Deep Learning for Vision & Language

Computer Vision II: Convolutional Neural Network Architectures

About the class

- COMP 646: Deep Learning for Vision and Language
- Instructor: Vicente Ordóñez (Vicente Ordóñez Román)
- Website: https://www.cs.rice.edu/~vo9/deep-vislang
- Location: Zoom Rice Canvas has the links OR
 Duncan Hall 1070
- Times: Mondays, Wednesdays, and Fridays from 1pm to 1:50pm Central Time
- Office Hours: Fridays 2 to 3pm
- Teaching Assistants: Brian Hoepfl, Liuba Orlov Savko
- Discussion Forum: Rice Canvas

TAs and Office Hours

Liuba Orlov Savko
Fridays 4pm to 5pm
Location: Sid's Place (2nd Floor Duncan near fridge)
Contact email: lo13@rice.edu

ILSVRC: Property of the ILSVRC: Property of the ILSVRC: Property of the ILSVRC:

Imagenet Large Scale Visual Recognition Challenge [Russakovsky et al 2014]

The Problem: Classification

Classify an image into 1000 possible classes:

e.g. Abyssinian cat, Bulldog, French Terrier, Cormorant, Chickadee, red fox, banjo, barbell, hourglass, knot, maze, viaduct, etc.

cat, tabby cat (0.71) Egyptian cat (0.22) red fox (0.11)

• • • • •

The Data: ILSVRC

Imagenet Large Scale Visual Recognition Challenge (ILSVRC): Annual Competition

1000 Categories

~1000 training images per Category

~1 million images in total for training

~50k images for validation

Only images released for the test set but no annotations, evaluation is performed centrally by the organizers (max 2 per week)

The Evaluation Metric: Top K-error

True label: Abyssinian cat

Top-1 error: 1.0 Top-1 accuracy: 0.0

Top-2 error: 1.0 Top-2 accuracy: 0.0

Top-3 error: 1.0 Top-3 accuracy: 0.0

Top-4 error: 0.0 Top-4 accuracy: 1.0

Top-5 error: 0.0 Top-5 accuracy: 1.0

cat, tabby cat (0.61)

Egyptian cat (0.22)

red fox (0.11)

Abyssinian cat (0.10)

French terrier (0.03)

• • • • •

Top-5 error on this competition (2012)

Alexnet (Krizhevsky et al NIPS 2012)

ImageNet Classification with Deep Convolutional Neural Networks

Alex Krizhevsky

University of Toronto kriz@cs.utoronto.ca Ilya Sutskever

University of Toronto ilya@cs.utoronto.ca **Geoffrey E. Hinton**

University of Toronto

hinton@cs.utoronto.ca

Alexnet

Pytorch Code for Alexnet

In-class analysis

https://github.com/pytorch/vision/blob/master/torchvision/models/alexnet.py

Dropout Layer

Happens for every batch for a different set of connections only during training

Important

model.train()

model.eval()

224x224

224x224

True label: Abyssinian cat

Some Important Aspects

- Using ReLUs instead of Sigmoid or Tanh
- Momentum + Weight Decay
- Dropout (Randomly sets Unit outputs to zero during training)
- GPU Computation!

Model	Top-1	Top-5
Sparse coding [2]	47.1%	28.2%
SIFT + FVs [24]	45.7%	25.7%
CNN	37.5%	17.0%

What is happening?

SIFT + FV + SVM (or softmax)

Deep Learning

Convolutional Network (includes both feature extraction and classifier)

https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py

Simonyan and Zisserman, 2014.

https://arxiv.org/pdf/1409.1556.pdf

GoogLeNet

https://github.com/kuangliu/pytorch-cifar/blob/master/models/googlenet.py

Szegedy et al. 2014

https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf

Further Refinements – Inception v3, e.g.

GoogLeNet (Inceptionv1)

Inception v3

BatchNormalization Layer

```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\};
              Parameters to be learned: \gamma, \beta
Output: \{y_i = BN_{\gamma,\beta}(x_i)\}
\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i
                                                                        // mini-batch mean
  \sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 // mini-batch variance
    \widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}
                                                                                     // normalize
    y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)
                                                                            // scale and shift
```

ResNet (He et al CVPR 2016)

Sorry, does not fit in slide.

http://felixlaumon.github.io/assets/kaggle-right-whale/resnet.png

https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py

Revolution of Depth AlexNet, 8 layers VGG, 19 layers ResNet, 152 layers (ILSVRC 2012) (ILSVRC 2014) (ILSVRC 2015) 28.2 25.8 152 layers 16.4 11.7 22 layers 19 layers 7.3 **\ 6.7** 3.57 8 layers 8 layers shallow ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10 ResNet GoogleNet VGG AlexNet

Densenet

Densenet

https://arxiv.org/pdf/1608.06993.pdf

Densenet

https://arxiv.org/pdf/1608.06993.pdf

Pending Topic: Regularization

Loss(w) is high

Underfitting

Loss(w) is low

Loss(w) is zero!

Overfitting

(mini-batch) Stochastic Gradient Descent (SGD)

```
\lambda = 0.01
                                           l(w,b) = \sum_{i \in R} Cost(w,b)
Initialize w and b randomly
for e = 0, num_epochs do
for b = 0, num batches do
   Compute: dl(w,b)/dw and dl(w,b)/db
   Update w: w = w - \lambda \, dl(w, b)/dw
   Update b: b = b - \lambda \, dl(w, b)/db
   Print: l(w,b) // Useful to see if this is becoming smaller or not.
end
end
```

Regularization

- Large weights lead to large variance. i.e. model fits to the training data too strongly.
- Solution: Minimize the loss but also try to keep the weight values small by doing the following:

minimize
$$L(w,b) + \alpha \sum_{i} |w_i|^2$$

Regularization

- Large weights lead to large variance. i.e. model fits to the training data too strongly.
- Solution: Minimize the loss but also try to keep the weight values small by doing the following:

minimize
$$L(w,b) + \alpha \sum_{i} |w_{i}|^{2}$$
 Reg

Regularizer term e.g. L2- regularizer

SGD with Regularization (L-2)

```
\lambda = 0.01
                                                  l(w,b) = l(w,b) + \alpha \sum_{i} |w_{i}|^{2}
Initialize w and b randomly
for e = 0, num_epochs do
for b = 0, num batches do
   Compute: dl(w,b)/dw and dl(w,b)/db
   Update w: w = w - \lambda dl(w, b)/dw - \lambda \alpha w
   Update b: b = b - \lambda dl(w, b)/db - \lambda \alpha w
    Print: l(w,b) // Useful to see if this is becoming smaller or not.
end
end
```

Revisiting Another Problem with SGD

$$\lambda = 0.01$$

$$l(w,b) = l(w,b) + \alpha \sum_{i} |w_{i}|^{2}$$

Initialize w and b randomly

for e = 0, num_epochs do

for b = 0, num_batches do

Compute:

dl(w,b)/dw

and

dl(w,b)/db

Update w: $w = w - \lambda dl(w, b)/dw - \lambda \alpha w$

Update b:
$$b = b - \lambda dl(w, b)/db - \lambda \alpha w$$

Print: l(w,b) // Useful to see if this is becoming smaller or not.

end end These are only approximations to the true gradient with respect to L(w, b)

Revisiting Another Problem with SGD

$$\lambda = 0.01$$

$$l(w,b) = l(w,b) + \alpha \sum_{i} |w_{i}|^{2}$$

Initialize w and b randomly

for e = 0, num_epochs do

for b = 0, num_batches do

Compute:

dl(w,b)/dw

and

dl(w,b)/db

Update w: $w = w - \lambda dl(w, b)/dw - \lambda \alpha w$

Update b:
$$b = b - \lambda dl(w, b)/db - \lambda \alpha w$$

training.

This could lead to "un-

been learned in some

learning" what has

previous steps of

Print: l(w,b) // Useful to see if this is becoming smaller or not.

end end

Solution: Momentum Updates

$$\lambda = 0.01$$

$$l(w,b) = l(w,b) + \alpha \sum_{i} |w_i|^2$$

Initialize w and b randomly

for e = 0, num_epochs do

for b = 0, num_batches do

Compute: dl(w,

dl(w,b)/dw

and

dl(w,b)/db

Update w: $w = w - \lambda dl(w, b)/dw - \lambda \alpha w$

Update b: $b = b - \lambda dl(w, b)/db - \lambda \alpha w$

Keep track of previous gradients in an accumulator variable! and use a weighted average with current gradient.

Print: l(w,b) // Useful to see if this is becoming smaller or not.

end end

Solution: Momentum Updates

$$\lambda = 0.01$$
 $\tau = 0.9$

Initialize w and b randomly

$$l(w,b) = l(w,b) + \alpha \sum_{i} |w_{i}|^{2}$$

global v

for e = 0, num_epochs do

for b = 0, num_batches do

Compute: dl(w,b)/dw

Compute: $v = \tau v + dl(w, b)/dw + \alpha w$

Update w: $w = w - \lambda v$

Keep track of previous gradients in an accumulator variable! and use a weighted average with current gradient.

Print: l(w, b) // Useful to see if this is becoming smaller or not.

end end

More on Momentum

https://distill.pub/2017/momentum/

Questions