
Probabilistic Boolean Logic

Lakshmi N. B. Chakrapani, Krishna V. Palem

College of Computing

Georgia Institute of Technology

Atlanta, Georgia, USA.

lnc@gatech.edu

In this paper, we introduce and define Probabilistic Boolean Logic, whose logical operators are

“correct” with a probability 0 < p ≤ 1. Analogous to conventional Boolean logic, we define

well-formed probabilistic Boolean formulae (pbf). Every pbf is associated with two attributes,

the underlying Boolean function it computes, and a for a specific input, the probability that

this boolean function is computed correctly. To characterize these attributes simultaneously, we

introduce the concept of a sample space generator associated with any pbf. For a specific input, a

sample space generator of a pbf generates a sample space, which defines the random experiment

which determines the value of the pbf. Using the notion of sample space generators, we define

equivalence of two pbf, derive identities and properties. Based on properties of sample space

generators, we prove that for any probabilistic boolean function, there is a probabilistic boolean

formula which computes it and vice versa. We introduce and relate probabilistic boolean circuits to

classical models of computation, such as randomized circuits and probabilistic automata. Synthesis

and optimization of probabilistic boolean circuits from specifications (in the form of probabilistic

boolean functions) has implications to circuit design with unreliable logic gates. It has been

experimentally demonstrated earlier that such circuits which utilize unreliable logic gates, can

dramatically reduce energy consumption of certain applications and are vital towards sustaining

Moore’s law into the next decades. Extending this, we derive a theoretical result to prove that

in the domain of cmos, transition functions of probabilistic automata maybe realized with lesser

energy complexity by probabilistic circuits when compared to randomized circuits of identical size

and depth.

This work is supported in part by DARPA under seedling contract #F30602-02-2-0124, by the DARPA ACIP program under

contract #FA8650-04-C-7126 through a subcontract from USC-ISI and by an award from Intel Corporation.

Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use provided that

the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server notice, the title of the

publication, and its date appear, and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to

republish, to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–29.

2 ·

Categories and Subject Descriptors: []:

General Terms:

Additional Key Words and Phrases:

1. INTRODUCTION, RELATED WORK AND ROADMAP

The very notion of automated computation, the machines that can perform such computation and the lan-

guages to program such machines has its roots in the study and advances in logic (see [Davis 2001] for

an excellent overview and a historical perspective, which relates advances in logic to the birth of “modern”

computers and computer science in their present form). Narrowly and considering one aspect of comput-

ers, Boolean logic and the circuit model of computation based on boolean logic have spurred advances

in the specification, and automated construction of silicon-based digital vlsi circuits (which conventional

computers are built from). Concurrently, in the domain of computer-science, specifically in the domain of

algorithms, probability has played a vital role from Rabin’s work on probabilistic automata and probabilistic

algorithms [Rabin 1963; 1976] and Chaitin and Schwartz’s work on information theory [Chaitin and Schwartz

1978], to name a few. These seminal contributions have opened up vast areas of study, by incorporating

probability and randomness into consideration. Models of computation which incorporate probability into

consideration (on which these algorithms execute), are typically based on deterministic logical operations

(“steps” or “gates” for example), which consume “coin tosses” or random bits. We shall refer to such models

of computation as “explicitly” probabilistic. Models of computation which are “implicitly” probabilistic—

where elements such as gates were susceptible to erroneous behavior—were chiefly studied in the context of

unreliable computing elements with an aim of removing (or reducing) such probabilistic (unreliable) behavior.

For example, von-Neumann’s seminal work [von Neumann 1956] was inspired by the need for implementing

reliable computing in the presence of faults. More recently, Pippenger shows how boolean functions may be

computed reliably (with constant multiplicative redundancy) by gates susceptible to noise [Pippenger et al.

1991; Pippenger 1985; 1989] and in the domain of cmos, Bahar et al. demonstrate methods for improving

the noise immunity of logic circuits by adopting design styles based on Markov Random Fields [Bahar et al.

2003; Nepal et al. 2005].

The ability of conventional Boolean logic to specify and model the behavior of digital circuits is increasingly

challenged (due to reasons elaborated below). Motivated by this and a desire to reason about probability

and Boolean logic in an unified model, in this work, we study Probabilistic Boolean Logic and an implicitly

probabilistic model of computation based on this logic. In this model, we capture Boolean logic as well as

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 3

probability in a unified model, through a probabilistic extension to boolean logic where the three canonical

operators—conjunction, disjunction and negation—have an associated probability p (0 < p ≤ 1) of “cor-

rectness”. Formulae are composed of probabilistic boolean operators, boolean variables and the constants

0, 1. For any valid input to a probabilistic boolean formula (pbf), the value of a pbf is the outcome of a

random experiment, whose sample space is determined by (i) the input and the operators in the pbf (ii)

their associated probabilities of correctness. To simultaneously capture these attributes, and to “interpret”

probabilistic boolean formulae, we introduce the concept of a sample space generator, which is a set of events,

each associated with a (deterministic) boolean formula. For a specific input, the sample space generator can

be used to construct the sample space which determines the value of the pbf. Subsequently, we introduce

and study Probabilistic Boolean Circuits, a model of computation based on probabilistic boolean logic.

The study of probabilistic boolean logic and circuits and relating them to classical models of computation—

including the celebrated probabilistic automata model—is the first contribution of this work. One may be

led to thinking that this logic and consequently, the computational model based on this logic, are equiva-

lent to a conventional model of computation with input coin tosses (models such as the randomized circuit

model [Motwani and Raghavan 1995] are good examples). However, we show that probabilistic boolean

circuits, composed of “implicitly” probabilistic gates, may be identical to randomized circuits (employing

“explicit” randomness) in terms of conventional complexity measures like size and depth, but differ in en-

ergy consumption in any physical implementation, because of thermodynamic reasons. This is the second

contribution of this work. This result is an extension of prior work: (i) A theoretical result which showed

such a separation in the energy complexity between probabilistic algorithms and deterministic algorithms

(of identical time complexity) in the bram model of computation [Palem 2003; 2005] and (ii) An empirical

demonstration that cmos circuits which are susceptible to noise—and hence “unreliable”—can implement

certain class of applications in an energy efficient manner when compared to “reliable” circuits which re-

alize equivalent functionality [Chakrapani et al. 2006; George et al. 2006; Chakrapani et al. 2007]. Such

study of implicitly probabilistic models of computation and their practical implementation gain renewed

urgency, based on recent trends dictated by Moore’s law which indicate a shift from “deterministic” and

“reliable” cmos devices to those whose behavior is “statistical” or “unreliable”. For example, the itrs road

map forecasts [itrs 2002] “Relaxing the requirement of 100% correctness for devices and interconnects may

dramatically reduce costs of manufacturing, verification, and test. Such a paradigm shift is likely forced in

any case by technology scaling, which leads to more transient and permanent failures of signals, logic values,

devices, and interconnects.” This probabilistic behavior of cmos building blocks in future technology gen-

erations, and its likely impact on computing platforms has been recognized by researchers in the industry;

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 ·

to cite an example, Borkar notes We will shift from the deterministic designs of today to probabilistic and

statistical designs of the future· · ·So we now say, “If I do this in the design, the transistors and therefore the

chip will perform in this way.” In the future, we will say, “If I design with this logic depth or this transistor

size, I will increase the probability that a given chip will perform in this way.”. This has led to a renewed

interest in incorporating probability into cmos device and architecture models. Since probabilistic boolean

circuits can serve as a model for VLSI logic circuits which are susceptible to transient noise (and faults),

it can be used as a sound theoretical basis for advances in the construction of “statistical vlsi designs”.

The foundations introduced in this paper enable us to characterize, synthesize and optimize probabilistic

boolean circuits from probabilistic specifications. This can have a dramatic impact on energy consumption

of VLSI circuits [Chakrapani et al. 2007; George et al. 2006] and can help sustain Moore’s law into the next

decade [Moore’s Law ; Korkmaz et al. 2006]. This is the third contribution of this work.

1.1 Roadmap

2. PROBABILISTIC BOOLEAN FORMULAE

In this section, we introduce probabilistic boolean formulae and their properties. We first need to define

the notion of equivalence of two (deterministic) boolean formulae. Informally, two boolean formulae are

considered to be equivalent, if for any assignment of boolean constants to the variables in the formulae, the

value of the formulae are identical. For any boolean formula F consider the linearly ordered set of variables

in F , denoted by varF and let |varF | = k. Let the set of all k− bit binary strings be denoted by {0, 1}k.

Consider any I ∈ {0, 1}k. The value of the formula F when the jth bit of I is assigned to the jth variable in

varF will be referred to as “the value of F for an input I” or denoted by F (I).

Informally, probabilistic boolean formulae—like their deterministic counterparts—can be constructed from

the boolean constants 0, 1, boolean variables, and the three canonical boolean operators: conjunction, dis-

junction and negation. In addition, each of these boolean operators are associated with a parameter p where

0 < p ≤ 1 which defines its “probability of correctness”. Initially, we consider only rational probabilities

of correctness, though relaxing this requirement introduces several interesting properties. Henceforth in the

sequel, unless specified otherwise, any probability value p will be defined to be 0 < p ≤ 1 and p ∈ Q.

Analogous to well formed boolean formulae, valid probabilistic boolean formulae can be defined as follows:

(1) Any boolean variable and the values 0,1 are valid probabilistic boolean formulae. Typically we shall

denote boolean variables using lower case alphabets.

(2) If F , G are valid probabilistic boolean formulae, (F ∨p G), (¬pF) and (F ∧p G) are valid probabilistic

boolean formulae.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 5

Henceforth, we will use the term “probabilistic boolean formula”, or the notation pbf to mean “valid

probabilistic boolean formula”. In addition, the length of a probabilistic boolean formula would refer to the

total number of operators in the formula.

2.1 Sample Space

The previous section introduced the concept of a pbf. Intuitively, for any assignment of values to the variables

in a pbf, the value of the pbf is determined by (i) the boolean operators in the pbf (ii) the probabilities

of correctness of each of the boolean operators in the pbf. Whereas the former defines the “underlying”

(deterministic) boolean function, the latter characterizes the random experiment which determines if this

boolean function is evaluated “correctly”. Note that the probability that the underlying boolean function

is evaluated correctly might vary with the input (and indeed it does). We will first consider the random

experiment associated with a probabilistic boolean formula and a fixed input and characterize its sample

space.

Consider a pbf F = (x∨p y), where x, y are boolean variables. Consider an input I ∈ {0, 1}2. In particular

let I =< 1, 0 > where 1 is assigned to x and 0 to y. There exists a sample space, denoted by SF (I), where

(p)|SF (I)| sample points in SF (I) correspond to the event F ≡ 1, which corresponds to the event ∨p is

evaluated “correctly” and hence the value of F is (1∨ 0) ≡ 1. Further, (1− p)|SF (I)| sample points in SF (I)

correspond to the event F ≡ 0, which corresponds to the event ∨p is evaluated “incorrectly” and hence the

value of F is ¬(1 ∨ 0) ≡ 0. For convenience we refer to the former as “sample points of the type 1” and the

latter as “sample points of the type 0”. We observe that the value of F is associated with a sample space for

each of the four inputs < 0, 0 >, < 0, 1 >, < 1, 0 > and < 1, 1 >, furthermore, the sample points in each of

these sample spaces are of type 0 or are of type 1.

The value of a pbf F = (x ∨p y) for an input I, denoted by F (I), is equal to the outcome of a random

experiment whose sample space is SF (I). This captures the notion that “for an input I, there is a probability

p that the value of the probabilistic boolean formula (x∨p y) is equal to the value of (1∨0) and a probability

(1− p) that it is equal to the value of ¬(1∨ 0)”. Or, in simpler terms, there is a probability p that the value

of x ∨p y is “correct” and a probability 1 − p that it is “incorrect” (where the “correct” value is defined to

be the value of x∨ y). Correspondingly, sample spaces of F when F is of the form (x∧p y) and (¬px) can be

defined in a similar fashion. Consider a pbf of length k + 1 where k > 0 and let it be denoted by H. Since

H is a valid probabilistic boolean formula, H is of the form (F ∨p G) or (F ∧p G) or (¬pF) where F and G

are of length k or less. Let H ≡ (F ∨p G) where p = m
n and let SF (I) and SG(I) be the sample spaces of F

and G for any input I to H. The sample space of H for an input I denoted by SH(I), can be constructed as

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 ·

follows. Initially let SH(I) ≡ φ. For any (si, ŝj) ∈ SF (I) × SG(I), where si is of type ti and ŝj is of type t̂j ,

add m sample points of the type (ti ∨ t̂j) to SH(I) and n−m sample points of the type ¬(ti ∨ t̂j) to SH(I).

This captures the notion that given F evaluates to ti and G evaluates to tj , the value of H is “correct” with

a probability m
n and “incorrect” with the probability 1 − m

n . The technique for constructing sample space

for the case where H ≡ F ∧p G and H ≡ ¬pF is similar. Since sample spaces exist for valid inputs to pbf

of size 0 and 1, sample spaces exist for valid inputs to any valid pbf of length k > 1.

We note that the given a pbf and an input to the pbf, the corresponding sample space is not unique,

since several sample spaces may be equivalent. Consider two sample spaces S and S ′. By definition, sample

points in these sample spaces are of type 0 or 1. Let Stype=0 ⊆ S be the set of sample points in S of type 0

and correspondingly let S ′type=0
⊆ S ′ be the set of sample points in S ′ of type 0. The S is equivalent to S ′,

denoted by S ≡ S ′ if

|Stype=0|
|S|

=
|S ′type=0

|
|S ′|

(1)

2.2 Sample Space Generator

As noted before, for any probabilistic boolean formula F = (x ∨p y), a sample space exists for each of the

valid inputs(in this case, four) to F . We may now define the notion of a sample space generator SF which

will serve as a model to provide semantics to pbf.

Definition 2.1. A sample space generator SF of a probabilistic boolean formula F , is a set of sample

points such that any sample point si ∈ SF is of type ti, where ti is a boolean formula. Furthermore,

(1) For any si ∈ SF which is of type ti the set of boolean variables in ti is a subset of varF ∪ {0, 1}, where

varF is the set of boolean variables in F .

(2) For any valid input I to F , the set {sample point of the type ti(I) : si ∈ SF } ≡ SF (I). Here ti(I) is used

to denote the value of the boolean formula ti, where for an assignment from {0, 1} to a boolean variable

x ∈ varF , an identical assignment is made to x if x ∈ varti

In other words, the sample space generator SF associated with a probabilistic boolean formula F , can

be used to generate the sample space SF (I) for any input I to F , by evaluating the individual boolean

formula associated with each of the sample points in SF to yield SF (I). In general, given a probabilistic

boolean formula, many distinct sample space generators might satisfy the conditions outlined above. We

outline the rules for computing one such sample space generator (which we will refer to as the “canonical”

sample space generator). Let H be a probabilistic boolean formula of the form H = (F ∨p G) where F,G

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 7

are probabilistic boolean formulae and SF , SG are the sample space generators which correspond to F,G

respectively. Trivially, the sample space generator of a boolean formula of the type F ≡ x where x is a

boolean variable, is a set with one sample point of the type x. The sample space generator SH which

corresponds to the probabilistic boolean formula H can be constructed as follows

Let p = m
n where m,n are relatively prime. Let

ŜHc ≡ {sample points of type (ti ∨ tj) : si ∈ SF , sj ∈ SG}

SHc = {m sample points, each of the type tk : sk ∈ ŜHc}

ŜHw ≡ {sample points of the type ¬(ti ∨ tj) : si ∈ SF , sj ∈ SG}

SHw = {(n−m) sample points, each of the type tl : sl ∈ ŜHw}

SH = SHc ∪ SHw

To illustrate, consider a probabilistic boolean formula F = (x ∨p y). Let p = m
n such that m and n are

relatively prime, sample space generator SF of F is constructed as follows. Let SFc be a set such that

|SFc| = m and for any sample point sk ∈ SFc, sk is of the type (x∨ y). Similarly, let SFw be a set such that

|SFw| = (n−m) and for any sample point sl ∈ SFw, sl is of the type ¬(x ∨ y). Then,

SF = SFc ∪ SFw (2)

We have illustrated the technique to construct sample space generators of probabilistic boolean formulae

of the type H = (F ∨p G) where F and G are probabilistic boolean formulae. This can trivially be extended

to probabilistic boolean formulae of the type H = (F ∧p G) as follows: Let p = m
n where m,n are relatively

prime.

ŜHc ≡ {sample points of type (ti ∧ tj) : si ∈ SF , sj ∈ SG}

SHc = {m sample points, each of the type tk : sk ∈ ŜHc}

ŜHw ≡ {sample points of the type ¬(ti ∧ tj) : si ∈ SF , sj ∈ SG}

SHw = {(n−m) sample points, each of the type tl : sl ∈ ŜHw}

SH = SHc ∪ SHw

Similarly for probabilistic boolean formulae of the type H = (¬pF) where F is a probabilistic boolean

formula, the sample space generator can be constructed as follows. Let p = m
n where m,n are relatively

prime.

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 ·

ŜHc ≡ {sample points of type (¬ti) : si ∈ SF }

SHc = {m sample points, each of the type tk : sk ∈ ŜHc}

ŜHw ≡ {sample points of the type ti : si ∈ SF }

SHw = {(n−m) sample points, each of the type tl : sl ∈ ŜHw}

SH = SHc ∪ SHw

Consider F , a pbf of length 1. Hence, F is of the form ¬px, (x∨p y) or (x∧p y) where x and y are boolean

variables or constants. By exhaustive listing of cases it can be demonstrated that

Claim 2.2.1. For any valid input I to a pbf F of length 1, if SF is the canonical sample space generator

constructed using the method above, the set {sample point of the type ti(I) : si ∈ SF } ≡ SF (I)

Theorem 2.2. For every probabilistic boolean formula F , there exists a valid sample space generator SF

associated with F

Proof. By induction

Valid sample space generators exist for all boolean variables and the values 0, 1 and all boolean formulae of

length one (claim 2.2.1). Let H be of length k + 1 where k ≥ 1. Assume that valid sample space generators

exist for all boolean formulae of length k or less. Then, from the definition of valid probabilistic boolean

formula, H is of the form (¬pF), (F ∨p G) or (F ∧p G) where G and F are probabilistic boolean formulae

of length k or less.

Assume that H is of the form (F ∨p G) (the proof for the other cases are similar). Let p = m
n where m

and n are relatively prime. Let the sample space generator of H be constructed using the method described

in Section 2.1 and let it be SH . By assumption, the sample space generators of F and G exist and are SF

and SG respectively. For any valid input I to H, the sample spaces SF (I) and SG(I), generated by SF and

SG respectively, characterize F and G respectively, since SF and SG are valid sample space generators (from

inductive assumption). SF (I) and SG(I) are composed of events of two types, 0 and 1 (from definition of

sample spaces).

Consider SF (I) ×SG(I). For any (si, sj) ∈ SF (I) ×SG(I) where si, sj are of type ti, tj ∈ {0, 1} respectively,

m sample points in SH(I) are of type ti ∨ tj (from construction). Correspondingly (n−m) sample points in

SH(I) are not of type ti ∨ tj . Thereby, for any input I to H, the fraction of the number of sample points in

SH(I) equal to the value of F (I) ∨G(I) is m
n = p. This is equivalent to the sample space of H(I) and hence

SH(I) is a sample space which characterizes the value of H. Hence SH is a valid sample space generator.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 9

3. PROPERTIES OF PROBABILISTIC BOOLEAN FORMULAE

In this section, we explore a few properties of probabilistic boolean formulae by studying the properties

of the underlying sample space generators. In particular, we show that probabilistic boolean formulae are

commutative but not associative.

3.1 Commutativity

Consider a pbf H of the form (x ∨p y), where x, y are boolean variables. Let SH be the sample space

generator of H. The sample points in SH are either of type x∨ y or ¬(x∨ y), furthermore x∨ y ≡ y ∨ x and

¬(x ∨ y) ≡ ¬(y ∨ x), it immediately follows that

Theorem 3.1. The operator ∨p is commutative

Corollary 3.2. The operator ∧p is commutative.

3.2 Associativity

Probabilistic boolean formulae, in general are not associative. This can be demonstrated by assuming that

probabilistic boolean formulae are associative and constructing a simple counter-example. However, we shall

construct a more complex proof with an aim of demonstrating that probabilistic boolean formulae are not

associative, while simultaneously providing insight into the relationship between the probability with which

the underlying deterministic boolean formula is evaluated correctly and the structure of the probabilistic

boolean formula. As a side-effect, we also demonstrate that certain types of probabilistic boolean formula

satisfy the probability threshold conjecture.

To study the associativity of probabilistic boolean formulae, we define a probabilistic coloring experiment

E as follows. Consider a balanced binary tree G = (V,E), where V is the set of vertices and E ⊆ (V × V) a

set of directed edges. Let |V | = 2n+1 − 1 for any positive integer n. Furthermore, let a directed path exist

from the root vertex to any leaf vertex. We shall refer to this tree as a tree of size 2n+1−1 and height n. For

any directed edge (u, v) ∈ E, we will refer to v as the “child of” u and u as the “parent of” v. Clearly, every

non-leaf vertex has two children and the root vertex has no parent. Let the 1
2 < p ≤ 1 be the “probability

parameter” associated with every vertex of G. The vertices of tree is colored red or blue according to the

following rules. For any non leaf vertex v,

(1) If both its children are colored red, v is colored red with a probability p, and blue with a probability

1− p.

(2) If at least one of its children is colored blue, v is colored blue with a probability p and red with probability

1− p.

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 ·

Lemma 3.2.1. If every leaf vertex of G is colored blue, the probability that the root vertex of G is colored

red by E is at most
∑n

i=1 qi, where q = 1− p.

Proof. Henceforth, for the purposes of this proof, we consider only balanced binary directed trees, such

that a directed path exists from the root vertex to any leaf vertex. Furthermore, all leaf vertices are colored

blue and each of the vertices have a probability parameter p.

Consider a tree of size 3. This tree has a height 1. The probability that the root vertex of this tree is

colored red by E is f1 = q = 1− p (from the definition of E).

For a tree of height 2 where the probability parameter of each of the vertices is p, the probability that the

root is colored red by E is given by q(1− f1)2 + 2q(1− f1)f1 + (1− q)f2
1 . In general, if fk is the probability

that root of tree of height k > 1 is colored red by E , fk = q(1− fk−1)2 + 2q(1− fk−1)fk−1 + (1− q)f2
k−1.

Consider a tree of height 2. Then

f2 = q(1− f1)2 + 2q(1− f1)f1 + (1− q)f2
1

= q(1− f1)(1− f1 + 2f1) + (1− q)f2
1

= q(1− f2
1) + f2

1 − qf2
1

= q − 2qf2
1 + f2

1

= q + f2
1 (1− 2q)

< q + f2
1 (1− q) since 0 ≤ q ≤ 1

= q + q2(1− q) since f1 = q

< q + q2 since 0 ≤ q ≤ 1

In general, if fk < q + q2 + q3 + · · ·+ qk,

fk+1 < q + f2
k (1− q)

< q + (q + q2 + q3 + · · ·+ qk)(q + q2 + q3 + · · ·+ qk)(1− q)

= q + (q + q2 + q3 + · · ·+ qk)(q − qk+1)

< q + q2 + q3 + · · ·+ qk+1 since 0 ≤ qk+1 ≤ 1

Hence fn <
∑n

i=1 qi. Therefore the root vertex of a tree of height n where the probability parameter of each

of the vertices is p, whose leaves are colored blue, is colored red by the probabilistic coloring experiment E

with a probability at most
∑n

i=1 qi, where q = 1− p.

Lemma 3.2.2. If probability parameter of each of the vertices of G is p = (1− 1
2c) and any leaf vertex of

G is colored red with a probability p̂ > 1√
2
, (and blue with a probability 1 − p̂), the probability that the root

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 11

vertex of G is colored red by E is at most

(
1

2c−1
− 1

2c(n−c′)

)

where c is some positive real constant and c′ = d− log(log(1
p̂))e

Proof. Henceforth, for the purposes of this proof, we consider only balanced binary directed trees, such

that a directed path exists from any leaf vertex to the root vertex.

Consider a tree of height n. Let q = (1−p). If fk is the probability that the root vertex of a tree of height

k is colored red by E ,

fk+1 = q(1− fk)2 + 2q(1− fk)fk + (1− q)f2
k

= q + f2
k (1− 2q)

whenever fk > 1√
2
, q < 2qf2

k and hence q − 2qf2
k < 0. Hence whenever fk > 1√

2
, fk+1 ≤ f2

k

Since f0 = p̂ (the leaves, trivially are trees of height 0 and are colored red with a probability p̂), f1 < f2
0 .

Consider min c′ such that, fc′ < 1
2 .

p̂2c′

<
1
2

(3)

2c′ log(p̂) < −1 (4)

2c′ <
1

log
(

1
p̂

) (5)

c′ =
⌈
− log

(
log
(

1
p̂

))⌉
(6)

Let w be the root vertex of G and its two children be u, v respectively. Let us define the leaf vertices to

be at level 0 of the tree, the vertices adjacent to the leaves to be at level 1 of the tree and so on. Consider

the color of any vertex at level c′ of the tree. It is red with a probability at most 1
2 from Equation 6.

Consider the case when the color of the first consecutive 2n−c′−1 vertices (the vertices of the sub-tree

rooted at u) is red and the color of the rest of the 2n−c′−1 vertices is blue. This is the case when the root

is colored blue with the least probability (see appendix). From Lemma 3.2.1, u is colored red by E with a

probability at most
∑n−c′−1

i=1 qi. Hence, w is colored red by E with a probability

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 ·

fn ≤ (1− q)

n−c′−1∑
i=1

qi

+ q

1−
n−c′−1∑

i=1

qi


= (1− q)

(
q − qn−c′

1− q

)
+ q

(
1−

[
q − qn−c′

1− q

])

= q − qn−c′ + q −

[
q2 − qn−c′+1

1− q

]
for n > c′ + 1 and c > 1 we have

fn ≤ 2q − qn−c′

Since q = 1
2c , we have fn ≤ 1

2c−1 − 1
2c(n−c′) where c′ =

⌈
− log

(
log
(

1
p̂

))⌉
Consider a tree H = (V,E), where V is the set of vertices and E ⊆ (V × V) a set of directed edges. Let

|V | = 2n + 1 for some positive integer n. Let the vertices be labeled v1, v2, v3, · · · , v2n+1. For 1 < i ≤ n, let

the vertex vi have two children labeled vi−1 and vn+i+1 respectively and for v1, the children be vn+1, vn+2.

In H, a directed path exists from the root vertex to any leaf vertex, each non-leaf vertex has two children

and both children of exactly one vertex are leaves. Furthermore n−1 vertices have one leaf and one non-leaf

vertex as children. The height of such a tree is n and we shall refer to such trees as a “linear” tree. We shall

consider a coloring experiment E as described above. Then

Lemma 3.2.3. If probability parameter of each of the vertices of H is p = (1− 1
2c) and any leaf vertex of

H is colored red with a probability p̂ (and blue with a probability 1 − p̂), the probability that the root vertex

of H is colored red by E is at least

1
2c(1− p̂) + 3p̂

[
1 +

(2c − 3)k(1− p̂)

2(k+1
c′ +c(k−1))

]

1
2c−3 + 2p̂

+
1

2(n+1
c′)

where c is some positive real constant and c′ = log 1
p̂
(2) .

Proof. For the purposes of this proof, all trees are considered to be linear trees, whose leaves are colored

red with a probability p̂.

Consider a linear tree of height 1. Let q = 1 − p. The two leaves of this tree be colored red with a

probability p̂ . The probability that the root vertex of this tree is colored red by E is f1 = q + (p̂)2(2p− 1).

In general, if fk is the probability that the root vertex of a tree of height k is colored red, then

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 13

fk+1 = q + p̂fk(2p− 1)

> q + p̂fk(1− 3q)

If r = p̂(1− 3q),

f1 > q + p̂r

f2 > q + f1r

= q + qr + p̂r2

f3 > q + f2r

= q + qr + qr2 + p̂r3

and in general

fk > q + qr + qr2 + · · ·+ qrk−1 + p̂rk

= q

(
1− rk

1− r

)
+ p̂rk

Let c′ = log 1
p̂
(2)

fk >
q

1− r
(1− rk) + p̂rk

=
q

1− p̂ + 3qp̂

(
1− [p̂]k [1− 3q]k

)
+ (p̂)k+1 (1− 3q)k

=
1

2c(1− p̂) + 3p̂

(
1− [p̂]k

[
1− 3

2c

]k

+ (2c(1− p̂) + 3p̂) [p̂]k+1

[
1− 3

2c

]k
)

>
1

2c(1− p̂) + 3p̂

(
1 + (2c(1− p̂)) [p̂]k+1

[
1− 3

2c

]k
)

=
1

2c(1− p̂) + 3p̂

[
1 +

(2c − 3)k(1− p̂)

2(k+1
c′ +c(k−1))

]
and hence, for a linear tree of height n where each of the vertices are associated with a probability parameter

p = 1− 1
2c and the leaf vertices are colored red with a probability p̂ (and blue with a probability 1− p̂), the

probability that the root vertex is colored red by E is at least

1
2c(1− p̂) + 3p̂

[
1 +

(2c − 3)n(1− p̂)

2(n+1
c′ +c(n−1))

]

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 ·

Similarly, if t = p̂(1− 2q),

fk =
q

1− t
(1− tk) + p̂tk

=

(
1
2c

)
1− p̂

[
1− 2

2c

] (1− [p̂]k
[
1− 2

2c

]k
)

+ (p̂)k+1

(
1− 2

2c

)k

=
1

2c(1− p̂) + 2p̂

(
1− [p̂]k

[
1− 2

2c

]k
)

+ (p̂)k+1

(
1− 2

2c

)k

<
1

2c(1− p̂) + 2p̂
+

1

2(k+1
c′)

and hence, for a linear tree of height n where each of the vertices are associated with a probability parameter

p = 1 − 1
2c and the leaf vertices are colored red with a probability 7

8 (and blue with a probability 1
8), the

probability that the root vertex is colored red by E is at most

1
2c(1− p̂) + 2p̂

+
1

2(n+1
c′)

Lemma 3.2.2 and Lemma 3.2.3 show that the probability that the root vertex is colored red by the

probabilistic coloring experiment is different for a balanced binary tree and a linear tree, which have the

same number of leaf vertices (each of which are colored red with a probability p̂). In both of these trees,

the probability parameter of each vertex is 1 − 1
2c . In fact a general inequality can be derived, where the

probability parameters of the vertices are different.

Consider an tree G = (V,E), where V is the set of vertices and E ⊆ V × V a set of directed edges.

Furthermore, let a directed path exist from any leaf vertex to the root vertex. We had considered a proba-

bilistic coloring experiment, where the probability parameter of each vertex of the tree was equal to p. We

may consider a variant of the experiment where the probability parameter of a vertex vi is pi. Then the

probabilistic coloring experiment E may be redefined as follows.

(1) The leaf vertices of G are colored red with a probability r < MIN(pj) : vj ∈ V .

(2) If vi is a non leaf vertex, and both its children are colored red, vi is colored red with a probability pi

and blue with a probability qi = 1− pi.

(3) If vi is a non leaf vertex, and at least one of its children is colored blue, vi is colored blue with a

probability pi (and red with probability qi = 1− pi).

Without loss of generality, let vk be the root vertex of G and v1 be a leaf vertex. Let the directed path

from vk to v1 be (vk, vk−1), (vk−1, vk−2), · · · , (v2, v1). Furthermore, if vi is any non leaf vertex in the path,

let the children of vi be vi−1 and v̂i−1. Consider a graph H = (V, Ê) where for a particular 2 < j ≤ k,

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 15

Ê = E − {(v2, v1), (vj , v̂j−1)} ∪ {(v2, v̂j−1), (vj , v1)}. Informally, H is obtained by attaching a leaf vertex

to vj and the sub-tree rooted at v̂j−1 to v2. We shall refer to H as the graph produced by a linearizing

transformation of G.

Lemma 3.2.4. If H is the tree obtained by a linearizing transformation of G, the probability that the root

vertex of H is colored red by E is at least equal to the probability that the root vertex of G is colored red by E.

Proof. Initially, let j = k (that is, let vj = vk, the root vertex). For any vertex v̂i let fi denote the

probability that the vertex is colored red by E and let fG be the probability that the root vertex of G is

colored red by E . From Lemma 3.2.1, it is easy to see that the probability that the root vertex of G is colored

red by E is

fG = r

i=k−1∏
i=1

fi(1− 2qi+1)

+ q2

i=k−1∏
i=2

fi(1− 2qi+1)

+ q3

i=k−1∏
i=3

fi(1− 2qi+1)

+ · · ·

+ qk−1fk−1(1− 2qk)

+ qk

Similarly for H

fH = r(1− 2qk)fk−1

i=k−2∏
i=1

fi(1− 2qi+1)

+ r(1− 2qk)q2

i=k−2∏
i=2

fi(1− 2qi+1)

+ · · ·

+ r(1− 2qk)qk−2fk−2(1− 2qk−1)

+ r(1− 2qk)qk−1

+ qk

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 ·

And hence,

fH − fG = (r − fk−1)(1− 2qk)q2

i=k−2∏
i=2

fi(1− 2qi+1)

+ (r − fk−1)(1− 2qk)q3

i=k−2∏
i=3

fi(1− 2qi+1)

+ · · ·

+ (r − fk−1)(1− 2qk)qk−1

fH − fG ≥ 0 since each of the product terms is positive and r ≤ fk−1. Let j 6= k, then for some intermediate

node vj , the probability of vj being colored red by E in H is greater than equal to the probability of vj being

colored red by E in G by the above argument. Hence, again, fH ≥ fG.

Claim 3.2.1. If G is a balanced binary tree with n leaves, there exists a sequence of linearizing transfor-

mations on G which produces H a linear tree with n leaves.

Proof. The proof outline is by induction. Consider a balanced binary tree G = (V,E) with 4 leaves (and

height 2). If the two children of the root v0 are labeled v1, v2 and their children are labeled v3, v4 and v5, v6

respectively, the linearizing transformation H = (V, Ê) where Ê = E−{(v1, v3), (v0, v2)}∪{(v1, v2), (v0, v3)}

is the linearizing transformation which yields a linear tree H from G.

In general, assume that a sequence linearizing transformations which yields a linear tree exists for a

balanced binary tree of height k. consider G, a tree of height k + 1 with v0 as the root vertex. Let v1, v2

be the two children of the root node. The sub-trees rooted at v1, v2 are of height k and hence, for each

sub-tree, a sequence of linearizing transformations exist, which results in a linear tree rooted at v1 and v2

respectively. Let these sequences be S1, S2 respectively. Let H ′ = (V,E′) be the tree obtained by applying

S1 on v1. Furthermore, let vk be a vertex in the linear sub-tree rooted in v1 such that vk has two leaf children

vk+1, v̂k. Let Ĥ = (V, Ê) where Ê = E′−{(vk, vk+1), (v0, v2)}∪{(v0, vk+1), (vk, v2)}. Applying the sequence

of linearizing transformations on the balanced binary sub-tree rooted at v2 in Ĥ yields a linear tree. Hence

a sequence of linearizing transformations on G yielding a linear tree exists.

Theorem 3.3. Probabilistic boolean formulae are not associative

Proof. We will construct two probabilistic boolean formulae, F and F ′, in disjunctive normal form over

m variables with identical clauses but different associations. We will demonstrate that for a fixed assignment

of I = 1m to each variable in F and F ′, F (I) 6≡ F ′(I) and hence F 6≡ F ′.

Consider a set of m boolean variables and their negations. We pick 3 variables from this set (with

replacement) to form a deterministic conjunction. This will be referred to “picking a conjunctive clause of

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 17

size 3 uniformly at random from a set of m variables”. The probability that such a clause is satisfied by the

assignment 1m is 1
8 .

Pick n (where n = 2l for some positive integer l) conjunctive clauses of size 3, uniformly at random from

a set of m variables. Let these clauses be labeled C1, C2, · · · , Cn. For some p = 1 − 1
2c where c is some

positive real constant, construct the probabilistic boolean formula F ≡ Gn as follows. Let G2 = (C1 ∨p C2)

and Gi = (Gi−1 ∨p Ci) for 2 < i ≤ n. Correspondingly, construct F ′ ≡ G′
1 as follows. For 1 ≤ i < 2l,

G′
i = (G′

2i ∨p G′
2i+1) and for 2l ≤ i < 2l + n, G′

i ≡ Ci−2l+1. F and F ′ are in disjunctive normal form, with

identical clauses but different associations.

For a fixed assignment 1m, if unsatF is the probability that F is not satisfied,

unsatF >
1

2c−3 + 2.625

[
1 +

(2c − 3)n−1

2(n
c′ +c(n−2)+3)

]
where c′ ≈ 5.2. This is from Lemma 3.2.3 and the observations

—A linear tree with n leaves has a height n− 1

—The boolean constant 0 corresponds to red and 1 corresponds to blue

—The leaves of the linear tree corresponds to the clauses C1, C2, · · · , Cn. The probability that a leaf in the

linear tree is colored blue = 1
8 = probability that a size 3 conjunctive clause picked at random from m

variables is satisfied by the assignment 1m.

—The non leaf vertices correspond the operator ∨p and rules of the probabilistic coloring experiment E

corresponds to the rules for determining the output of the operator ∨p.

—log 8
7
(2) ≈ 5.2 and 3×7

8 = 2.625

Furthermore, for a fixed assignment 1m, if unsatF ′ is the probability that F ′ is not satisfied,

unsatF ′ <
1

2c−1
− 1

2c(log2(n)−3)

. This is from Lemma 3.2.2 and the observations

—A balanced binary tree with n leaves has a height log2(n)

—The boolean constant 0 corresponds to red and 1 corresponds to blue

—The leaves of the balanced tree corresponds to the clauses C1, C2, · · · , Cn. The probability that a leaf

in the balanced binary tree is colored blue = 1
8 = probability that a size 3 conjunctive clause picked at

random from m variables is satisfied by the assignment 1m.

—The non leaf vertices correspond the operator ∨p and rules of the probabilistic coloring experiment E

correspond to the rules for determining the output of the operator ∨p.

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 ·

—d− log(log(8
7))e = 3

Hence unsatF ′ < unsatF and hence for an assignment of I = 1m for the variables in F and F ′, F (I) 6≡

F ′(I) and hence F ′ 6≡ F and hence probabilistic boolean formulae are not associative.

3.3 Satisfiability

Deterministic boolean formulae exhibit the following well studied satisfiability threshold phenomenon. Con-

sider m variables and pick mα disjunctive clauses of size 3, uniformly at random from the set of m variables

(as described in Section 3.2). Consider a 3−cnf formula constructed by conjunction of these clauses. It

is conjectured that a sharp threshold of satisfiability exists at around α∗ ≈ 4.2 where whenever α > α∗,

a random 3−cnf formula is satisfiable with a low probability (or alternately, a random 3−dnf formula

constructed by picking mα disjunctive clauses of size 3, uniformly at random from a set of m variables, is

satisfiable with a high probability whenever α > α∗). The satisfiability threshold conjecture has been studied

through a variety of techniques, by deriving tail bounds for occupancy for example [Kamath et al. 1995].

These type of threshold phenomena have been studied under the general framework of 0 − 1 laws [Kolaitis

and Vardi 2000] as well.

Here, we demonstrate that the satisfiability threshold conjecture is likely to apply for certain types of

probabilistic boolean formulae as well. Consider m variables and and pick mα = n = 2l (for some positive

integer l) conjunctive clauses of size 3, uniformly at random from the set of m variables. Consider a

probabilistic disjunction of these clauses in some associative order, where the probability parameter of each

probabilistic disjunction operator is p > 1− 1
2c for some positive real c.

Theorem 3.4. The probability that F is satisfiable is high when α > 5.2.

Proof. We shall prove that the probability that F is satisfiable is at least

1− 1
2c−3 + 1.75

− 1

2(n
c′)

where c′ ≈ 5.2. Consider m variables and and pick mα = n = 2l (for some positive integer l) conjunctive

clauses of size 3, uniformly at random from the set of m variables. Let these clauses be labeled C1, C2, · · · , Cn.

For some p > 1 − 1
2c where c is some positive real constant, construct the probabilistic boolean formula

F ′ ≡ Gn as follows. Let G2 = (C1 ∨p C2) and Gi = (Gi−1 ∨p Ci) for 2 < i ≤ n. For a fixed assignment 1m,

if satF ′ is the probability that F ′ is satisfied,

satF ′ > 1− 1
2c−3 + 1.75

− 1

2(n
c′)

Where c′ = log 8
7

2 ≈ 5.2 This is from Lemma 3.2.3 and the observations,

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 19

—A linear tree with n leaves has a height n− 1

—The boolean constant 0 corresponds to red and 1 corresponds to blue

—The leaves of the linear tree corresponds to the clauses C1, C2, · · · , Cn. The probability that a leaf in the

linear tree is colored blue = 1
8 = probability that a size 3 conjunctive clause picked at random from m

variables is satisfied by the assignment 1m.

—The non leaf vertices correspond the operator ∨p and rules of the probabilistic coloring experiment E

corresponds to the rules for determining the output of the operator ∨p.

Furthermore from Lemma 3.2.4 and Claim 3.2.1, satF ≥ satF ′ . Hence, the probability that F is satisfied

is at least 1− 1
2c−3+1.75 −

1

2(
mα
c′) and is high when α > 5.2.

3.4 Probabilistic Boolean Identities

In this section, we define the equivalence of sample space generators and derive boolean identities. The

equivalence of probabilistic boolean formulae are established based on the equivalence of their corresponding

sample space generators. This notion of equivalence is not only useful in discovering identities, but also for

the re-writing of probabilistic boolean formulae based on certain cost considerations (number of operators,

range of probability parameters etc). These transformations will later play an important part in the synthesis

of probabilistic boolean circuits.

Consider two probabilistic boolean formulae F,G and their sample space generators SF and SG respectively.

SF is equivalent to SG, denoted by SF ≡ SG, if the following conditions hold

—Either varSF
⊆ varSG

or varSG
⊆ varSF

—For any input I, SF (I) ≡ SG(I)

Intuitively, two probabilistic boolean formulae F,G are equivalent if, for every input I ∈ {0, 1}k, the

random variable x whose sample space is SF (I) is equivalent to the random variable y who sample space

is SG(I). Hence, two probabilistic boolean formulae are equivalent if their sample space generators are

equivalent. Using the notion of equivalence of sample space generators, many probabilistic boolean identities

may be derived. A few of the identities are enumerated below

Check these

—Operations with 0 and 1

¬p0 ≡ ¬(1−p)1

¬p1 ≡ ¬(1−p)0

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 ·

0 ∧p x ≡ ¬(1−p)0

0 ∨p x ≡ ¬(1−p)x

1 ∧p x ≡ ¬(1−p)x

1 ∨p x ≡ ¬(1−p)1

—Probabilistic Tautology

x ∨p x ≡ ¬(1−p)x

x ∧p x ≡ ¬(1−p)x

—Laws of Complementation

x ∨p (¬x) ≡ ¬(1−p)1

x ∧p (¬x) ≡ ¬(1−p)0

—Probabilistic Absorption

x ∨p (x ∧ y) ≡ (x ∨p x) ≡ ¬(1−p)x

x ∧p (x ∨ y) ≡ (x ∧p x) ≡ ¬(1−p)x

—Distributive Law

x ∧p (y ∨ z) ≡ (x ∧ y) ∨p (x ∧ z)

x ∨p (y ∧ z) ≡ (x ∨ y) ∧p (x ∨ z)

—Probabilistic DeMorgan Law

¬p(x ∨ y) ≡ ¬(x ∨p y) ≡ (¬x) ∧p (¬y)

¬p(x ∧ y) ≡ ¬(x ∧p y) ≡ (¬x) ∨p (¬y)

—Probabilistic DeMorgan Law - General case

¬p(x ∨q y) ≡ ¬pq+(1−p)(1−q)(x ∨ y) ≡ ¬(x ∨pq+(1−p)(1−q) y) ≡ (¬x) ∧pq+(1−p)(1−q) (¬y)

¬p(x ∧q y) ≡ ¬pq+(1−p)(1−q)(x ∧ y) ≡ ¬(x ∧pq+(1−p)(1−q) y) ≡ (¬x) ∨pq+(1−p)(1−q) (¬y)

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 21

4. RELATIONSHIP BETWEEN PROBABILISTIC BOOLEAN FORMULAE, SAMPLE SPACE GENERATORS

AND PROBABILISTIC BOOLEAN FUNCTIONS

In this section, we explore the relationships between probabilistic boolean formulae, probabilistic boolean

functions and sample space generators. We show that every probabilistic boolean formula computes a

probabilistic boolean function and for any given probabilistic boolean function there exists a probabilistic

boolean formula that computes it.

4.1 Probabilistic Boolean Functions

Informally, a k− bit probabilistic boolean function is a function whose domain is {0, 1}k and for any input

I ∈ {0, 1}k, the output of the function is a boolean random variable xI . Formally, A boolean random

variable is defined to be a random variable with two possible values 0 and 1. Any boolean random variable x

is associated with a sample space composed of two types of sample points. Those associated with the event

x = 0 and those associated with the event x = 1. Two random variables are said to be equivalent if their

sample spaces are equivalent.

Definition 4.1. A k− bit probabilistic boolean function B is a function whose domain is the set of k− bit

binary strings {0, 1}k and whose range is a set of boolean random variables.

Two probabilistic boolean functions B and B′ are said to be equivalent if their domains are identical and

for any input I, the random variable B(I) is equivalent to the random variable B′(I).

The notion of a sample space generator as defined in Section 2.1 is independent of probabilistic boolean

formulae. If the cardinality of the set of boolean variables in a sample space generator S is k, then the sample

space generator defines a k− bit probabilistic boolean function B. For any input I ∈ {0, 1}k to B, the random

variable xI ≡ B(I) is characterized by the sample space generated by S with an input I. Consider a pbf

F and its sample space generator SF . The probabilistic boolean function BF defined by SF will be referred

to as “the probabilistic boolean function computed by F” or interchangeably as “the probabilistic boolean

function of F”. Since there is a sample space generator associated with every pbf, every pbf computes a

probabilistic boolean function.

Consider a k− bit probabilistic boolean function B such that there is a distinguished i ∈ {0, 1}k such that

for any input j ∈ {0, 1}k,

B(j) =

 x if j = i

0 otherwise

where x is a boolean random variable. We will call such a probabilistic boolean function as a k− bit

probabilistic boolean impulse function at i. Now

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 ·

Lemma 4.1.1. For every k− bit probabilistic boolean impulse function, there exists a probabilistic boolean

formula, which computes that function

Proof. Consider a k− bit probabilistic boolean impulse function B at i such that B(i) = x where x = 1

with probability p and x = 0 with probability (1−p). Since given any (deterministic) boolean function, there

exists a (deterministic) boolean formula that computes it, there exists a (deterministic) boolean formula G

such that the boolean function it computes, G is of the form

G(j) =

 1 if j = i

0 otherwise

Consider F ≡ ((¬p0) ∧G). F is the probabilistic boolean formula which computes B.

Theorem 4.2. For every probabilistic boolean function B there exists a probabilistic boolean formula F

such that F computes B.

Proof. Let B be a k− bit probabilistic boolean function.

For any i, j ∈ {0, 1}k, let Bi be a probabilistic boolean impulse function such that ,

Bi(j) =

 B(j) if j = i

0 otherwise

From lemma 4.1.1, there exists a probabilistic boolean formula Fi which computes Bi. Since

B ≡ ∨i∈{0,1}k Bi

F ≡ ∨i∈{0,1}k Fi

is a probabilistic boolean formula which computes B.

Summarizing this section, we know that

(1) There is a sample space generator associated with every probabilistic boolean formula

(2) Every sample space generator defines a probabilistic boolean function

(3) Every probabilistic boolean formula computes a probabilistic boolean function

(4) For any probabilistic boolean function B there exists a probabilistic boolean formula F which computes

it.

(5) For any probabilistic boolean function B there exists a sample space generator S which defines it.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 23

5. PROBABILISTIC BOOLEAN CIRCUITS AND RELATIONSHIP WITH CLASSICAL MODELS OF COMPU-

TATION

Some applications, notably those which implement probabilistic algorithms, signal processing algorithms etc,

are resilient in the presence of “errors” in their computing steps [Chakrapani et al. 2007; George et al. 2006].

These steps may be characterized as probabilistic boolean functions, and “erroneous” circuits maybe utilized

to implement these steps. As mentioned in Section 1, probabilistic boolean formulae may be utilized to

model such circuits with “erroneous” gates. We shall call these circuits with “erroneous” gates as probabilistic

boolean circuits. The rest of this section will be devoted to defining and characterizing probabilistic boolean

circuits, and relating them to probabilistic boolean formulae, probabilistic boolean functions, sample space

generators and other classical models in computer science such as randomized circuits and probabilistic

automata.

Analogous to conventional boolean circuits, probabilistic boolean circuits may be defined as follows. A

probabilistic boolean circuit is a directed acyclic connected graph G = (V,E), where V is the set of vertices

and E ⊆ V × V is a set of directed edges. The vertices are of three kinds. Input vertices, of in-degree 0 and

out degree 1 associated with boolean variables (called input variables of the circuit) or boolean constants

{0, 1}, internal vertices associated with one of three operators ∨p,∧p,¬p where 0 < p ≤ 1. Vertices associated

∨p and ∧p have in-degree 2 and out-degree 1, those associated with ¬p have in-degree and out-degree 1.

There is one-distinguished output vertex of in-degree 1 and out-degree 0. For any assignment of boolean

values 0 and 1 to the input variables of the circuit, the value of the input vertex is the boolean value assigned

to the corresponding boolean variable, or the boolean constant associated with the vertex. The value of

an edge (u, v) ∈ E is the value associated with the vertex u. The value of any internal vertex, is the value

obtained by applying the probabilistic boolean operator associated with the vertex, to values associated with

the incoming edges. Finally, the value computed by the probabilistic boolean circuit is the value associated

with the output vertex.

Claim 5.0.1. For any probabilistic boolean formula F and the probabilistic boolean function B it computes,

there exists a probabilistic boolean circuit CF which computes an equivalent probabilistic boolean function.

This claim is straightforward, a valid pbf is obtained by recursive application of the rules outlined in

Section 2. An equivalent probabilistic boolean circuit may be constructed by creating input vertices for

every boolean variable and constant in the pbf and an internal vertex for every boolean operator.

Claim 5.0.2. For every probabilistic boolean function B there exists a probabilistic boolean circuit C such

that C computes B.

ACM Journal Name, Vol. V, No. N, Month 20YY.

24 ·

This claim can be proved from Theorem 4.2 which proves that for every probabilistic boolean function B

there exists a probabilistic boolean formula that computes B and Claim 5.0.1.

5.1 Relationship with Randomized Boolean Circuits

In computer science literature, randomized boolean circuits have been used as a model to study randomized

algorithms [Sipser 1997]. Analogous to conventional boolean circuits, a randomized boolean circuit is a

directed acyclic connected graph G = (V,E), with three types of vertices, input vertices of in-degree 0 and

out degree 1 associated with boolean variables (called input variables of the circuit), boolean constants or

boolean random variables, internal vertices associated with one of three boolean operators ∨,∧,¬. Vertices

associated ∨ and ∧ have in-degree 2 and out-degree 1 those associated with ¬ have in-degree and out-degree

1. Any internal vertex v ∈ V has the property that there is at most one edge (u, v) such that u ∈ V is

an input vertex associated with a boolean random variable. There is one-distinguished output vertex of

in-degree 1 and out-degree 0. For any assignment of boolean values 0 and 1 to the input variables of the

circuit, the value of the input vertex is the boolean value assigned to the corresponding boolean variable,

the boolean constant associated with the vertex or the output of random experiment associated with the

corresponding boolean random variable. The value of an edge (u, v) is the value associated with the vertex

u. The value of any internal vertex is the valued obtained by applying the boolean operator associated with

the vertex to values of the incoming edges. Finally, the value computed by the randomized boolean circuit

is the value associated with the output vertex.

Claim 5.1.1. For every probabilistic boolean function B, there exists a randomized boolean circuit which

computes B.

This claim can be proved by a trivial modification of Lemma 4.1.1, and Theorem 4.2 while noting that the

input vertices of a randomized circuit may be associated with boolean random variables. Since every ran-

domized circuit computes a probabilistic boolean function, and for any given probabilistic boolean function,

there exists a probabilistic boolean circuit that computes it, trivially there exists an equivalent probabilistic

boolean circuit for every randomized circuits. However, in the sequel, we outline a procedure to construct

such a circuit.

5.2 Relationship with Probabilistic Automata

So far, we have considered only those probabilistic boolean circuits whose operators have a probability of

correctness, p, where p ∈ Q. For the purposes of the sequel, we consider p ∈ R and 0 ≤ p ≤ 1. Rabin, in

his seminal paper introduced Probabilistic automata [Rabin 1963]. Following Rabin’s classic paper [Rabin

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 25

1963], a probabilistic automaton over an alphabet Σ is a system < S, M, s0, Q > where S = {s0, · · · , sn}

is a finite set (of states), M is a function from S × Σ into [0, 1]n+1 (the transition probabilities table) such

that for (s, σ) ∈ S × Σ, the transition function M(s, σ) = (p0(s, σ), · · · , pn(s, σ)) where 0 ≤ pi(s, σ) and∑
pi(s, σ) = 1. s0 ∈ S is the initial state and F ⊆ S is the set of designated final states. Rabin has shown

that a probabilistic automata with transition probabilities and cut points in the real interval [0, 1] are strictly

more powerful than deterministic finite automata and those with rational cut points in the interval [0, 1] are

equivalent to deterministic finite automata.

The transition function of probabilistic automata may be simulated using probabilistic as well randomized

boolean circuits. Without loss of generality, let the input alphabet Σ of the probabilistic automaton be the

set {0, 1} and the set of states be encoded in binary. Given an input σ ∈ Σ and a current state s ∈ S,

0 ≤ i, j ≤ n such that pi, pj 6= 0 (and hence pi + pj = 1. That is, given any state and an input, the set

of possible next states (with non zero transition probability) is at most of cardinality two. Without loss

of generality let i < j, now the transition function M may be redefined as a probabilistic boolean function

M : Σ× S → {0, 1}, where the output 0 indicates the next state is si and output 1 indicates that the next

state is sj . This probabilistic boolean function may be computed by a probabilistic (or randomized) boolean

circuit.

6. ENERGY IMPLICATIONS OF PROBABILISTIC BOOLEAN CIRCUITS

So far, we have defined and characterized probabilistic boolean circuits as a model of computation and

related them to randomized circuits. In addition, we wish to differentiate probabilistic boolean circuits

and randomized circuits along two critical dimensions. First, as we shall see below, for every randomized

circuit of a particular depth and size, there exists a probabilistic boolean circuit of identical depth and

size, which computes an equivalent probabilistic boolean function. However, because of thermodynamic

reasons, in cmos based realizations, an “inherently” probabilistic gate (and hence a probabilistic circuit)

consumes lesser energy than a randomized circuit realized in the form of a deterministic gate with a random

input bit [Korkmaz et al. 2006]. Earlier, this has been demonstrated experimentally for a certain class of

applications [Korkmaz et al. 2006; Chakrapani et al. 2006; George et al. 2006; Chakrapani et al. 2007]. This

is complementary to a prior result, which showed that probabilistic algorithms consume lesser energy than

their deterministic counterparts (even though they may be identical in classical time complexity measure) in

the bram model of computation [Palem 2003]. Secondly, such a separation in energy consumption is like to

be enhanced when we take into account the energy cost of producing a random bit. This is expanded upon

in the sequel.

ACM Journal Name, Vol. V, No. N, Month 20YY.

26 ·

First, we shall outline a construction to derive a probabilistic boolean circuit of identical depth, size and

functionality from a randomized boolean circuit. Consider a randomized boolean circuit C. Consider the

set of input vertices U associated with boolean random variables in C. Consider any u ∈ U and an internal

vertex v such that (u, v), (v, w) ∈ C (we ignore trivial circuits where v is the output vertex). Let u be

associated with boolean random variable xu such that probability that xu = 1 is pu. Consider the internal

vertex v. We note that at most one incoming edge of v is incident on an input vertex associated with a

boolean random variable (from definition). v is associated with the boolean operator ∨,∧ or ¬. Replace v

with v′ where v′ is associated correspondingly with the boolean operator ∨p,∧p or ¬p. Replace u with a

vertex u′ such that u′ is associated with boolean constant 1. This new circuit will be denoted by C/{u}.

Lemma 6.0.1. For any assignment of boolean constants {0, 1} to the boolean variables of C and a corre-

sponding assignment to the boolean variables of C/{u}, the boolean random variable m which characterizes

the value of the edge (v, w) is equivalent to the boolean random variable m′ which characterizes the value of

(v′, w).

Proof. Let v be associated with ∨ or ∧ (the proof for the case where v is associated with ¬ is along the

same lines) and let the two incoming edges of v in C be (u, v) and (t, v) (and correspondingly the incoming

edges of v′ in C/u be (u′, v′) and (t, v′)). Since C/u and C are identical except for vertices u, v, u′ and v′, the

boolean random variable which characterizes the value of (t, v) is equivalent to the boolean random variable

which characterizes the value of (t, v′). Let this variable be n. Assume m 6≡ m′. We consider the following

cases

—v is associated with ∧. Then it must be the case that n ∧ xu 6≡ n ∧pu 1. However, this is a contradiction

—v is associated with ∨. Then it must be the case that n ∨ xu 6≡ n ∨pu 1. However, this is a contradiction

Theorem 6.1. For every randomized boolean circuit C there exists a probabilistic boolean circuit Ĉ such

that C and Ĉ compute equivalent probabilistic boolean functions. Furthermore C and Ĉ are isomorphic.

Proof. outline: Consider a randomized boolean circuit C. Let U be the set of input vertices associated

with boolean random variables in C. For any u ∈ U , from Lemma 6.0.1 we know that C and C/{u}

compute equivalent probabilistic boolean functions. Through simple induction, it can be shown that C and

C/U compute equivalent probabilistic boolean functions. C/U is the probabilistic boolean circuit Ĉ and is

isomorphic it C

From Theorem 6.1 it is evident that for every randomized boolean circuit C there exists and isomorphic

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 27

probabilistic boolean circuit Ĉ such that C and Ĉ compute equivalent probabilistic boolean functions. Fur-

thermore, under this isomorphism, the set of input vertices U associated with boolean random variables in

C, is a subset of the set of input vertices of Ĉ associated with boolean constants. Furthermore, let v ∈ C be

an internal vertex then the isomorphic vertex v̂ ∈ Ĉ is an internal vertex as well. Moreover, if v is associated

with ∨,∧ or ¬, v̂ is associated with ∨p,∧p or ¬p correspondingly.

Through thermodynamic arguments, analytical models and measurements, it can be demonstrated that

in the domain of cmos, there is a relationship between the energy consumption of a gate and its probability

of correctness; or equivalently, “inherently” probabilistic gates consume lesser energy than their determin-

istic counterparts. Figure 0?? illustrates the relationship between the energy consumption and probability

of correctness for an inverter synthesized using tsmc 0.25 micron technology. The various curves in the

figure plot the simulated (using HSpice) energy consumption, the analytically modeled energy consumption

and the actual energy consumption of an inverter realized using this technology. Figure 0?? illustrate the

relationship between energy consumption and probabilities of correctness for gates which implement other

boolean operators. Hence, in cmos based implementation of probabilistic and randomized boolean, the

gate which implements the operator associated with v̂ consumes substantially lesser energy than that which

implements the operator associated with v. Hence, depending on the proportion of the vertices which are

associated with probabilistic boolean operators, the energy consumption of a probabilistic boolean circuit is

likely to be substantially lesser than an equivalent randomized boolean circuit.

In the study of randomized algorithms and randomized circuits, randomness has rightly been identified

as a resource. This consideration has given rise to a rich body of work, which seeks to address this concern

through several techniques, from recycling of random bits [Impagliazzo and Zuckerman 1989], to techniques

which extract randomness from weak random sources [Chor and Goldreich 1985] and methods to “amplify”

randomness through pseudo-random number generators [Blum and Micali 1984]. An interested reader is

referred to the huge body of work in this area, and an overview is beyond the scope of this paper. However,

another critical consideration is the energy required to generate random bits, either through extraction from

weak random sources or through pseudo-random number generators. If this energy is taken into account,

probabilistic boolean circuits implemented in cmos which are composed of “inherently” probabilistic gates,

are likely to be more energy efficient than randomized circuits—whose functionality critically depend on the

availability of random bits—when the cost of producing random bits are taken into account. This separation

in energy consumption is in addition to the thermodynamic energy efficiency obtained due to implementing

probabilistic boolean operators in cmos.

An experimental demonstration of the energy efficiency of probabilistic boolean circuits when compared to

ACM Journal Name, Vol. V, No. N, Month 20YY.

28 ·

randomized circuits is described in [Chakrapani et al. 2006; Chakrapani et al. 2007] and is briefly illustrated

in Table 0?? below. This work accounts for the separation in energy consumption due to the energy cost

of producing random bits, as well as the energy efficiency gained by implementing probabilistic boolean

operators directly in cmos in the form of “inherently” probabilistic gates [Cheemalavagu et al. 2005]. Hence

Theorem 6.2. For every randomized boolean circuit C there exists a probabilistic boolean circuit Ĉ such

that C and Ĉ compute equivalent probabilistic boolean functions. Furthermore Ĉ consumes lesser energy than

C in cmos based implementations.

7. CONCLUSION AND FUTURE DIRECTIONS

In this work, we have introduced probabilistic boolean algebra as an area of study, derived some important

properties and related it to classical models from computer science. We have also shown that in practical

cmos implementations, probabilistic boolean circuits are likely to consume substantially lesser energy than

randomized circuits. Our future inquiry is along three directions (i) synthesis of a probabilistic boolean

circuit which computes a given probabilistic boolean function B: Our technique involves constructing a

sample space generator S which defines B, optimizing S based on some cost criteria and constructing a

probabilistic boolean formula F from S and will be elaborated elsewhere. (ii) Fast parallel evaluation of

circuit reliability in probabilistic boolean circuits: Rabin [Rabin 1963] has demonstrated how acceptance

probabilities of input strings (for a given probabilistic automaton) may be computed by setting “cut-points”

and constructing corresponding deterministic automata. This technique may be extended to probabilistic

boolean circuits to evaluate their reliability for specific inputs.

REFERENCES

Bahar, R. I., Mundy, J., and Chen, J. 2003. A probabilistic-based design methodology for nanoscale computation. In

Proceedings of the 2003 IEEE/ACM international conference on Computer-aided design. 480–486.

Blum, M. and Micali, S. 1984. How to generate cryptographically strong sequences of pseudo-random bits. SIAM J.

Comput. 13, 4, 850–864.

Chaitin, G. J. and Schwartz, J. T. 1978. A note on monte carlo primality tests and algorithmic information the ory.

Communications on Pure and Applied Mathematics 31, 521–527.

Chakrapani, L. N., Akgul, B. E. S., Cheemalavagu, S., Korkmaz, P., Palem, K. V., and Seshasayee, B. 2006. Ultra

efficient embedded soc architectures based on probabilistic cmos technology. In Proceedings of The 9th Design Automation

and Test in Europe (DATE). 1110–1115.

Chakrapani, L. N. B., Korkmaz, P., Akgul, B. E. S., and Palem, K. V. 2007. Probabilistic system-on-a-chip architectures.

To appear in ACM Transactions on Design Automation of Electronic Systems (ACM-TODAES).

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 29

Cheemalavagu, S., Korkmaz, P., Palem, K. V., Akgul, B. E. S., and Chakrapani, L. N. 2005. A probabilistic CMOS switch

and its realization by exploiting noise. In Proceedings of the IFIP international conference on very large scale integration.

Chor, B. and Goldreich, O. 1985. Unbiased bits from sources of weak randomness and probabilistic communication com-

plexity (extended abstract). In IEEE Symposium on Foundations of Computer Science. 429–442.

Davis, M. 2001. Engines of Logic: Mathematicians and the Origin of the Computer. W. W. Norton and Company.

George, J., Marr, B., Akgul, B. E. S., and Palem, K. 2006. Probabilistic arithmetic and energy efficient embedded signal

processing. In International Conference on Compilers, Architecture, and Synthesis for Embedded Systems CASES.

Impagliazzo, R. and Zuckerman, D. 1989. How to recycle random bits. In IEEE Symposium on Foundations of Computer

Science. 248–253.

itrs. 2002. International technology roadmap for semiconductors 2002 update.

Kamath, A., Motwani, R., Palem, K. V., and Spirakis, P. G. 1995. Tail bounds for occupancy and the satisfiability threshold

conjecture. Random Struct. Algorithms 7, 1, 59–80.

Kolaitis, P. G. and Vardi, M. Y. 2000. 0-1 laws for fragments of existential second-order logic: A survey. Mathematical

Foundations of Computer Science, 84–98.

Korkmaz, P., Akgul, B. E. S., Chakrapani, L. N., and Palem, K. V. 2006. Advocating noise as an agent for ultra low-

energy computing: Probabilistic cmos devices and their characteristics. Special Issue of Japanese Journal of Applied Physics

(JJAP) 45, 4B (Apr.), 3307–3316.

Moore’s Law. http://www.intel.com/technology/silicon/mooreslaw/.

Motwani, R. and Raghavan, P. 1995. Randomized Algorithms. Cambridge University Press.

Nepal, K., Bahar, R. I., Mundy, J., Patterson, W. R., and Zaslavsky, A. 2005. Designing logic circuits for probabilistic

computation in the presence of noise. In Proceedings of the 42nd Design Automation Conference. 485–490.

Palem, K. V. 2003. Proof as experiment: Probabilistic algorithms from a thermodynamic perspective. In Proceedings of The

International Symposium on Verification (Theory and Practice),. Taormina, Sicily.

Palem, K. V. 2005. Energy aware computing through probabilistic switching: A study of limits. IEEE Transactions on

Computers 54, 9, 1123–1137.

Pippenger, N. 1985. On networks of noisy gates. Proceedings of the 26th Annual IEEE Symposim on Foundations of Computer

Science, 30–38.

Pippenger, N. 1989. Invariance of complexity measures for networks with unreliable gates. Journal of the ACM 36, 531–539.

Pippenger, N., Stamoulis, G. D., and Tsitsiklis, J. N. 1991. On a lower bound for the redundancy of reliable networks with

noisy gates. IEEE Transactions on Information Theory 37, 3, 639–643.

Rabin, M. O. 1963. Probabilistic automata. Information and Control 6, 230–245.

Rabin, M. O. 1976. Probabilistic algorithms. In Algorithms and Complexity, New Directions and Recent Trends, J. F. Traub,

Ed. 29–39.

Sipser, M. 1997. Introduction to the Theory of Computation. PWS Publishing Company.

von Neumann, J. 1956. Probabilistic logics and the synthesis of reliable organizms from unreliable components. Automata

Studies, 43–98.

ACM Journal Name, Vol. V, No. N, Month 20YY.

30 ·

ACM Journal Name, Vol. V, No. N, Month 20YY.

