
Deep Learning for Vision & 
Language

Computer Vision II: Convolutional Neural Network Architectures



About the class

• COMP 646: Deep Learning for Vision and Language

• Instructor: Vicente Ordóñez (Vicente Ordóñez Román)

• Website: https://www.cs.rice.edu/~vo9/deep-vislang

• Location: Zoom – Rice Canvas has the links OR
Duncan Hall 1070

• Times: Mondays, Wednesdays, and Fridays 
from 1pm to 1:50pm Central Time

• Office Hours: Fridays 2 to 3pm 

• Teaching Assistants: Brian Hoepfl, Liuba Orlov Savko 

• Discussion Forum: Rice Canvas
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https://www.cs.rice.edu/~vo9/deep-vislang/


TAs and Office Hours
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Brian Hopfl
Wednesdays 2:30pm to 4:30pm (today)

Next week Location: McMurtry commons
Contact email: beh3@rice.edu

Liuba Orlov Savko
Fridays 4pm to 5pm

Location: Sid’s Place (2nd Floor Duncan near fridge)
Contact email:  lo13@rice.edu



ILSVRC: 
Imagenet Large Scale Visual Recognition Challenge

[Russakovsky et al 2014]



The Problem: Classification
Classify an image into 1000 possible classes:

e.g. Abyssinian cat, Bulldog, French Terrier, Cormorant, Chickadee, 
red fox, banjo, barbell, hourglass, knot, maze, viaduct, etc.

cat, tabby cat  (0.71)
Egyptian cat (0.22)
red fox (0.11)
…..



The Data: ILSVRC
Imagenet Large Scale Visual Recognition Challenge (ILSVRC): Annual Competition

1000 Categories

~1000 training images per Category

~1 million images in total for training

~50k images for validation

Only images released for the test set but no annotations, 
evaluation is performed centrally by the organizers (max 2 per week)



The Evaluation Metric: Top K-error

cat, tabby cat  (0.61)
Egyptian cat (0.22)
red fox (0.11)
Abyssinian cat (0.10)
French terrier (0.03)
…..

True label: Abyssinian cat

Top-1 error: 1.0 Top-1 accuracy: 0.0

Top-2 error: 1.0 Top-2 accuracy: 0.0

Top-3 error: 1.0 Top-3 accuracy: 0.0

Top-4 error: 0.0 Top-4 accuracy: 1.0

Top-5 error: 0.0 Top-5 accuracy: 1.0



Top-5 error on this competition (2012)



Alexnet (Krizhevsky et al NIPS 2012)



Alexnet

https://www.saagie.com/fr/blog/object-detection-part1



Pytorch Code for Alexnet

• In-class analysis

https://github.com/pytorch/vision/blob/master/torchvision/models/alexnet.py

https://github.com/pytorch/vision/blob/master/torchvision/models/alexnet.py


Dropout Layer

Srivastava et al 2014

model.train()

model.eval()



Preprocessing and Data Augmentation



Preprocessing and Data Augmentation

256

256



Preprocessing and Data Augmentation

224x224



Preprocessing and Data Augmentation

224x224



True label: Abyssinian cat



•Using ReLUs instead of Sigmoid or Tanh
•Momentum + Weight Decay
•Dropout (Randomly sets Unit outputs to zero during training) 
•GPU Computation!

Some Important Aspects



What is happening?

https://www.saagie.com/fr/blog/object-detection-part1



Feature 
extraction 

(SIFT)

Feature 
encoding

(Fisher vectors)

Classification
(SVM or softmax)

SIFT + FV + SVM (or softmax)

Convolutional Network
(includes both feature extraction and classifier)

Deep Learning



VGG Network

https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py

Simonyan and Zisserman, 2014.

Top-5: 

https://arxiv.org/pdf/1409.1556.pdf

https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py
https://arxiv.org/pdf/1409.1556.pdf


GoogLeNet

https://github.com/kuangliu/pytorch-cifar/blob/master/models/googlenet.py

Szegedy et al. 2014
https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf

https://github.com/kuangliu/pytorch-cifar/blob/master/models/googlenet.py
https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf


Further Refinements – Inception v3, e.g. 

GoogLeNet (Inceptionv1) Inception v3



BatchNormalization Layer

https://arxiv.org/abs/1502.03167



ResNet (He et al CVPR 2016)

http://felixlaumon.github.io/assets/kaggle-right-whale/resnet.png

Sorry, does not fit in slide.

https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py

http://felixlaumon.github.io/assets/kaggle-right-whale/resnet.png
https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py


Slide by Mohammad Rastegari





https://arxiv.org/pdf/1608.06993.pdf



https://arxiv.org/pdf/1608.06993.pdf



Pending Topic: Regularization

𝐿𝑜𝑠𝑠 𝑤 is high 𝐿𝑜𝑠𝑠 𝑤 is low 𝐿𝑜𝑠𝑠 𝑤 is zero!

OverfittingUnderfitting

𝑓 is linear 𝑓 is cubic
𝑓 is a polynomial of 

degree 9
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(mini-batch) Stochastic Gradient Descent (SGD)

𝑙(𝑤, 𝑏) =)
!∈#

𝐶𝑜𝑠𝑡 𝑤, 𝑏
𝜆 = 0.01

for e = 0, num_epochs do

end

Initialize w and b randomly

𝑑𝑙(𝑤, 𝑏)/𝑑𝑤 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏Compute: and
Update w:

Update b:

𝑤 = 𝑤 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑤

𝑏 = 𝑏 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏

Print: 𝑙(𝑤, 𝑏) // Useful to see if this is becoming smaller or not. 
end

for b = 0, num_batches do



Regularization

• Large weights lead to large variance. i.e. model fits to the training 
data too strongly.

• Solution: Minimize the loss but also try to keep the weight values 
small by doing the following: 

minimize 𝐿 𝑤, 𝑏 + 𝛼)
!

|𝑤!|$



Regularization

• Large weights lead to large variance. i.e. model fits to the training 
data too strongly.

• Solution: Minimize the loss but also try to keep the weight values 
small by doing the following: 

minimize 𝐿 𝑤, 𝑏 + 𝛼)
!

|𝑤!|$ Regularizer term 
e.g. L2- regularizer
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SGD with Regularization (L-2)

𝑙 𝑤, 𝑏 = 𝑙 𝑤, 𝑏 + 𝛼 ∑! |𝑤!|$
𝜆 = 0.01

for e = 0, num_epochs do

end

Initialize w and b randomly

𝑑𝑙(𝑤, 𝑏)/𝑑𝑤 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏Compute: and
Update w:

Update b:

𝑤 = 𝑤 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑤 − 𝜆𝛼𝑤

𝑏 = 𝑏 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏 − 𝜆𝛼𝑤

Print: 𝑙(𝑤, 𝑏) // Useful to see if this is becoming smaller or not. 
end

for b = 0, num_batches do
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Revisiting Another Problem with SGD

𝑙 𝑤, 𝑏 = 𝑙 𝑤, 𝑏 + 𝛼 ∑! |𝑤!|$
𝜆 = 0.01

for e = 0, num_epochs do

end

Initialize w and b randomly

𝑑𝑙(𝑤, 𝑏)/𝑑𝑤 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏Compute: and
Update w:

Update b:

𝑤 = 𝑤 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑤 − 𝜆𝛼𝑤

𝑏 = 𝑏 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏 − 𝜆𝛼𝑤

Print: 𝑙(𝑤, 𝑏) // Useful to see if this is becoming smaller or not. 
end

for b = 0, num_batches do These are only 
approximations to the 
true gradient with 
respect to 𝐿(𝑤, 𝑏)
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Revisiting Another Problem with SGD

𝑙 𝑤, 𝑏 = 𝑙 𝑤, 𝑏 + 𝛼 ∑! |𝑤!|$
𝜆 = 0.01

for e = 0, num_epochs do

end

Initialize w and b randomly

𝑑𝑙(𝑤, 𝑏)/𝑑𝑤 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏Compute: and
Update w:

Update b:

𝑤 = 𝑤 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑤 − 𝜆𝛼𝑤

𝑏 = 𝑏 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏 − 𝜆𝛼𝑤

Print: 𝑙(𝑤, 𝑏) // Useful to see if this is becoming smaller or not. 
end

for b = 0, num_batches do This could lead to “un-
learning” what has 
been learned in some 
previous steps of 
training.
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Solution: Momentum Updates

𝑙 𝑤, 𝑏 = 𝑙 𝑤, 𝑏 + 𝛼 ∑! |𝑤!|$
𝜆 = 0.01

for e = 0, num_epochs do

end

Initialize w and b randomly

𝑑𝑙(𝑤, 𝑏)/𝑑𝑤 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏Compute: and
Update w:

Update b:

𝑤 = 𝑤 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑤 − 𝜆𝛼𝑤

𝑏 = 𝑏 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏 − 𝜆𝛼𝑤

Print: 𝑙(𝑤, 𝑏) // Useful to see if this is becoming smaller or not. 
end

for b = 0, num_batches do
Keep track of previous 
gradients in an 
accumulator variable! 
and use a weighted 
average with current 
gradient.
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Solution: Momentum Updates

𝑙 𝑤, 𝑏 = 𝑙 𝑤, 𝑏 + 𝛼 ∑! |𝑤!|$
𝜆 = 0.01

for e = 0, num_epochs do

end

Initialize w and b randomly

𝑑𝑙(𝑤, 𝑏)/𝑑𝑤Compute: 

Update w: 𝑤 = 𝑤 − 𝜆 𝑣

Print: 𝑙(𝑤, 𝑏) // Useful to see if this is becoming smaller or not. 
end

for b = 0, num_batches do Keep track of previous 
gradients in an 
accumulator variable! 
and use a weighted 
average with current 
gradient.

𝜏 = 0.9

global 𝑣

Compute: 𝑣 = 𝜏𝑣 + 𝑑𝑙(𝑤, 𝑏)/𝑑𝑤 + 𝛼𝑤



https://distill.pub/2017/momentum/

More on Momentum

https://distill.pub/2017/momentum/


Questions


