

https://www.saagie.com/fr/blog/object-detection-partl

SIFT + FV + SVM (or softmax)

Feature Feature e o
. _ Classification
— | extraction | —| encoding (SVM or softmax)
(SIFT) (Fisher vectors)

Deep Learning

Convolutional Network
(includes both feature extraction and classifier)

VGG Network Top-5:

FC
Prediction
—_

https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py

Simonyan and Zisserman, 2014.
https://arxiv.org/pdf/1409.1556.pdf

https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py
https://arxiv.org/pdf/1409.1556.pdf

GoogleNet

https://github.com/kuangliu/pytorch-cifar/blob/master/models/googlenet.py

Szegedy et al. 2014
https://www.cs.unc.edu/~wliu/papers/GooglLeNet.pdf

https://github.com/kuangliu/pytorch-cifar/blob/master/models/googlenet.py
https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf

Further Refinements — Inception v3, e.g.

Filter Concat

Filter Concat

1x1

el 1x1 Pool

'\‘ 1X1 1x1 Pool 1x1

Base \/

GoogleNet (Inceptionvl) Inception v3

BatchNormalization Layer

Input: Values of x over a mini-batch: B = {z1._,,};
Parameters to be learned: v, £
Output: {y; = BN, g(x;)}

1 L
Up — — Z L5 // mini-batch mean
W =i
1 ™m
& — Z(ﬂ% — 1B)* // mini-batch variance
i=1
-~ Xy — .
Ti < : ; e // normalize
\/Op T €

yi <+ vT; + B = BN, g(z;) // scale and shift

https://arxiv.org/abs/1502.03167

ResNet (He et al CVPR 2016)

Sorry, does not fit in slide.

http://felixlaumon.github.io/assets/kaggle-right-whale/resnet.png

https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py

http://felixlaumon.github.io/assets/kaggle-right-whale/resnet.png
https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py

Revolution of Depth

LBl

AlexNet, 8 layers % VGG, 19 layers % ResNet, 152 layers =
(ILSVRC 2012) (ILSVRC 2014) = (ILSVRC 2015) =
=)

28.2

==,

‘ 152 layers ’

=)

A -3

\\ =

\

\ =

\ ==

\ =

‘ 22 layers 19 Iayers ’ I -‘—_“_22.

\ 6.7 ==

%"

==

3 37 ‘ 8 layers ’ ‘ 8 layers ’ shallow ==

--=-- =)

-

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

Slide by Mohammad Rastegari

Densenet

N Prediction

Input

Dense Block 3

Dense Block 1 Dense Block 2

e (i e) e (T

‘horse”

Buljood
Jeaur

uoIN|oAUOD)
Buljood

uoN|oAUO0D)
Buijood

UOIIN|OAUOD)

Densenet

Input _ -
Prediction
S Dense
2 g : b“ 2
S > —>%—>§—> horse
g el

https://arxiv.org/pdf/1608.06993.pdf

Densenet

Input _ -
Prediction
S Dense
2 g : b“ 2
S > —>%—>§—> horse
g el

https://arxiv.org/pdf/1608.06993.pdf

Pending Topic: Regularization

f 1s a polynomial of

f is linear | f Is cubic degree 9

1t M=3 | it

Loss(w) is high Loss(w) is low Loss(w) is zero!

Underfitting Overfitting

(mini-batch) Stochastic Gradient Descent (SGD)

1=001
[(w,b) = 2 Cost(w, b)

Initialize w and b randomly CB

for e =0, num_epochs do
for b =0, num_batches do

Compute: dl(w,b)/dw and dl(w,b)/db
Updatew: w=w —AdIl(w,b)/dw

Updateb: b =b —Adl(w,b)/db

Print: I(w,b) //Usefulto see if this is becoming smaller or not.

end
end

Regularization

Large weights lead to large variance. i.e. model fits to the training
data too strongly.

Solution: Minimize the loss but also try to keep the weight values
small by doing the following:

minimize L(w,b) + “2 lw;|%
[

Regularization

Large weights lead to large variance. i.e. model fits to the training
data too strongly.

Solution: Minimize the loss but also try to keep the weight values
small by doing the following:

minimize L(w,b) +|a 2 lw; | Regularizer term
i e.g. L2- regularizer

SGD with Regularization (L-2)

4 =0.01 [(w,b) = L(w,b) + a ¥, |w;|?
Initialize w and b randomly

for e =0, num_epochs do
for b =0, num_batches do

Compute: dl(w,b)/dw and dl(w,b)/db
Updatew: w=w —AdIl(w,b)/dw | Aaw

Updateb: b =b —Adl(w,b)/db— Aaw

Print: I(w,b) //Usefulto see if this is becoming smaller or not.

end
end

Revisiting Another Problem with SGD

A =0.01 [(w,b) = l(w,b) + a ¥; |w;|?

Initialize w and b randomly

for e =0, num_epochs do

for b =0, num_batches do . :
approximations to the

Compute: |dl(w,b)/dw | and |dl(w,b)/db true gradient with
Updatew: w=w —Adl(w,b)/dw — Alaw respect to L(w, b)

Updateb: b =b —Adl(w,b)/db — Aaw

These are only

Print: I(w,b) //Usefultosee if thisis becoming smaller or not.
end
end

Revisiting Another Problem with SGD

A =0.01 [(w,b) = l(w,b) + a ¥; |w;|?

Initialize w and b randomly

for e =0, num_epochs do

for b =0, num_batches do This c.ou!’d lead to “un-
learning” what has
Compute: (dl(w,b)/dw | and |dl(w,b)/db been learned in some
Updatew: w=w —Adl(w,b)/dw — dlaw previous steps of
training.
Updateb: b =b —Adl(w,b)/db — Aaw

Print: I(w,b) //Usefultosee if thisis becoming smaller or not.
end
end

Solution: Momentum Updates

A =0.01 [(w,b) = l(w,b) + a ¥; |w;|?

Initialize w and b randomly

for e =0, num_epochs do
for b =0, num_batches do

Compute: |dl(w,b)/dw | and |dl(w,b)/db

Updatew: w=w —AdIl(w,b)/dw — Aaw
Updateb: b =b —Adl(w,b)/db — Aaw

Keep track of previous
gradients in an
accumulator variable!
and use a weighted
average with current
gradient.

Print: I(w,b) //Useful to see if this is becoming smaller or not.

end
end

Solution: Momentum Updates
A1=001 7=09

Initialize w and b randomly [((w,b) = L(w,b) + a Y; |w;|?
global v
for e =0, num_epochs do
for b =0, num_batches do Keep traclf of previous
Compute: dl(w,b)/dw gradients in an ,
accumulator variable!
Compute: v =tv+dl(w,b)/dw + aw and use a weighted
average with current
Updatew: w=w —Av gradient.

Print: I(w,b) //Usefulto see if this is becoming smaller or not.

end
end

More on Momentum

Starting Point

Optimum

Solution

We often think of Momentum as a means of dampening oscillations

and speeding up the iterations, leading to faster convergence. But it
® ® has other interesting behavior. It allows a larger range of step-sizes

to be used, and creates its own oscillations. What is going on?

Step-size a = 0.0050 Momentum @ = 0.77

https://distill.pub/2017/momentum/

https://distill.pub/2017/momentum/

Questions

