LTL Model Checking for Modular Petri Nets

T. Latvala and M. Mäkelä Presented by Deian Tabakov

September 25, 2006

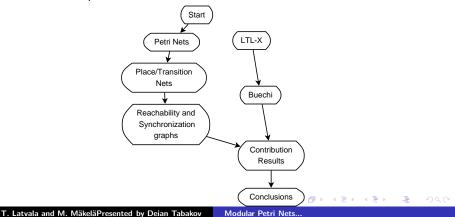
・ロト ・ 一下・ ・ 三ト・・

T. Latvala and M. MäkeläPresented by Deian Tabakov Modular Petri Nets...

Executive Summary

- This paper presents...
 - A method for LTL-X model checking of modular Petri Nets

< 🗇 🕨


< E ▶ < E ▶</p>

• An implementation and experimental comparison

Executive Summary

- This paper presents...
 - A method for LTL-X model checking of modular Petri Nets
 - An implementation and experimental comparison

Roadmap

Events, Conditions, Tokens Pre- and Post-conditions Concurrency Definitions

Petri Nets

Figure: C. A. Petri

- Kommunikation mit Automaten, 1962
 - "Description, in a uniform and exact manner, of as great as possible a number of phenomena related to information transmission and information transformation..."

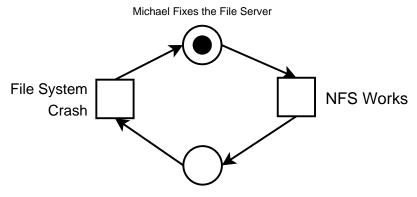
(D) (A) (A)

• Regulated flows (information, products...)

• P.N.H.N.C.W.P.D.

Events, Conditions, Tokens Pre- and Post-conditions Concurrency Definitions

(D) (A) (A)


Petri Nets

- Mathematical representation of discrete distributed systems
- Causal dependencies and independencies represented explicitly
- Partial order relation of concurrency, unsynchronized functions...
- Different levels of abstraction
- Formal system \rightarrow verify properties

Events, Conditions, Tokens Pre- and Post-conditions Concurrency Definitions

・ロト ・ 一日 ト ・ モート

Petri Nets

Dump a 1.3 TB file in /home/

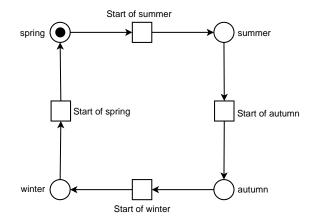
Figure: Petri Nets: Events, Conditions, Tokens

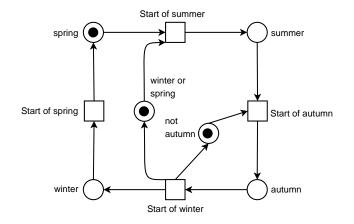
Events, Conditions, Tokens Pre- and Post-conditions Concurrency Definitions

イロト イヨト イヨト イヨト

2

Petri Nets



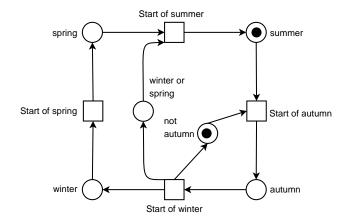

Figure: Petri Nets: Pre- and Post-conditions, Case

Events, Conditions, Tokens Pre- and Post-conditions Concurrency Definitions

<ロ> (四) (四) (三) (三)

3

Petri Nets

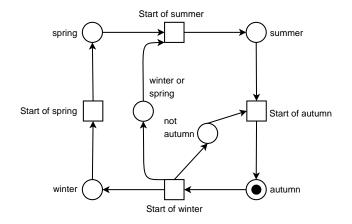


Events, Conditions, Tokens Pre- and Post-conditions Concurrency Definitions

<ロ> (四) (四) (三) (三)

3

Petri Nets

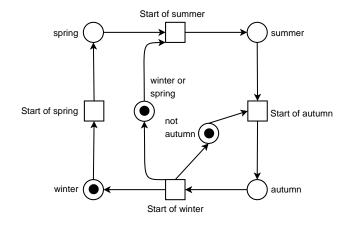


Events, Conditions, Tokens Pre- and Post-conditions Concurrency Definitions

<ロ> (四) (四) (三) (三)

3

Petri Nets

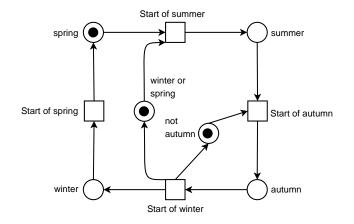


Events, Conditions, Tokens Pre- and Post-conditions Concurrency Definitions

<ロ> (四) (四) (三) (三)

3

Petri Nets



Events, Conditions, Tokens Pre- and Post-conditions Concurrency Definitions

<ロ> (四) (四) (三) (三)

3

Petri Nets

Petri Nets

Place/Transition Nets Model Checking LTL-X Summary and Conclusions Events, Conditions, Tokens Pre- and Post-conditions Concurrency Definitions

イロト イヨト イヨト イヨト

3

Petri Nets

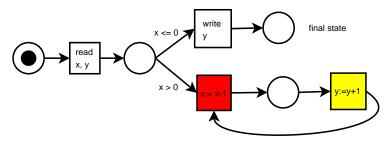


Figure: Petri Nets: Concurrency

Petri Nets

Place/Transition Nets Model Checking LTL-X Summary and Conclusions Events, Conditions, Tokens Pre- and Post-conditions Concurrency Definitions

イロト イヨト イヨト イヨト

3

Petri Nets

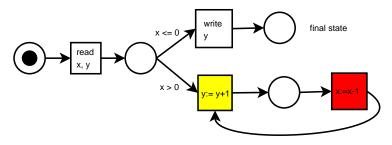


Figure: Petri Nets: Concurrency

Petri Nets

Place/Transition Nets Model Checking LTL-X Summary and Conclusions Events, Conditions, Tokens Pre- and Post-conditions Concurrency Definitions

イロト イヨト イヨト イヨト

3

Petri Nets

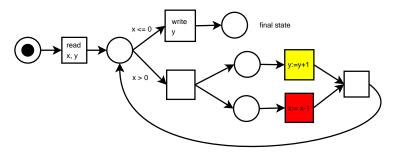


Figure: Petri Nets: Concurrency

T. Latvala and M. MäkeläPresented by Deian Tabakov Modular Petri Nets...

Events, Conditions, Tokens Pre- and Post-conditions Concurrency Definitions

イロン イヨン イヨン イヨン

Petri Nets

Definition (Net)

A triple N = (P, T; F) is called a *net* iff

- P and T are disjoint sets
- $F \subseteq (P \times T) \cup (T \times P)$ is a binary relation (the *flow relation* of *N*).

Definition (Pre- and Post-sets)

Let N be a net. For $x \in N$

- $\cdot x = \{y | yFx\}$ is called the *preset* of x
- $x \cdot = \{y | xFy\}$ is called the *postset* of x

Producer-Consumer systems Definition Reachability Graph Modular PT-nets

Producer-Consumer Systems

- Modelling manufacturing processes
- Combine a set of conditions "(places p₁, p₂,..., p_n are used)" into one object.
- Conditions → *Places*
- Events \rightarrow *Transitions*
- Capacities, weights

Figure: Producer-Consumer Systems: Firing Rules

Producer-Consumer systems Definition Reachability Graph Modular PT-nets

Producer-Consumer Systems

A model of a bakery with two consumers:

- The baker generates 3 cookies per time step
- The display case can hold at most 5 cookies
- At most one consumer can access cooling rack
- Each consumer buys cookies in batches of 2
- The production steps of the baker are counted

Producer-Consumer systems Definition Reachability Graph Modular PT-nets

イロト イヨト イヨト イヨト

3

Producer-Consumer Systems

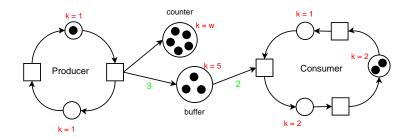


Figure: The Bakery Model

Producer-Consumer systems Definition Reachability Graph Modular PT-nets

Formal Definition

Definition (Place/Transition Nets)

A tuple N = (P, T; F, K, M, W) is a *place/transition net* iff

- (P, T; F) is a finite net
- $K : P \to \mathbb{N} \cup \{\omega\}$ gives a *capacity* for each place.
- $W: F \to \mathbb{N} \setminus \{0\}$ attaches a *weight* to each arc.
- $M: P \to \mathbb{N} \cup \{\omega\}$ is *initial marking* (must respect capacities).

Definition (Latvala and Mäkelä)

A PT-net is a tuple $N = (P, T, W, M_0)$ where

- *P* and *T* are finitie, $P \cap T = \emptyset$
- $W: (P \times T) \cup (T \times P) \rightarrow \mathbb{N}$ is the arc weight function
- $M_0: P \to \mathbb{N}$ is the initial marking

Producer-Consumer systems Definition Reachability Graph Modular PT-nets

The Life of a PT-net

An *execution* of a net is an infinite sequence of markings $M_0M_1 \dots M_n$:

- Start at M_0
- Transition to some marking M_1 via *enabled* transition
- Repeat until no transitions are enabled, or forever
- Stutter (if necessary)

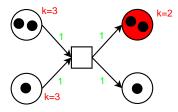
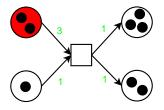
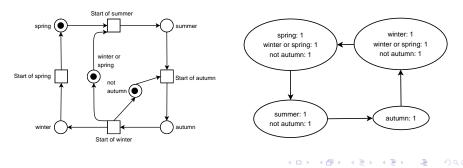


Figure: Destination Full




Figure: Source not sufficient

Producer-Consumer systems Definition Reachability Graph Modular PT-nets

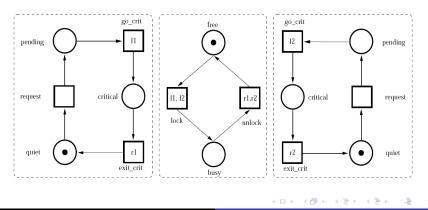
The Life of a PT-net

Definition (Reachability Graph)

- Vertices correspond to all reachable markings
- An edge connects M_i and M_j if there is an enabled transition between M_i and M_j .

Producer-Consumer systems Definition Reachability Graph Modular PT-nets

<ロ> (四) (四) (三) (三)

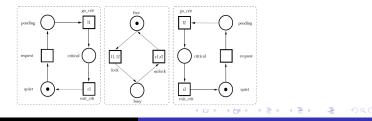

Modular PT-nets

- Use structure to reduce complexity
- Analyze modules separately
- Synchronize when needed via shared transitions

Producer-Consumer systems Definition Reachability Graph Modular PT-nets

Modular PT-nets

- Use structure to reduce complexity
- Analyze modules separately
- Synchronize when needed via shared transitions


Producer-Consumer systems Definition Reachability Graph Modular PT-nets

Modular PT-nets

Definition (Modular PT-net)

A *Modular PT-Net* is a tuple $\Sigma = (S, TF)$ where

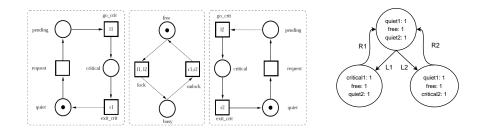
- S is a finite set of modules
 - Each module is a *PT net*
 - The nodes are pairwise disjoint
- *TF* ⊆ 2^{All Trans} is a finite set of *transition fusion sets* (Each module contributes up to 1 transition to a fusion transition.)

Modular Petri Nets...

Producer-Consumer systems Definition Reachability Graph Modular PT-nets

Modular Analysis

- Christensen & Petrucci '00, "Modular Analysis of Petri Nets"
- Key idea: "reachability graph for transition fusions".
 - The Synchronisation graph (V, E)
 - Vertices are markings
 - Start with the initial marking M_0
 - If $M_i \in V$ and M_j can be reached by firing a transition fusion tf, then $M_j \in V$ and $(M_i, tf, M_j) \in E$


(日) (同) (三) (

Producer-Consumer systems Definition Reachability Graph Modular PT-nets

<ロ> (四)、(四)、(日)、(日)、

-2

Modular Analysis

T. Latvala and M. MäkeläPresented by Deian Tabakov Modular Petri Nets...

LTL-X Model Checking Overview Contributions Experimental Results

<ロ> (日) (日) (日) (日) (日)

LTL-X

Recall from Sumit's talk:

Definition (LTL)

- $\varphi \in AP$ is an LTL formula
- If φ and ψ are LTL formulas, so are $\neg \varphi, \mathbf{X} \varphi, \psi \mathbf{U} \varphi$, and $\psi \lor \varphi$.
- Shorthand notation: $\mathbf{F}\varphi \equiv \top \mathbf{U}\varphi$ and $\mathbf{G}\varphi \equiv \neg \mathbf{F}\neg \varphi$.

LTL-X Model Checking Overview Contributions Experimental Results

<ロ> (四) (四) (三) (三)

LTL-X

Recall from Sumit's talk:

Definition (LTL)

- $\varphi \in AP$ is an LTL formula
- If φ and ψ are LTL formulas, so are $\neg \varphi, \mathbf{X} \varphi, \psi \mathbf{U} \varphi$, and $\psi \lor \varphi$.
- Shorthand notation: $\mathbf{F}\varphi \equiv \top \mathbf{U}\varphi$ and $\mathbf{G}\varphi \equiv \neg \mathbf{F}\neg \varphi$.

Today:

Definition (LTL-X)

LTL-X is LTL without the X operator.

Intuition: Cannot distinguish between modules that only differ in their "internal" transitions.

LTL-X Model Checking Overview Contributions Experimental Results

Büchi Automata

Recall: every LTL formula has a corresponding Büchi automaton that accepts the same language.

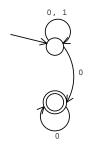


Figure: Finitely many 1's

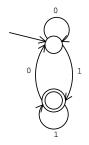


Figure: Infinitely many 1's

LTL-X Model Checking Overview Contributions Experimental Results

Standard Model Checking Approach

- Standard program verification: does program P satisfy property φ?
 - Abstract P and φ to Büchi automata
 - $P \models \varphi \Leftrightarrow L(P) \subseteq L(A_{\varphi})$
 - Equivalently: $A_P \cap \overline{A_{\varphi}} = \emptyset$
- If P is a Petri Net: Synchronize A_{φ} with every move of P.
- Key idea: Synchronize with the visible transitions.

LTL-X Model Checking Overview Contributions Experimental Results

<ロ> (四) (四) (三) (三)

Main Theoretical Contribution

Definition (Product Automaton)

- Two machines in parallel (The net N and $\overline{A_{\varphi}}$)
- Both move on visible transitions
- Only the net moves on invisible transitions

Theorem

Any execution that violates the LTL-X specification will induce either an illegal livelock or an illegal ω -execution, which will also show up in the product automaton.

LTL-X Model Checking Overview Contributions Experimental Results

Implementation

- Experimental Setup
 - Implemented on top of reachability analyzer Maria
 - Compare with Maria and PROD (has P.O. reductions)
- Results
 - Faster for loosely coupled models
 - Faster for models with lots of synchronisation (Leader Election)

- *Questionable* for some models (Sliding Window protocol)
- Faster than PROD (but not too much)

LTL-X Model Checking Overview Contributions Experimental Results

イロト イヨト イヨト イヨト

2

Experiemental Results

Sys-	Flat st	ate space G	= (V, E,	$v_0)$	Mo	dular \mathbf{G}	$= (\mathbf{V}, \mathbf{E})$	$,\mathbf{v}_{0})$	
tem	V	E	product	time/s	$ \mathbf{V} $	$ \mathbf{E} $	product	time/s	ψ
AGV	30,965,760	$216,\!489,\!984$	N/A	N/A	87,480	$464,\!616$	87,492	27.3	$\mathbf{GF}\varphi$
SW_4	6,360	16,608	14,857	1.3	4,456	16,016	8,889	2.6	$\mathbf{GF}\varphi$
SW_5	24,270	68,760	52,891	5.8	16,930	72,660	31,991	13.1	$\mathbf{GF}\varphi$
SW_6	82,884	248,400	$169,\!645$	20.6	57,564	286,488	$103,\!477$	118	$\mathbf{GF} \varphi$
LE_3	159	303	314	0.0	35	65	68	0.0	$\mathbf{FG}\varphi$
LE_4	716	1,851	1,428	0.2	92	229	182	0.1	$\mathbf{F}\mathbf{G}\varphi$
LE_5	3,432	11,198	6,860	1.3	253	802	504	0.2	$\mathbf{FG}\varphi$
LE_6	16,792	66,043	33,580	8.0	715	2,748	1,428	0.8	$\mathbf{FG}\varphi$
LE_7	82,667	380,267	165,330	49.3	2,043	9,212	4,084	2.9	$\mathbf{F}\mathbf{G}\varphi$
LE_8	407,699	2,146,965	$815,\!394$	295	5,865	30,308	11,728	10.2	$\mathbf{F}\mathbf{G}\varphi$

Figure: Against Maria: Number of states in product

LTL-X Model Checking Overview Contributions Experimental Results

イロト イヨト イヨト イヨト

2

Experiemental Results

Sys-	Flat st	ate space G	= (V, E,	v_0)	Mo	dular \mathbf{G}	$= (\mathbf{V}, \mathbf{E})$	$,\mathbf{v}_{0})$	
tem	V	E	product	time/s	$ \mathbf{V} $	$ \mathbf{E} $	product	time/s	ψ
AGV	30,965,760	$216,\!489,\!984$	N/A	N/A	87,480	$464,\!616$	87,492	27.3	$\mathbf{GF}\varphi$
SW_4	6,360	16,608	14,857	1.3	4,456	16,016	8,889	2.6	$\mathbf{GF}\varphi$
SW_5	24,270	68,760	52,891	5.8	16,930	72,660	31,991	13.1	$\mathbf{GF}\varphi$
SW_6	82,884	248,400	$169,\!645$	20.6	57,564	286,488	$103,\!477$	118	$\mathbf{GF} \varphi$
LE_3	159	303	314	0.0	35	65	68	0.0	$\mathbf{FG}\varphi$
LE_4	716	1,851	1,428	0.2	92	229	182	0.1	$\mathbf{FG}\varphi$
LE_5	3,432	11,198	6,860	1.3	253	802	504	0.2	$\mathbf{FG}\varphi$
LE_6	16,792	66,043	33,580	8.0	715	2,748	1,428	0.8	$\mathbf{FG}\varphi$
LE_7	82,667	380,267	165,330	49.3	2,043	9,212	4,084	2.9	$\mathbf{FG}\varphi$
LE_8	407,699	$2,\!146,\!965$	$815,\!394$	295	5,865	30,308	11,728	10.2	$\mathbf{F}\mathbf{G}\varphi$

Figure: Against Maria: Time used

LTL-X Model Checking Overview Contributions Experimental Results

<ロ> (四) (四) (三) (三)

Experiemental Results

Sys-	PROD $G = (V, E, v_0)$				Modular (Maria) $\mathbf{G} = (\mathbf{V}, \mathbf{E}, \mathbf{v}_0)$				
tem	V	E	product	time/s	$ \mathbf{V} $	$ \mathbf{E} $	product	time/s	ψ
$SW_{2,2}$	8,384	13,388	17,622	8.0	7,376	48,860	9,709	8.0	$\mathbf{GF}\varphi$
$\mathrm{SW}_{3,2}$	$131,\!555$	198,466	270,142	245	86,995	$802,\!650$	101,551	148	$\mathbf{GF}\varphi$
$\mathrm{SW}_{3,3}$	422,484	590,298	859,724			2,885,022			
$\mathrm{SW}_{4,2}$	$1,\!434,\!750$	$2,\!056,\!176$	2,914,484	7556	762,870	9,379,788	836,275	3031	$\mathbf{GF}\varphi$

Figure: Against PROD: Number of states in product

LTL-X Model Checking Overview Contributions Experimental Results

<ロ> (四) (四) (三) (三)

3

Experiemental Results

Sys-	PROD $G = (V, E, v_0)$				Modular (Maria) $\mathbf{G} = (\mathbf{V}, \mathbf{E}, \mathbf{v}_0)$				
tem	V	E	product	time/s	$ \mathbf{V} $	$ \mathbf{E} $	product	time/s	ψ
$SW_{2,2}$	8,384	13,388	$17,\!622$	8.0	7,376	48,860	9,709	8.0	$\mathbf{GF}\varphi$
$\mathrm{SW}_{3,2}$	131,555	198,466	270,142	245	86,995	802,650	101,551	148	$\mathbf{GF} \varphi$
$\mathrm{SW}_{3,3}$	422,484	590,298	859,724	969	267, 192	2,885,022	302,551	757	$\mathbf{GF}\varphi$
$SW_{4,2}$	$1,\!434,\!750$	$2,\!056,\!176$	2,914,484	7556	762,870	$9,\!379,\!788$	836,275	3031	$\mathbf{GF}\varphi$

Figure: Against PROD: Time used

Summary and Conclusions

 LTL-X model checking on the synchronization graph of modular Petri Nets

- Implementation available
- Method relies on efficient modular analysis