
The Impact of Interprocedural Analysis and Optimization
in the IRn Programming Environment

Keith D. Cooper
Ken Kennedy
Linda Torczon

Department of Computer Science1

Rice University
Houston, TX

Abstract

In spite of substantial progress in the theory of interprocedural data flow analysis, few practical com-
piling systems can afford to apply it to produce more efficient object programs. To perform interprocedural
analysis, a compiler needs not only the source code of the module being compiled, but also information
about the side effects of every procedure in the program containing that module, even separately compiled
procedures. In a conventional batch compiler system, the increase in compilation time required to gather
this information would make the whole process impractical. In an integrated programming environment,
however, other tools can cooperate with the compiler to compute the necessary interprocedural information
incrementallyas the program is being developed, decreasing both the overall cost of the analysis and the
cost of individual compilations.

A central goal of the IRn project at Rice University is to construct a prototype software development
environment that is designed to build whole programs, rather than just individual modules. It employs in-
terprocedural analysis and optimization to produce high-quality machine code for whole programs. This
paper presents an overview of the methods used by the environment to accomplish this task and discusses
the impact of these methods on the various environment components. The responsibilities of each compo-
nent of the environment for the preparation and use of interprocedural information are presented in detail.

Categories and Subject Descriptors: D.2.6 [Software Engineering]: Programming Environments; D.3.4
[Programming Languages]: Processors —compilers, interpreters, optimization.

General Terms: Languages.

Additional Keywords and Phrases: data flow analysis

1. Introduction

Calls to separately compiled procedures are one of the principal remaining impediments to generat-
ing efficient object code for programs written in Algol-like languages. Global optimizing compilers exist
for many systems; these do an excellent job of generating code for a single subroutine. Unfortunately, the
quality of the code they generate tends to decline in the presence of procedure calls. This happens for sev-
eral reasons. In the absence of better information, the compiler must assume that the called subroutine will
use and change every variable accessible to it — in other words, every parameter and every global variable.
This assumption inhibits a number of optimizations; for example, the value of an expression computed
before a procedure call cannot be used to eliminate an occurrence of the same expression beyond the call if
it involves a variable accessible to the called routine.

1This work has been supported by the National Science Foundation and IBM Corporation.

1



Separate compilation also prevents optimizations that would be easy if all the subroutines of a pro-
gram were compiled together. For example, a common practice in library routines is to pass constants as
parameters to procedures, particularly when the parameter is used to select an option. In theLINPACK

library, almost every subroutine has a parameter to indicate the stride of indexing for some array. Typically,
this stride is passed the integer constant ‘‘1’’, information that would be enormously useful to the compiler
in optimizing the called routine [19].

If the problems caused by lack of information about separately-compiled procedures are troublesome
for traditional compilers, the difficulties are magnified when the compiler is attempting the more sophisti-
cated transformations required to support vector and parallel supercomputers. In such a compiler, lack of
knowledge about the program in which a subroutine will execute can make an order of magnitude differ-
ence in the running time of certain sections of code [4, 27].

In spite of these problems, no commercially available optimizing compilers employ interprocedural
analysis for separately-compiled procedures because the cost of gathering the requisite information is too
great in a traditional compiling scheme. Computing the side effects of a procedure call requires detailed
knowledge of the internals of both the called procedure and any procedures invoked either directly or indi-
rectly from it. Thus, to determine the side effects of a single procedure call, the compiler potentially needs
information about the internals of every procedure in the program, even procedures that are separately com-
piled. Gathering this information requires examining the source of every procedure in the program - an
expensive process. If the compiler cannot store information gathered in one compilation for later use in
other compilations, it must re-analyze the entire program in order to compile any of its constituent proce-
dures. This is particularly unfortunate since the primary goal of separate compilation is to reduce the
amount of recompilation required in response to changes in an individual procedure.

One of the primary goals of the IRn programming environment project [26] is to mount a concerted
attack on the problems of performing interprocedural analysis and optimization. Work on the environment
has included the development of new algorithms and techniques for interprocedural analysis as well as
development of a programming environment for Fortran [5] that serves as a test bed for the compiler.
While the environment supports Fortran, the algorithms have been designed to support more general Algol-
like languages. In fact, IRn supports a recursive dialect of Fortran that includes several extensions proposed
for Fortran 8x [6].

A software development environment like IRn reorganizes the compilation process in a way that
makes computing such information palatable. Since all modules are developed and all programs are
defined using tools of the environment, these tools can cooperate to record the information necessary to do
a good job of interprocedural analysis and optimization. Whenever the optimizing compiler needs informa-
tion about possible side effects of a particular procedure, it can simply extract the information from the
environment’s central database with the assurance that it accurately reflects the current state of the program
and its procedures. Because information is retained between compilations, the compiler can use efficient
incremental updating techniques to produce correct and consistent interprocedural information. Since the
compiler doesn’t recompute all the interprocedural information at every compilation, the analysis has a
much lower total cost than possible in a traditional batch compiler.

From the outset, the IRn programming environment has been designed to record and use interproce-
dural information to support compiler optimization and to help the programmer produce programs with
fewer errors. The pervasive influence of the decision to apply interprocedural techniques has been one of
the major surprises in the IRn project. This paper discusses the ways that the various components of the
environment implement this design. Section 2 presents an overview of the environment design, highlight-
ing the principal design decisions that led to the current structure. Section 3 summarizes the algorithms
used for interprocedural analysis and optimization. Section 4 presentsrecompilation analysis, a technique
used to reduce the frequency of spurious recompilations. Section 5 details the responsibilities of each envi-
ronment component in supporting interprocedural analysis and discusses the applications of the resulting
information throughout the system.

2



2. The IRn Programming Environment

For the IRn environment to be effective as a tool for research in the construction of optimizing com-
pilers, it must also be successful as a programming support tool. Since numerical programmers are primar-
ily interested in problem-solving they are unlikely to tolerate a clumsy programming system for the sake of
research. Furthermore, a new system must be notably superior to the currently-used programming tools to
induce programmers to switch. Therefore, the IRn environment has been designed as an integrated collec-
tion of tools for the development ofwhole programsrather than individual source modules. Of course, IRn

includes a structure editor for developing Fortran source. Additionally, it provides an editor for composing
collections of modules into programs. Like most programming environments, IRn provides an optimizing
compiler for individual source modules. Additionally, it includes a compiler that optimizes whole pro-
grams. Because all of these tools cooperate in information gathering, the resulting system proves more
helpful to the user and the resulting programs more efficient.

The environment is built as a collection of command processors that run cooperatively under the IRn

monitor. The monitor controls interactions between the command processors and provides primitives for
handling the mouse, bit-mapped screen, keyboard, menus, and windows. The individual command proces-
sors record and use information in the IRn database. The database holds information about programs and
procedures built and maintained using the environment. It also serves as the primary mechanism for com-
munication between tools.

Within the database, two types of program objects coexist. Amoduleis an editable unit of source
text. A typical module should contain one or more Fortran subprograms. Acompositionis a structured
collection of pointers to modules that defines a composite object. Programs, libraries, and compound mod-
ules are all defined by compositions in IRn.

The environment includes a structure editor for Fortran source text, called themodule editor. It helps
the programmer enter syntactically correct programs by providing templates for the major language con-
structs. For example, to insert a DO-loop, the programmer need only invoke the DO-loop command and
the cursor is replaced by a DO-loop template with place markers in the positions where further text should
be entered. The module editor obviates the need for a parser by directly constructing an abstract syntax tree
for the module. Such trees are the standard program representation used by tools in the environment. Rec-
ognizing that not all programmers will use a structure editor, the environment also provides an alternate
path for entering source text; the module is unparsed, edited using the documentation editor, and then
reparsed and stored in intermediate form.

The module editor makes use of information stored in the IRn database to make it easier to construct
subprograms that are consistent with the program being developed. For example, when a programmer
wishes to insert a call to an external subroutine, the editor queries the database to retrieve the parameter
specifications for the called routine. It uses this information to construct a template for the call in which the
parameter placeholders identify the name and type of each parameter to be inserted.

In keeping with our commitment to supporting the development of whole programs, the environment
must provide some mechanism for defining and modifying the structure of a program. This mechanism is
the composition editor. The composition editor permits the user to define a structured collection of mod-
ules with consistent interfaces. It is a structure editor for a module interconnection and configuration man-
agement language. This language is somewhat unusual in that it was never intended for use outside of the
composition editor, so it has a display-oriented concrete syntax. The combination of editor and language
subsumes the functions of the linkage editor input language in traditional systems and the module intercon-
nection and configuration management languages found in modern programming systems [18, 31, 32, 34,
43].

The composition editor helps the user construct a list of components, each of which is a module or a
sublist. Each sublist is itself a composition, exporting and importing names and their associated definitions.
Within each list, the composition editor checks for consistent interfaces and completeness with respect to
required definitions. The composition editor also provides library search and automatic completion facili-
ties. When the desired composition differs only slightly from an existing one, the composition editor sim-
plifies the specification process by providing the ability to edit an existing composition.

3



A complete composition with a main entry point constitutes aprogram. To support optimization of
whole programs, the IRn environment must incorporate a tool to manage the process of preparing a program
for efficient execution. Hence, the system includes aprogram compilerresponsible for directing the con-
struction of an executable image for a program. The program compiler is the principal innovation of the
optimization strategy for IRn. By acknowledging that we wish to compile efficient code for whole pro-
grams, we are led immediately to the need for a tool to oversee the process.

The program compiler computes the interprocedural information needed to efficiently compile the
individual modules within a program and directs the module compiler to carry out the various interprocedu-
ral optimizations. In the tradition ofmake[23] and its successors [44], it also automates the process of
reconstruction after a change. Finally, the program compiler directly performs certain optimizations
required to make the program construction efficient, such as elimination of duplicate modules specified in
the program composition.

To produce code for an individual module, the program compiler invokes themodule compiler, which
comprises the optimization and code generation phases of a typical optimizing compiler. It differs from tra-
ditional compilers primarily in its use of interprocedural information provided by the program compiler to
do a more thorough job of optimization.

The environment includes two command processors for executing programs. Theexecution manager
permits the execution of a compiled program within an IRn window. Theinterpretive debuggerenables the
programmer to step through parts of a given program, allowing him to monitor and interrupt execution. By
cooperating with the compiler, the debugger supports execution of hybrid programs that consist of both
compiled and interpreted modules. During debugging, the programmer can execute compiled versions of
stable modules, while interpreting the modules under development. This makes interpretive debugging
more practical for large programs because control passes quickly through those parts of the program that
are not material to the debugging process, slowing down to bring the full power of the interpretive debugger
to bear on those parts of the program where it is needed.

The IRn environment includes a wide variety of other tools, including a text editor, a data base
browser and help processor, but these are not directly related to the subject of this article and will not be
further discussed. For additional information on the IRn programming environment, the reader should see
the survey article by Hood and Kennedy [26].

3. Interprocedural Information

The IRn programming environment computes and uses three distinct types of interprocedural infor-
mation: potential side effects of procedure calls, sets of variable names that can refer to the same data item,
and information about formal parameters that have constant values determinable at compile time. In this
section, we introduce each of these interprocedural data flow problems and outline techniques for solving
them in a programming environment.

When an optimizing compiler encounters a procedure call, it must account for the effect of executing
the call on the values of variables accessible in the calling procedure. If it does not have accurate knowl-
edge about the internals of the called procedure readily available, the compiler must assume that every vari-
able accessible to the called procedure is both used and modified as a side effect of executing the call. This
is the mostconservativeassumption possible, since it inhibits any optimizations that might rely on a vari-
able or value being unchanged or unused across a procedure call. In IRn, the environment uses interproce-
dural data flow analysis to precisely compute the set of variables that may be modified and the set of vari-
ables that may be used as a result of executing a procedure call. Theseside effect summary setsare not
only useful for improving the optimization of individual compiled modules, they can also permit the editor
to give better diagnostics. For example, if the programmer passes a constant to a formal parameter that may
be changed, the editor will warn him of the possible side effect.

The program compiler also computes information about aliasing relationships between formal param-
eters and global variables. Whenever a procedure can access a single storage location using more than one
name, those names are said to bealiases. It is essential that the module compiler understand which names
are potential aliases; in the absence of such information it must treateveryglobal variable andeveryformal

4



parameter as if they were potential aliases. This implies, for example, that their values cannot be retained

in registers across statement boundaries.2

To understand this, consider the following sequence of assignment statements:

a = 10
b = 12
c = a * b

In the absence of aliasing, the compiler would probably retain the values of a and b in registers, since they
are referenced almost immediately after being assigned values. If, however, the procedure containing this
code fragment can be invoked in a manner such that a and b refer to a single storage location, this simple
optimization to eliminate apparently redundant loads and stores would result inincorrectly assigning the
value 120 to c.

The widespread use of constant parameters in programs that incorporate routines from libraries like
LINPACK [20] has underscored the need for determining which parameters and global variables are known
constants when a procedure is invoked. The IRn environment computes a conservative approximation to the
set of all variables that are known constants on input to each procedure in a given program. This informa-
tion is not only useful in optimizing a particular procedure, it can also help in the determination of whether
it is profitable to perform procedure integration [7, 14, 46].

3.1. General Solution Strategy

The flow of information in the solution of interprocedural data flow problems in the IRn environment
is depicted in Figure 1. The process begins with the module editor, which collectslocal informationneeded
for the development of interprocedural information. This local information includes a specification of the
entry points provided by the module, with parameter names and types, a listing of the entry points called
from within the module, along with actual parameter names and types for each, and a specification of which
variables may be used or modified locally. In addition, the editor performs some preliminary computations
to support interprocedural constant propagation, determining which actual parameters at a call site are
known constants and which can be expressed as compile time functions of parameters to the calling subpro-
gram. The composition editor provides the remainder of the information required for the analysis.

Using these inputs, the program compiler computes the desired interprocedural information. First, it

builds the program’s call graph3 from the specification of which entries are defined and called by each mod-
ule in the program composition. Then it solves data flow problems over the call graph to compute the

Figures are pro vided on separate pages

Figure 1. Flow of interprocedural information in the environment.

2Strictly speaking, the Fortran standard permits the compiler to ignore aliasing. The standard contains a restriction that neither
of two aliases may be modified in a standard-conforming program [5]. Nevertheless, the IRn project attempts to trace aliases because
information about potential aliases can be useful as a diagnostic aid to the programmer and because we wanted our system to achieve a
higher level of predictability than required by the standard.

3The call graph is actually a multi-graph, with an edge for every call site. For the sake of consistency with the literature and
readability, we refer to it as a graph. Throughout this paper we usecall graph edgeand call site interchangeably, where an edge
e=(p,q)of the call multi-graph represents a call from a site withinp to procedureq.

5



needed information. Finally, it stores the interprocedural information in the data base for later use by the
compiler or by subsequent editing sessions on modules in the program. Note that the solutions can be com-
pletely developedwithout ever invoking the module compiler— the module editor and the composition edi-
tor provide everything that is needed. This property is an important design goal for the data flow algo-
rithms; if they required input from the module compiler, complex circular dependencies could make the
problems intractable.

The program compiler must also be capable of incrementally updating the solution of a data flow
problem in response to an editing change. If the interprocedural information is to be useful, it must be
updated in response to every change to any module in the program. Thus, whenever a module incorporated
in a program is put away after editing, the program compiler uses incremental techniques to update the pro-
gram’s interprocedural information.

The next three subsections introduce the data flow problems that must be solved for each of the three
classes of information developed in the IRn environment and give an overview of the algorithms used for
solving them. The last subsection describes the interprocedural optimization techniques we intend to try in
IRn.

3.2. Side Effects

The IRn program compiler computesside effect summary setsthat precisely describe the possible side
effects of each call site in the program. This information consists of two summary sets for each call sitee
in the call graph:

1) the setMOD(e) of all variables whose values may be changed as a result of executing the procedure
call, and

2) the setUSE(e) of all variables whose values may be used before control returns from the called proce-
dure.

TheMOD andUSE sets are said to beflow insensitivebecause they describe events thatmayhappen. While
the presence of a variablex in MOD(e) implies that executinge can change the value ofx, it does not assert
that every execution ofe will changex. By contrast, the problem of determining which events must always
happen as a side effect of a procedure call requires careful analysis of the control flow within each proce-
dure. Such problems are calledflow sensitiveproblems. Myers has shown that solving flow sensitive inter-
procedural data flow problems is Co-NP complete in the presence of aliasing [36]. Because flow insensi-
tive summary sets do not depend on the internal control flow structures of individual procedures, they can
be computed more efficiently. The IRn environment computes only flow insensitive interprocedural infor-
mation.

Consider the problem of computingMOD(s) for each statements. For most statements,MOD(s) can
be determined by a simple inspection. If, however,s contains a procedure call, the problem is more com-
plex. Any variable that is passed as a parameter to the called procedure or any variable that is global to the
called procedure is a candidate forMOD(s).

To compute a reasonably preciseMOD(s), we need to identify those variables that might be changed,
directly or indirectly, by the procedure called froms. Let GMOD(q) be thegeneralized modificationset for a
procedureq. It contains precisely those variables that may be modified by executingq, identified by the
names under which they are accessible toq. Giv enGMOD(q) for each procedureq in the program,MOD(e)
for a specific invocation ofq can be computed by reversing the effects of the parameter binding and name
scoping rules at the call site.MOD(e) is simply the set of variables accessible at the call site that can be
bound to names inGMOD(q) by the call. Then,MOD(s) can be computed asMOD(e) combined with any
variables modified locally ins.

Tw o distinct mechanisms place variables inGMOD(q). Either q modifies the variable locally, inde-
pendent of any procedure calls made insideq, or some other procedure invoked byq modifies the variable.
Thus, we can viewGMOD(q) as having two components:

6



• the setIMOD(q) of variables that might be modified by statements inq other than procedure calls and

• the set of variables that might be modified as a side effect of executing a procedure call withinq.

IMOD(q) is the immediate modificationset for procedureq. For each procedureq, IMOD(q) can be com-
puted by an inspection of the source forq — it is independent of the other procedures in the program.
Hence, it can be computed by the editor and stored with the module that definesq.

The set of variables that might be modified as a side effect of a call to procedureq is completely
determined byIMOD(q) and theGMOD(q) sets for procedures called from withinq. This leads to the follow-
ing system of equations:

GMOD(p) = IMOD(p) ∪
e=(p,q)∈E

∪ f −1
e (GMOD(q))

where fe maps an actual parameter at a call site into the corresponding formal parameter of the called pro-
cedure. It maps global variables at the call site to the corresponding global variables of the called proce-
dure. These equations can be directly solved as a backwards data flow problem over the program’s call
graph. Any of the standard algorithms from global data flow analysis can be adapted to this task. TheUSE

sets can be computed by solving a similar system of equations.

Unfortunately, directly applying standard data flow algorithms to this system of flow equations is
inefficient. Because the binding functionfe can arbitrarily bind actual parameters to formal parameters, it
introduces a level of complexity to the problem that prevents global data flow algorithms from achieving
their fast time bounds on an instance of the problem. Iterative methods, for example, may have to iterate
around the call graph many times before the solution converges. For this reason, solution techniques based
upon transitive closure or classical data flow analysis techniques [9, 8, 35, 40] achieve a worst case time
bound no better thanO(EN), where E is the number of edges in the call graph and N is the number of ver-

tices [14]4. As part of designing the data flow analysis phases for the IRn environment, we have dev eloped
an algorithm for computing theGMOD(q) sets in timeO(Eα(E,N)), whereα is a functional inverse of Acker-
mann’s function [16]. This is the best known time bound for this problem.

To achieve this bound, we split the problem into two subproblems, one for global variables and the
other for call-by-reference formal parameters. The global variable subproblem gives rise to a very simple
system of data flow analysis equations that can be solved using any of the fast algorithms for analysis of a
single procedure [25, 24, 30].

The formal parameter subproblem inherits most of the complications that make the summary set

computation hard. To efficiently solve it, we first reduce it to the problem of computing a relationmap*

that describes the parameter binding chains that occur in the program call graph. A pair <a,b> is in map*

if and only if both aandb are formal parameters and there is a chain of procedure calls in the program that
results ina being bound tob. An actual parameterw corresponding to a formal parameterx of procedurep

may be modified if there exists some formal parametery of another procedureq such thatx map* y and

y ∈ IMOD(q). map* can be thought of as the reflexive transitive closure of fe taken over all the paths in the

program. Fortunately, we can compute map* in a particularly efficient manner.

Using a result of Tarjan [41], we know that if we can reduce the problem to a single-source path
expression problem on the program’s call graph we can use any of the standard elimination techniques for
intraprocedural data flow analysis [24, 30]. In particular, we can use an algorithm also due to Tarjan that
solves single-source path expression problems in timeO(Eα(E,N)) [42].

The desired reduction is achieved by demonstrating how to computemap* for paths described by
regular expressions in time proportional to the length of a single bit-vector, which is equal to the total num-

ber of formal parameters of procedures in the program. One must show how to compute map* for the

union, concatenation, and reflexive transitive closure of paths for which we already know map*. We

4Throughout this paper, the time bounds are expressed in terms ofbit vectorsteps [1].

7



represent map* as a bit matrix whose dimension matches the total number of parameters in the program. If
we assume that the number of parameters to any single procedure in the program is bounded by some con-

stant K, the contribution of any single path through the program to map* can be represented by a K× K

matrix.5 In this case, all three operations (union, concatenation, and transitive closure) involve multiplying
K × K matrices, which can be done in constant time [16].

The GMOD sets for each procedure are produced by simply taking the union of the results of the two
analyses. For each edgee = (p, q), MOD(e) is formed by applyingf −1

e to GMOD(q) and adding in any
aliases that can hold on entry to the calling procedure. A more detailed treatment of this algorithm has
appeared in other papers [14, 16]. Burke has shown that the same approach works in an interval analysis
framework [11].

The summary set computation illustrates the general strategy introduced in Section 3.1. Because the
IMOD sets contain purely local side effects, they can be computed in the module editor and stored with the
module. Thus, a procedure’sIMOD set is computed once per editing change to the module, rather than once
per compilation of each program containing the module. TheGMOD computation is program specific, so it
is done in the program compiler. The resulting information must be stored with the program; even the sets
for individual call sites are stored with the program rather than with the module containing the site.

3.3. Aliasing

To avoid generating incorrect code for a module that is passed two different names for the same data
location, most optimizing compilers treat all formal parameters and all global variables as if they were
potential aliases. If the compiler has precise knowledge about the aliasing patterns that can actually occur
in a program, it can restrict the set of variables treated conservatively to those that can actually be aliased.
The IRn environment annotates each procedurep with a setALIAS(p), that contains all the aliases that may
hold on entry top. Each potential alias is represented by a pair <x,y> of variable names. A pair <x,y> in
ALIAS(p) indicates that some chain of call sites in the program leads to an invocation ofp where bothx and
y are names for the same storage location.

To solve the aliasing problem, we break it down into two separate problems: detecting the creation, or
introduction, of aliases, and following theirpropagationaround the call graph. The introduction problem
can be solved by examining the source text for call sites. Thus, the module editor annotates each call sitee
with a setINTRO(e) containing all of the potential aliases introduced at the call site. To createINTRO(e), the
editor must detect cases when a single variable is passed in multiple parameter positions or when a global
variable is passed as an actual parameter.

The alias propagation problem can be formulated as a forward data flow analysis problem over the
program’s call graph. TheALIAS sets for a program’s procedures can be found by solving the following
equations:

ALIAS(q) =
e=(p,q)∈E

∪ (INTRO(e) ∪ be(ALIAS(p)))

wherebe is a function that models the pairwise parameter binding involved in propagating aliases around
the call graph. It can be defined as:

be(X) =
<x,y>∈X

∪ { < x′, y′> x′= fe(x) andy′= fe(y) }

where fe is the binding function for call sitee introduced in the previous section. It maps actual parameters
to formal parameters at the call site.

These equations can be solved using any of the standard algorithms from global data flow analysis
[30, 15]. In particular, theO(Eα(E,N)) technique described in the previous section can be used. That

5Although we might expect the total number of parameters in a program to grow as the program grows, we should not expect
the number of parameters to any single routine to grow without bound. Indeed, many compilers place a limit on this number.

8



algorithm produces a mapping of formal parameter bindings. We can compute an analogous mapping for
pairs of parameters and use it to propagate the alias pairs from a call site’sINTRO set directly to every proce-
dure that can inherit both variables in the pair along a single path. Thus, the same basic algorithm can com-
puteALIAS sets, albeit with a larger constant of proportionality since pairs of parameters are being tracked.

Again, the work involved in computing this interprocedural information is distributed between the
module editor and the program compiler, in keeping with the general strategy. TheINTRO sets for each call
site are the result of purely local properties of the calling procedure so they are computed in the module
editor and stored with the individual module. Based on local properties of the call site, the module editor
can also detect call sites that are irrelevant to later propagation analysis, effectively pruning the size of the
call graph for the problem. Since propagation analysis requires knowledge of the entire program, the pro-
gram compiler performs it and stores the resultingALIAS sets with the program.

3.4. Constant Propagation

The goal of interprocedural constant propagation is to annotate each procedure in the program with a
setCONSTANTS(p) of <name,value> pairs. A pair <x,v> ∈ CONSTANTS(p) indicates that variablex has value
v at every call site that invokesp. This set is an approximation; the problem of finding all variables that
are constant at run time is undecidable [29] and the approximate constant propagation problem used in typi-
cal optimizing compilers is flow sensitive, hence intractable, in an interprocedural setting [36].

For the purpose of computingCONSTANTS(p) we formulate the problem in a slightly different form.
Let us associate with each entry pointp a functionVal that maps formal parameters to elements of the usual
constant propagation lattice L, in which each element is one of three types:

• a latticetopelement ,

• a latticebottomelement , or

• a constant valuec.

The structure of this lattice is defined by the following list of rules for the latticemeetoperation //\:

1) //\ a = a for any lattice elementa

2) //\ a = for any lattice elementa

3) c // \ c = c for any constantc

4) c1 // \ c2 = if c1 ≠ c2

The constant propagation lattice is depicted graphically in Figure 2. While it is an infinite lattice, it has
bounded depth. In particular, if a variable is modified by assigning it a new value computed by taking the
meet of its old value and some other lattice element, its value can be reduced at most twice.

For any formal parameterx, let Val(x) represent the best current approximation to the value ofx on
entry to the procedure. After the analysis is complete, ifVal(x) = , the parameter is known to be non-
constant; ifVal(x) = c, the parameter has the constant valuec. The value is used as an initial approxima-
tion for all parameters; a parameter retains that value only if the procedure containing it is never called.
Once we have computedVal(x) for every parameterx of procedurep, CONSTANTS(p) is simply the set of

Figures are pro vided on separate pages

Figure 2. The constant propagation lattice.

9



Figures are pro vided on separate pages

Figure 3. The constant propagation algorithm

parameters for whichVal is equal to some constant value.

To compute theVal sets, we associate with each call sites in a given procedurep a jump function6 Js

that gives the value of each parameter ats as a function of the formal parameters of the procedurep7. Js is
actually a vector of functions, one for each formal parameter of the procedure invoked at the call site. Ify
is a formal parameter of the procedure called ats, the component functionJy

s computes the best approxima-
tion within the latticeL to the value passed toy at call sites, giv en the values passed to formal parameters
of p. Thesupportof the functionJy

s is the exact set of formal parameters ofp that are used in the computa-
tion of Jy

s .

Given these definitions, the interprocedural constant propagation problem can be solved using an
analogue of the Wegman-Zadeck method for constant propagation in a single procedure [46]. In this
approach, the call graph plays the role of the use-definition chain graph and the jump functions play the role
of the individual instructions. The Wegman-Zadeck method cannot be applied directly to the whole pro-
gram because constructing interprocedural use-definition chains requires the solution of a flow sensitive
data flow problem. As stated earlier, such problems are intractable in the interprocedural setting. Thus,
some approximate technique is required. The jump functions provide a range of approximations of differ-
ent precisions.

The interprocedural algorithm, shown in Figure 3, assumes that each parameter used in the program
has a unique name, so the procedure to which it is a parameter can be uniquely determined from the param-
eter name. The algorithm uses a worklist of parameters to be processed. It is guaranteed to converge
because the lattice is of finite depth and a parameter is only added to the worklist when its value has been
reduced. Since the value of any parameter can be reduced at most twice, each procedure parameter can
appear on the worklist at most two times.

If cost(Jx
s) is the cost of evaluatingJx

s, the total amount of work done by the computation is propor-
tional to

s
Σ

x
Σ cost(Jx

s) ⋅ |support(Jx
s)|

wheres ranges over all call sites in the program andx ranges over all formal parameters that are bound by
the call ats. This bound is based on the observation thatJx

s is evaluated each time some parameter in
support(Jx

s) is reduced in value. Because of the structure of the lattice, a parameter can be reduced in value
at most twice. If the cost of evaluating eachJx

s is bounded by a constant, implying that the size of the sup-
port is also bounded by a constant, the cost is proportional to the sum over each edge in the call graph of
the number of parameters bound by that edge.

The tricky part of this method is the construction of the jump functionsJs. Our approach to con-
structing these functions is based upon the following principles:

6The termjump functionoriginated with John Cocke and is used here for historical reasons.
7For the purposes of this discussion, ignore the issue of global variables used as parameters. These can be treated as an extend-

ed set of parameters.

10



• For any parameterx that can be determined by inspection of the source of the procedure containings
to be constant at call sites, set Jx

s = c where c is the known constant value. This implies that
support(Jx

s) = ∅.

• For any parameterx at call sites that cannot be determined as a function of input parameters to the
procedure containings, setJx

s to be . For example,x might be passed a value that is read in from an
external medium. Again, this implies thatsupport(Jx

s) = ∅.

• For any parameterx at call sites that is neither constant nor bottom,Jx
s is a function of parameters to

the calling procedure and local constants of the calling procedure. In this case,support(Jx
s) is non-

empty.

Taken together, these principles gives rise to a range of strategies for constant propagation. The boundary
between these three classes of values depends on the sophistication of the techniques used in the module
editor to determine jump functions. If the complexity of computing a particular jump function exceeds the
capabilities of the editor, it can simply give up and assignJx

s = . Torczon discusses three strategies of dif-
ferent complexity for developing jump functions [45] — one that only finds jump functions that are con-
stant or bottom, one that also discovers jump functions that pass a parameter through to a call site without
change, and a third that employs a sophisticated symbolic interpretation algorithm such as the one proposed
by Reif and Lewis [38].

A particularly interesting aspect of the computation of jump functions is their dependence on the
solution of other interprocedural data flow problems. Suppose the procedurep contains a call to another
procedureq on every path throughp to call sites. How does this affect the jump function fors? In the
absence of better information, we must assume that any formal parameter toq and any global variable is
changed upon return fromq and, hence any jump function that depends upon one of those variables must
be set to .

However, through side effect analysis, we can obtain better information. Suppose we can formulate
jump functions to conditionally depend on whether certain variables may be modified by some procedure
invocation. For example, suppose the value passed to a parameter at call sites depends on whether or not
another variable is modified at call sitet.

Jx
s = if a∈MOD(t) then elsea + b fi

It is important to note that theMOD sets for the context program are likely to change between the time the
module editor creates the jump function and the time the constant propagation problem is solved. Care
must be taken to ensure that the constant propagation phase uses the current value ofMOD rather than the
old value. Hence, if the program compiler performs side effect analysis before constant propagation, the
jump function can read information about side effects from the database and produce a more precise solu-
tion to the constant propagation problem. Without the ability to build jump functions that are conditional
on MOD information in this way, the editor would be forced to makeJx

s = . A detailed discussion of differ-
ent jump function implementation techniques may be found in the paper by Callahan, Cooper, Kennedy and
Torczon [12].

3.5. Interprocedural Optimization

The IRn programming environment will capitalize on the presence of interprocedural information and
module source code in the database to perform optimizations that span procedure boundaries. The goal of
interprocedural optimization is to tailor the code generated for a procedure to execute more efficiently by
taking into account, at compile time, facts about the run-time environment in which the procedure will be
executed. The module compiler uses stored knowledge about the calling procedure and the values of its
variables at the call site, along with information about the side effects of any call sites in the procedure
being compiled, to generate less general, more efficient code.

3.5.1. In-line Substitution

The most straightforward interprocedural optimization is in-line substitution. While this type of opti-
mization has been discussed in the literature since the mid-1960’s [21], few practical compiling systems

11



have actually implemented it. To perform in-line substitution, the compiler simply treats the procedure
body as if it were a macro definition and the call site as an instantiation of the macro. Actual parameters
are used in place of formal parameters in the expanded body, and local storage for the called procedure is

merged with the local storage for the calling procedure.8 This transformation completely eliminates the
overhead associated with making the procedure call. When followed by a decent global optimization pass
on the expanded procedure, in-line substitution results in optimizing both procedures together, producing
the best possible code for them within the given compiler.

For non-recursive procedures called from only one place, or those whose compiled body is smaller
than the linkage code, in-line substitution always produces an improvement. In the general case, however,
the optimization benefits must be weighed against the increased object code size resulting from multiple
copies of a single procedure.

3.5.2. Linkage Tailoring

Strictly speaking, in-line substitution is a type of linkage tailoring. However, there are a number of
less radical forms. For example, the compiler might usesemi-closedor semi-openprocedure linkages [2].
In a semi-closed linkage, the compiler moves some, but not all, of the implementation of the called proce-
dure into the calling procedure. By moving more of the linkage code into the calling procedure, it can be
better tailored to the environment at each call site. A semi-open linkage entails generating a private copy of
a procedure for a routine that calls it from multiple sites. The activation records can be merged, register
allocation performed jointly, and an inexpensive linkage used — in short, it provides many of the benefits
of inline substitution with a smaller space penalty. Either of these schemes moves code across the call site
boundary. This allows the compiler to do a better job of optimization, since it can optimize that code with
respect to a specific call site. For call sites embedded in loops, standard code motion will relocate any loop
invariant code outside the loop. Parts of the prologue code that establish operand addressability are likely
to fall in this category.

The program compiler will attempt to discover places wherecloning a procedure can lead to
improved optimization. When the interprocedural environment in which a procedure is to be executed dif-
fers radically between two sets of call sites, the program compiler can clone the procedure, tailoring the
interface in different ways to the different call sites. To illustrate the usefulness of this technique, consider
a procedure from a library that employs an option parameter to specify which of two different ways the pro-
cedure is to be used. Frequently, the option is specified by a constant parameter at the point of call. For
one of the two option values, the procedure reduces to a small fragment of code suitable for in-line substitu-
tion; for the other, the reduced code is much longer. The program compiler might clone this procedure into
two copies, one called from all sites in which there is a constant parameter specifying the short code frag-
ment and the other called from the remaining sites.

3.5.3. Other Techniques

Finally, a number of interesting optimization opportunities arise because the compiler operates inside
a programming environment, where it has easy access to the text for each procedure and records of previous
compilations. An environment can perform transformations which are difficult to implement in a tradi-
tional separate compilation system. One example iscross jumping, where a simple pattern matching pro-
cess is used to unify identical instances of procedure epilogue code. Extraneous copies of this code are
replaced by branches into the remaining instance, with a concomitant saving in object code size.

4. Recompilation Analysis

Using interprocedural analysis and optimization to improve the quality of code generated by the com-
piler introduces a new problem, called therecompilation problem. After changes to one or more modules

8Of course, the compiler must carefully avoid name conflicts and ensure that the parameter binding semantics are preserved.

12



incorporated into a program, the system must decide which modules to recompile. Although on first con-
sideration this might seems simple, the use of interprocedural information in module compilations makes it
a complex problem. Certainly, each module whose source has been changed must be recompiled. How-
ev er, because a change to the source of one module may invalidate the assumptions about interprocedural
data flow that were used in compiling a second module, the second module may need to be recompiled as
well. Thus, a single change might necessitate recompiling every module at which any of the interprocedu-
ral data flow sets have changed, a potentially enormous set of recompilations.

In a system where the compiler uses interprocedural information to make compile-time decisions, the
most conservative recompilation strategy would require recompiling every procedure in response to each
editing change. This approach completely eliminates the savings of separate compilation. In order to pre-
serve some of the economic benefits of separate compilation, the IRn environment employs a systematic
recompilation analysisto reduce the number of spurious recompilations caused by changes to source mod-
ules [45, 17, 10].

In IRn, we are experimenting with several strategies for recompilation analysis. All of the techniques
apply the same test to determine when a procedure must be recompiled. The test compares the actual inter-
procedural information describing a program againstannotation sets. These sets contain those interproce-
dural facts that can be true without invalidating the procedure’s previous compilation. The three methods
differ in the precision with which they assign values to these annotation sets. The basic tradeoff lies
between the expense of computing values for the sets and the precision of the resulting test.

Editing changes can mandate that a procedure be recompiled to ensure the correctness of code previ-
ously generated for it. The tests presented in this section detect recompilations for correctness. They do
not consider the question of recompiling to achieve improved optimization after an editing change. This
reflects a basic philosophy: IRn assumes that compilations are expensive. Accordingly, the recompilation
analyzer will not slate a procedure for recompilation simply to improve its level of optimization.

For recompilation analysis, we attach the following sets to the program’s call graph.

(1) MayBeAlias(p), for each procedurep — the set of alias pairs that are allowed without forcing a
recompilation. If a change adds a pair toALIAS(p) that is not inMayBeAlias(p), p must be recom-
piled.

(2) MayMod(e), for each call graph edgee — the set of variables that may be modified as a side effect
of the call without forcing a recompilation. If a change adds a variable toMOD(e) that is not in
MayMod(e), p must be recompiled.

(3) MayUse(e), for each call graph edgee — the set of variables that may be used as a side effect of the
call without forcing a recompilation. If a change adds a variable toUSE(e) that is not inMayUse(e),
p must be recompiled.

(4) MustBeConstant(p), for each procedurep — the set of constant pairs that must hold on entry to
procedurep if recompilation is to be avoided. If there exists a pair <x,v> in MustBeConstant(p)
that is not inCONSTANTS(p), p must be recompiled.

Given these sets, a procedurep must be recompiled if

(1) ALIAS(p) - MayBeAlias(p) ≠ ∅, or

(2) MOD(e) - MayMod(e) ≠ ∅, for any call sitee in p, or

(3) USE(e) - MayUse(e) ≠ ∅, for any call sitee in p, or

(4) MustBeConstant(p) - CONSTANTS(p) ≠ ∅.

Set subtraction is defined so thata ∈ (X-Y) if and only if a is a member of X and not Y.

To construct a list of procedures needing recompilation, the analyzer first initializes the list to include
ev ery procedure where editing has produced a semantic change since its last compilation. Next, it applies
incremental techniques to update the program’sALIAS, MOD, USE, and CONSTANTS sets. Whenever this
update changes the value of an interprocedural set, the compiler applies the appropriate test. If the test

13



indicates that the procedure must be recompiled, the analyzer adds it to the list. Because the analyzer only
tests sets that change during the incremental update, the test requires a number of set operations propor-
tional to the size of the region of changed data flow.

To help develop intuition about the tests, consider the following assignment of values. LetMay-
BeAlias, MayMod, andMayUsebe set uniformly to∅. Assign all of theMustBeConstantsets a special set
consisting of a pair <x,Ω> for each formal parameter or global variablex, whereΩ is a constant value that
appears nowhere in the program. With this assignment of values, the test will indicate recompilations for
ev ery procedure where either the source text or some associated interprocedural set has changed. Already,
this is an improvement over recompiling the entire program — it recompiles only procedures where the
compile-time situation has changed.

The effectiveness of the testing procedure depends entirely on the values assigned toMayBeAlias,
MayMod, MayUse, and MustBeConstant. Improving the precision of the test involves expandingMay-
BeAlias, MayMod, andMayUseto include more allowed facts, or shrinkingMustBeConstantto exclude
more facts. The next three subsections present different methods of computing values for these sets. The
methods are presented in increasing order of complexity; each successive method provides a more precise
result from the previous test.

4.1. Most Recent Compilation

Our first approach to computing the annotation sets simply remembers the values ofALIAS, MOD, USE

andCONSTANTSused in the most recent compilation of the procedure. In other words, whenever we recom-
pile a procedurep, we set

(1) MayBeAlias(p) = ALIAS(p),

(2) MayMod(e) = MOD(e), for each call sitee in p,

(3) MayUse(e) = USE(e), for each call sitee in p, and

(4) MustBeConstant(p) = CONSTANTS(p).

This set of assignments provides further insight into the principles underlying the recompilation test. The
test relies on an understanding of the interprocedural information and the manner in which it can be used by
the optimizer. As discussed in Section 3, the summary and aliasing sets are flow insensitive; they describe
ev ents which can occur but do not always occur. Because of this fundamental fact about the nature of the
ALIAS, MOD, and USE sets, the compiler can only depend on what isnot in these sets. If the optimizer
applies a transformation when a variable is present in one of these sets, removing it from the set cannot
invalidate the safety of that decision. The compiler must have already considered the case when the speci-
fied data flow event does not occur. Changes in flow insensitive information necessitate recompilation only
when they inv olve additions to those sets. While a deletion from a flow insensitive set can open up a new
opportunity for optimization, it cannot invalidate the correctness of a previous compilation. This principle
motivates tests (1), (2), and (3).

TheCONSTANTS(p) set approximates a flow sensitive set, so changes in its value must be handled dif-
ferently. Flow sensitive sets assert that a fact holds true on every path leading to some point in the program,
so the compiler can rely directly on the fact to justify a transformation. For example, if a pair <x,v> is in
CONSTANTS(p), the compiler can rely onx having the valuev on entry top, folding the valuev into refer-
ences tox along any paths wherex is unmodified. If later changes in the program remove <x,v> from
CONSTANTS(p), the changes invalidate the constant folding optimization. Thus, for flow sensitive sets,
recompilations arise only in response to deletions. Adding an element to a flow sensitive set can open up
new opportunities for optimization, but cannot invalidate previously applied optimizations. This rationale
underlies test (4), which recompiles a procedure only if an element is deleted from itsCONSTANTSset.

4.2. Reference Information

Directly using information from the most recent compilation produces a recompilation test that is a
significant improvement over the naive approach. Unfortunately, it fails to take advantage of the

14



availability of the source text for the procedure under consideration. In particular, it results in recompiling
a procedure if a variable is added to one of its interprocedural sets, even if that variable is not actually refer-
enced anywhere in the procedure. Examining which variables are actually referenced in a given procedure
leads immediately to an improved test.

To describe the annotation sets for this improved test, we must define three additional sets. For a pro-
cedure p, REF(p) is the set of variables either used or modified insidep. REF(p) can be computed as
IMOD(p) ∪ IUSE(p). DefineREF+(p) as the set of all variables referenced inp or some procedure invoked as
a result of executingp. Thus, REF+(p) can be computed asGMOD(p) ∪ GUSE(p). The setAliasREF(p)
describes pairs of variables, one of which is referenced locally inp and the other referenced inp or one of
the procedures that can be executed as a result of invokingp. This set is defined as

AliasREF(p) = { < x, y > | x ∈ REF(p) andy ∈ REF+(p) }

Finally, the complement of a setREF(p) is denoted asREF(p). Given these definitions, the improved anno-
tation sets can be computed as follows:

(1) MayBeAlias(p) = ALIAS(p) ∪ AliasREF(p)

(2) MayMod(e) = MOD(e) ∪ REF(p)

(3) MayUse(e) = USE(e) ∪ REF(p)

(4) MustBeConstant(p) = CONSTANTS(p) ∩ REF(p)

Computing the annotation sets from these definitions eliminates spurious recompilations that arise from
information about irrelevant variables. In practice, this is important because procedures often contain dec-
larations for global variables that they nev er reference. In Fortran, this happens withCOMMON statements;
in other languages, widespread use of include files achieves the same result.

The equations are presented in this form to convey the underlying ideas; an actual implementation
should avoid instantiating sets like REF(p) and AliasREF(p). A careful refactoring of the equations leads
directly to a much more efficient implementation.

4.3. Compiler Cooperation

While the use of reference information should eliminate many unnecessary recompilations, some can
still occur because the compiler often cannot use every interprocedural fact. Thus, a fact judged to mandate
recompilation by the reference test may actually be irrelevant, simply because the compiler was unable to
capitalize on it to justify an optimization during the most recent compilation. To compute more precise
annotation sets requires cooperation between the optimizer in the module compiler and the recompilation
analysis in the program compiler. In such a scheme, the module compiler computes a set, for each call site
and each optimization applied, containing those interprocedural facts that can invalidate the optimization.
Using this information, the module compiler can compute exact annotation sets.

Computing exact annotation sets places a significant burden on the optimizer. For every optimization
it applies, it must record those interprocedural facts that affected the safety decision. To convey the intri-
cacy of this process, we present the analysis required for a single optimization, redundant store elimination.
If the compiler discovers a point where the value of a local variable of a procedure exists in a register and
that value cannot be used later in the procedure, it need not store the value back into memory. To perform
this optimization, calledeliminating unnecessary stores, the compiler must recognize the last use of a vari-
able in a procedure.

This requires solving a global data flow analysis problem called thelive problem. In global, or
intraprocedural, data flow analysis, a procedurep is represented by its data flow graph,G = (N,E,n

0
). The

nodes ofG representbasic blocks, sequences of statements with no control flow branches. The edges
e = (m,n) ∈ E representcontrol flowbetween two basic blocks. Control enters the procedure through its
entry noden

0
.

15



A variable islive at a point in a procedure if there exists a control flow path from that point to some
use of the variable and that path contains no assignments to the variable. Live analysis associates a set
LIVE(b) with each blockb. LIVE(b) contains all the variables that are live on entry tob. LIVE sets can be
computed by solving the following backward data flow problem:

LIVE(b) = IN(b) ∪
a∈S(b)
∪ (THRU(b)∩ LIVE(a))

In this equation,S(b) is the successor set ofb. IN(b) is the set of variables used inb before being rede-
fined. Variables inIN(b) are live on entry tob. THRU(b) is the set of variables not redefined inb.

Without summary information about procedure calls, the compiler must assume that a procedure call
uses any variables visible to it. This assumption can extend the live ranges of variables, inhibiting the
application of register store elimination. InterproceduralUSE sets can reduce the set of variables assumed
LIVE because of a call site. BecauseMOD(e) says nothing about the ordering of uses and definitions,MOD

information is not pertinent to the computation ofLIVE information.

Register store optimizations are invalidated when the life of a variable is extended by addition of a
variable use after the current last use. Thus, any call sites between the eliminated store and the end of the
procedure can potentially invalidate a register store optimization. Adding a variable to theUSEset of such a
call site would make the eliminated store necessary for correct execution of the program.

Assume the existence of a setCALLS_AFTER(b) for each blockb, containing the set of call sites in the
procedure containingb that can be executed after execution ofb. To construct a recompilation test which
precisely characterizes the use of interprocedural information in the register store optimization, we must
compute a largerMayUse(e) set. Given this set,MayUse(e) can be computed as follows:

(1) MayUse(e) = ALLVARS, the set of all actual parameters and global variables, for each call
sitee in p;

(2) Whenever a store of a variablev is eliminated, the optimizer removesv from MayUse(e)
for each call sitee in CALLS_AFTER(b) and each call site insideb occurring after the opti-
mization.

This results inMayUsesets that precisely capture the recompilation dependences for this optimization.

To computeCALLS_AFTER(b), the following system of data flow equations must be solved:

CALLS_AFTER(b) =
a∈S(b)
∪ (LOCAL_CALLS(a) ∪ CALLS_AFTER(a))

whereLOCAL_CALLS(a) is the set of call sites in basic blocka. CALLS_AFTER(b) is the set of call sites that
occur after basic blockb. This calculation israpid in the sense of Kam and Ullman [28].

Computing exact annotation sets is significantly more complex than the reference information
approach. We hav e shown the analysis required for a single optimization; similar methods would be
needed for each optimization applied by the module compiler. Other examples of this analysis can be
found in Torczon’s dissertation [45, 17]. Actual experimentation will be required to determine whether the
improved precision of the resulting recompilation test justifies the expense of employing this level of partic-
ipation by the module compiler.

5. Environmental Impact

Having introduced the fundamental methods used to perform interprocedural analysis in the IRn envi-
ronment, we will now examine how collecting and using interprocedural information affects the overall
design of the system and the design of each of its components. In the environment, we have tried to dis-
tribute the work of collecting interprocedural information over the entire program development process. In
the resulting system, the editors and compilers jointly hold responsibility for collecting interprocedural
information. At the same time, we have tried to use interprocedural information to simplify and improve
the individual tools whenever possible.

16



Central to the design of the IRn programming environment is its database. We begin by discussing
the items that must be stored in the database to support the exchange of information required to develop
interprocedural information. Then we discuss the responsibilities each tool has in the computation of inter-
procedural information and the ways in which it uses such information. The discussion pays special atten-
tion to the role of the program compiler, which is responsible for overseeing the compilation process. The
flow of information between the components of the environment is depicted in Figure 4, which can serve as
a map for the remainder of the paper.

5.1. The Database

The database is a repository for all of the component parts of programs managed by the environment.
It is the common structure for storing information. This includes objects used by programmers, like the
source text of a procedure or its documentation, as well as information used to manage the compilation of
programs, for example, the annotation sets described in section 4.

There are two major entity types in the database:modulesandprograms9. A moduleis the smallest

editable or compilable unit of source. It corresponds to the source file on10 systems. A moduleprovides
the collection of entry points it defines andrequiresthe entry points called from within its body. Thespeci-
ficationsfor a module consist of the set of entry points it provides along with the number of parameters for

each entry point and the type of each parameter11.

A programis a structured collection of modules that form an executable entity. A program isconsis-
tent if the entry points called from modules in the collection match, in number and types of parameters, the
corresponding entry points provided within the collection. It iscompleteif every entry point required

within the collection is matched by an entry point provided12.

Most of the information visible to the end users of the environment is stored as attributes of programs
and modules. For example, a program has, among others, acompositionor list of modules incorporated, a
call graph, anexecutable image, and anentry tablethat maps entry points into the modules that implement
them. A module hassource, a list ofentries called, and numerousannotationsgenerated by the editors and
compilers.

Figures are pro vided on separate pages

Figure 4. Flow of information in the environment.

9In point of fact, the environment also supports the notions ofmodule-versions, which are different implementations of the same
set of module specifications, andprogram-versions, which are different implementations of the same program specifications. These
notions are intended to enhance the usability of the system and are not essential to the discussion in this paper. Hence, for simplicity
of presentation we will use the terms ‘‘module’’ and ‘‘module version’’ and the terms ‘‘program’’ and ‘‘program version’’ interchange-
ably.

10 is a trademark of AT&T Technologies.
11This is clearly a very limited form of specification. It is our intention to experiment with more sophisticated specifications in

the future.
12The IRn environment also supports module collections that are not programs but libraries or composite modules. These enti-

ties are not essential to the discussion at hand.

17



5.1.1. Program Dependence

One of the most interesting implications of performing interprocedural optimization is that the com-
piled code for a module is a function not only of the module source but also of theprogram in which that
module is to be incorporated. Because compilations depend on interprocedural information, the code gen-
erated is specific to the program in which the compilation is performed. As a result, a single module incor-
porated into six programs could have six different object modules, each stored as an attribute of the appro-
priate program.

In general, there are two types of information that the environment must deal with:module specific
andprogram specific. The division must be carefully drawn in the design of the environment. For exam-
ple, consider the information sets involved in interprocedural analysis, as described in Section 3. In each
case, a substantial component of the analytical process is module specific. Thus, local information like
IMOD, IUSE, andINTRO can be computed in the module editor and stored once, with the module. The results
of the interprocedural propagations, however, are program specific and must therefore be stored with the
program. This includes sets likeGMOD, GUSE, ALIAS andCONSTANTS.

5.1.2. Version Control

The decision to perform interprocedural analysis and optimization has a subtle effect on the support
for version control provided in IRn. Because the interprocedural information must be updated for every pro-
gram containing modulem wheneverm is changed, it is not desirable to incorporate the same module in

many different programs. This makes it unattractive to differentiate betweenminor versionsof a module.13

To test a new version of a module in the IRn environment, the programmer must make a completely
new program to contain it. This insures that the testing process does not invalidate a working program.
However, this policy increases the number of programs containing each of the unchanged modules, compli-
cating the task of updating interprocedural information in response to minor changes in a shared module.
Thus we encourage the programmer to create a new version when he begins to make a set of modifications
and to use the same version until a logically complete set of modifications has been made and tested,
regardless of the number of editing sessions involved. This approach decreases the proliferation of mod-
ules, at the expense of losing historical data about the sequence of revisions leading to the current version.

5.2. The Program Compiler

The program compiler is responsible for managing the computation of interprocedural information
and the construction of an executable image for the program. It must perform these tasks in an incremental
fashion. That is, it must be able to reconstruct the interprocedural information and an executable image
efficiently after a change to one or more modules incorporated in the program. This may involve directing
the module compiler to produce a new executable image for one or more modules in the program.

In many ways, the IRn program compiler resembles themakeutility [23]. It must discover each mod-
ule whose source has been changed since its last object version was produced and see that it is recompiled.
However, its responsibilities go far beyond that. Specifically, after a change to one or more modules or to
the program composition, the program compiler must:

• reconstruct the call graph for the program,

• update the interprocedural summary and aliasing information,

• perform interprocedural constant propagation,

• assess the prospects for interprocedural optimizations and

• determine which modules must be recompiled and invoke the module compiler on them.

13Systems like SCCS [39] create a new minor version of a module at each editing session.

18



The last task depends quite heavily on recompilation analysis, discussed in Section 4.

The program compiler has principal responsibility for constructing the interprocedural information
used by the other components of the IRn environment. It uses the program composition constructed by the
composition editor along with the information about which entries are called from each module to construct
a call graph for the entire program. It then uses that call graph and the initial information computed by the
module editor to determine solutions to the interprocedural data flow analysis problems described in Sec-
tion 3. For a completely new program, it applies the batch versions of the analysis algorithms. If the call
graph has already been analyzed, it uses incremental techniques [16] to update the information. In per-
forming this analysis, the program compiler frequently uses information computed in previous stages. For
example, the algorithm for constant propagation uses information about side effects and aliasing to compute
a more precise set of constants.

The program compiler also has the responsibility to direct the recompilation of modules within the
program in response to an editing change. To do this, it builds a list of all modules slated for recompilation.
It initializes the list with those modules whose source has been modified since the module’s last compila-
tion. To this list it adds every module that has been added to the composition since the last program compi-
lation. After the interprocedural information has been updated, the program compiler applies the recompi-
lation test described in Section 4 to determine which modules must be recompiled because of changes to
their interprocedural sets since their most recent compilation. It can, of course, ignore any modules where
the interprocedural information has not changed. Similarly, it need not consider modules already marked
for recompilation by virtue of local editing changes.

A final responsibility of the program compiler is to locate opportunities for interprocedural optimiza-
tion. The module compiler performs several types of interprocedural optimizations, such as linkage tailor-
ing, in-line substitution, cloning and cross jumping (see Section 3.5). The program compiler’s role in this
process is to locate likely sites for such optimizations, to direct the module compiler to perform the opti-
mizations, and to remember which modules have been optimized together. This last point is crucial since
some interprocedural optimizations, like linkage tailoring and cross jumping, require subsequent recompila-
tion analysis to treat the two as a unit. Similarly, procedure cloning introduces complications into the
recompilation analysis, since it changes the mapping of names to implementations. An editing change
might indicate recompilation of a cloned procedure when simply switching one call site from the optimized
to the unoptimized version might correct the problem.

5.3. The Module Editor

The module editor is the primary mechanism for creating and modifying the source code for modules
under the environment’s control. Thus, it is usually the first tool to examine the contents of any module and
it is natural that the general scheme employed by the IRn environment to generate interprocedural informa-
tion (see Section 3) relies on the module compiler to construct the initial data from which that information
is developed. Specifically, the module editor must compute five types of information:

• Call Graph Components: information about the contribution of each entry point in the module to the
call graph of a program that incorporates it. This information includes a specification of each edge,
where an edge corresponds to a call site, that must be added to the call graph whenever the entry
point is added to a composition, along with the binding function,fe, for each call site. When a mod-
ule is being edited in the context of a given program, the call graph for that program must be anno-
tated with a new edge when a new call is inserted in the module source.

• Side Effect Summary Sets: the initial information required by the program compiler to compute the
global summary information about side effects of procedures. This includes theIMOD andIUSE sets
for each entry point in the module (see Section 3.2).

• Aliasing Information: the information needed by the program compiler to compute the sets of alias
pairs at each entry in a program. This includes theINTRO sets for each call site, used to compute the
aliasintroductioneffects, and a mappingbe from pairs of formal parameters in the calling procedure
to pairs of actual parameters at the call site, reflecting thepropagationeffects (see Section 3.3). The
module editor can also differentiate between call sites that are important to the analysis and those that

19



are irrelevant to it.

• Constant Propagation Information: jump functions for each call site in the module to support inter-
procedural constant propagation (see Section 3.4). The amount of work involved in computing the
initial information will vary with the specific technique used to implement jump functions. It may
involve an operation as simple as scanning each call site to detect literal constants and formal param-
eters used as actual parameters or as complex as symbolic evaluation to detect local constants passed
as actual parameters, constant valued global variables, and actual parameters whose values are always
expressible as a function of the parameters to the calling procedure [45, 12].

• Recompilation Information: an indication whether this module must be recompiled because of local
changes. The recompilation algorithms used in the program compiler rely on the editor to mark mod-
ules that have been semantically changed [45]. Depending on the specific strategy used to compute
the annotation sets, additional information may be needed (see Section 4). TheREF set is one type of
initial information used in these algorithms.

The module editor capitalizes on its understanding of Fortran to sharpen the local recompilation anal-
ysis. By noting which editing changes alter the meaning of a module, it avoids marking a module for
recompilation based on local changes if those changes are irrelevant to compilation. For example, adding
comments to a procedure need not cause a recompilation. When a semantic change is made to a declaration
or defined constant that is shared between modules, the editor determines which of those modules require
recompilation because of the change and marks them appropriately. This latter feature is similar to the
analysis performed by Tichy and Baker to limit recompilations based on include files [44].

The module editor uses interprocedural data flow information to help the programmer develop better
code. One of the most important applications of such information is detecting and reporting semantic
anomalies in a module. These anomalies may indicate programming errors. For example, when the pro-
grammer enters a constant as an actual parameter, if the call site’sMOD set contains that parameter position,
the editor can indicate that the parameter might be changed. This approach to program diagnosis was pio-
neered by Fosdick and Osterweil in theDAVE system [37] and used in an interactive mode by Masinter in
theMASTERSCOPEfacility of INTERLISP [33]. Conradi’sFORTVERsystem also employs interprocedural anal-
ysis to uncoverdata flow anomaliesin whole programs [13]. However, none of these systems provides the
information interactively as the program is being developed. This is a special benefit of the approach to
whole program analysis used in IRn.

Zadeck has proposed the use of global data flow information in the editor to point out data flow
anomalies to the programmer, suggesting that the precision of the diagnostic information can be improved
by using interprocedural knowledge [47]. In considering this application, we must be careful to remember
the sensitivity of interprocedural information to specific call graphs. The side effect sets of a procedure call
are a function of the entire body of the called procedure, including procedure calls embedded in it. Thus,
the summary sets that describe that call depend on specific details of the called procedure and any other
procedure that can be invoked indirectly by the call. Since the program’s composition controls the binding
of procedure entry point names to implementations, any interprocedural sets computed for a program are
are valid only for that specific composition. In other words, if interprocedural information is used in the
editor to augment or refine intraprocedural data flow analysis, the resulting information will be correctonly
for the specific program for which the interprocedural analysis was performed. When a module is included
in multiple programs, conflicting diagnostic information may be reported when different programs are con-
sidered.

This is a general problem associated with the use of interprocedural information in the editor — the
information is a property of the program, not the module, so the user must be careful to specify the correct
program as the context for editing. Nevertheless, there is great promise for a diagnostic system based on
data flow information in the IRn programming environment and we intend to pursue experimentation with
such a facility.

20



5.4. The Composition Editor

The composition editor is the primary vehicle for programming-in-the-large in the IRn environment.
It allows a user to specify the collection of modules to be included in the program and provides facilities for
checking the consistency and completeness of the resulting program. For example, it ensures that the actual
parameters of a procedure call match the formal parameters of the called procedure in number and type. If
the composition iscomplete, that is, it includes a main procedure and an implementation for every needed
entry point, then it can be be used to generate an executable image for the program it represents. If a com-

position is both consistent and complete, the editor marks it eligible for compilation.14

The composition editor is used to create programs. In this role, it has several responsibilities for
interprocedural analysis. As it builds a new composition, it collects the information from which the pro-
gram compiler constructs the call graph. Whenever it updates a composition, it must annotate the existing
call graph with a list of changes since the last program compilation to alert the program compiler to check
for corresponding changes to the interprocedural data flow information.

The concerns of interprocedural analysis affect the design of a command set for manipulating compo-
sitions. A case in point is the library search mechanism. Because the editor treats a composition as a map-
ping from entry points to their implementations, it can use existing programs as libraries to be searched for
unresolved entry points. The library search mechanism encourages the user to create new programs by
specifically including the new versions of changed modules and then letting the composition editor com-
plete the program automatically by employing library search on the previous version of the program con-
taining these modules.

Elegant though this strategy may be, it has the disadvantage of increasing the amount of work
required to construct call graphs and interprocedural information for the new program. Under the library
search paradigm, each module is copied individually, with the result that most interprocedural information
is lost and a complete re-analysis of the program is required. However, if the user instead copies the old
composition and then edits it, replacing the old versions of changed modules with new ones, most of the
call graph will be preserved, allowing much of the interprocedural information associated with the old com-
position to be re-used. Fast incremental update algorithms [16] can then be used to compute the interproce-
dural information for the new program, just as if the modules had been edited in place. This observation
led us to redesign the composition editor to encourage users to build new compositions by incrementally
editing old ones.

The composition editor also provides a mechanism for defining a single new module from a collec-
tion of modules. This presents special problems for interprocedural analysis. First, the fundamental quan-
tities used by the program compiler in the interprocedural computations must be determined for the new
module group. In the case of theMOD problem of Section 3.2, this means computingIMOD(q) for every
entry q provided externally by the group. Computing this set requires solving an interprocedural data flow
analysis problem on the call graph of the module group. Second, there must be a mechanism for updating
the interprocedural information on edges of the call graph internal to the module group, given a change
externally. This requires extending the incremental updating algorithms to a hierarchical form. Research
on this problem is in progress.

5.5. The Module Compiler

The module compiler is designed to generate highly optimized object code for a source module in the
context of a given program. To achieve this goal, it makes use of interprocedural information for the pro-
gram and follows the optimization directives from the program compiler.

14In fact, it is possible to compile and execute a program that is not complete. The system maps each missing entry point onto a
single default entry point that reports the run-time error. If the program contains both compiled and interpreted modules, it will invoke
the interpreter to find an implementation of the module.

21



In the module compiler, interprocedural summary information is used to improve the precision of the
computed intraprocedural information. For instance, in the absence ofMOD information about a call site,
the module compiler must assume that the call results in modifications to every variable that is accessible to
the called procedure. This includes every global variable and every actual parameter at the call site. With
interproceduralMOD information, the set of variables assumed to be modified can be greatly reduced. This
should lead to significantly improved optimization around procedure calls. For example, an expression
involving a variable inCOMMON might be available at the point of call to a procedure, but in the absence of
better information, it must be assumed to be unavailable immediately after the call, since the global variable
may have been changed.

Similarly, the module compiler uses information about interprocedural constants as input to its own
constant propagation analysis. This allows the intraprocedural analyzer to recognize constants that are
inherited from the calling environment. In practice, important constants such as array dimensions and loop
strides are likely to be detected by the program compiler; this information can open up new opportunities
for applying purely intraprocedural optimizations.

Finally, information about interprocedural side effects not only helps produce better optimized code,
it can also reduce the amount of analysis required in the module compiler. Our experience with an
advanced vectorizer [3] shows that the number of use-definition chains constructed by the compiler can be
drastically reduced through the use of interprocedural analysis.

The module compiler’s major responsibility is to compute annotation sets for the recompilation anal-
ysis described in Section 4. For the most recent compilation and reference information schemes, the burden
is limited to storing information sets provided by the program compiler. If, however, the exact annotation
set scheme is used, the module compiler must record those facts actually used in optimizing the module.
Typically, this requires that, for each optimization, the module compiler track the contributions of specific
call sites to the global data flow information used in determining the safety of a transformation. Thus, the
compiler produces, for each optimization and each call site, a set containing those interprocedural facts that
could invalidate the optimization. As an example, Section 4.3 shows the analysis required for eliminating
unneeded register stores.

The desire to perform linkage tailoring has a direct impact on the choice of intermediate representa-
tions used in the module compiler. If the compiler considers only strictly open and strictly closed linkages,
then it may be possible to perform linkage tailoring on a high-level representation such as an abstract syn-
tax tree. In generating either semi-open or semi-closed linkages, however, the compiler will almost cer-
tainly introduce constructs that have no reasonable representation in a high-level intermediate form. This
will likely necessitate use of a relatively low-level representation to accommodate optimizations like mov-
ing loop invariant procedure prologue code out of a semi-open call inside a loop.

5.6. The Interpretive Debugger

A major goal of the debugger design is to support hybrid execution of interpreted and compiled mod-
ules. Interprocedural information can simplify the interface between compiled code and the interpretive
debugger. Similarly, the design of the debugger may preclude the application of some interprocedural opti-
mizations.

Consider a session in the debugging interpreter. The programmer might ask the interpreter to report,
after each statement executes, which variables have had their values changed. For statements that do not
include procedure calls, this is a simple task. If, however, the statement involves a call to a compiled proce-
dure, the interpreter must compare the values of each variable accessible outside the calling procedure
against its value before the call in order to compute the debugging information. For any non-trivial pro-
gram, this is a prohibitively expensive proposition.

If, however, the interpreter has access to interprocedural summary information, it can use the sum-
mary information to determine which variablesmight change as a result of the call, and the search for
changed variables can be restricted to a much smaller set. This same technique can be used to improve the
support forre versible execution, since implementation of this feature requires dynamic checkpointing of
variables thatmightchange as a result of a call to a compiled procedure.

22



The requirement for hybrid interpreted and compiled execution seems likely to rule out the applica-
tion of certain optimizations. For example, the preceding discussion assumes that the interpreter under-
stands the mapping from variable names to storage locations for compiled code. For the compiler and
interpreter to cooperate, the interpreter must be able to reproduce the compiler’s assignment of variables to
memory locations. This simple assumption may prohibit the compiler from applying sophisticated storage
optimizations like those proposed by Fabri [22]. If the compiler used such techniques, either it would need
to record the resulting storage map for the interpreter or the interpreter would be forced to duplicate the
analysis. Either scenario could add significantly to the complexity of executing hybrid code.

Finally, hybrid execution of interpreted and optimized code has implications for the design of the
interpreter. It is easy to imagine a programmer changing the value of a variable inside the interpreter during
a debugging session. In a separate compilation environment without interprocedural information, this is a
relatively safe action. Once the compiler has used interprocedural information as a basis for optimization
decisions, though, the possibility arises that changing the value of a variable inside one procedure has
implications for the correctness of the code already compiled for other procedures in the currently execut-
ing program. Thus, the interpreter needs to understand the manner in which the compiler uses interproce-
dural information in order to allow safe and correct responses to user requests during execution.

6. Current Implementation Status

A preliminary implementation of the IRn programming environment is running on SUN15 Microsys-
tems workstations under their version of . It includes stable versions of the monitor, the module editor, the
composition editor, and the execution monitor. The execution monitor uses the native f77 compiler to cre-
ate executables; a version is being designed that will allow compilation and execution on remote systems.
A single-user database has been in use for nearly two years; a multi-user database has been available for six
months. The interactive debugger, including hybrid execution, is being tested. Implementations of the
module compiler and the program compiler are underway. A preliminary implementation of the interproce-
dural data flow algorithms for the program compiler is in use and the information computed by this phase is
being used for diagnostic purposes in the editor. Finally, the current system contains a number of ancillary
command processors. including a calculator, a terminal emulator, aHELP processor, and a documentation
editor.

7. Summary and Conclusions

We believe that a sophisticated software development environment provides a practical setting for
performing optimization based on interprocedural analysis. The consequences of incorporating interproce-
dural analysis and optimization are far-reaching. The required analysis substantially effects the design of
ev ery component of the environment. The IRn project should be viewed as a demonstration that a program-
ming environment is a natural place to collect and use interprocedural information.

8. Acknowledgements

Both Tom Reps and our referees provided critical insights on the form and content of this paper.
William LeFebvre provided invaluable assistance with the text and picture processing software. The IRn

implementation team has provided a marvelous research vehicle for experimenting with new ideas about
interprocedural analysis and optimization. To all of these people go our heartfelt thanks.

9. References

1. Aho, A.V., Hopcroft, J.E. and Ullman, J.D.The Design and Analysis of Computer Algorithms. Addi-
son-Wesley (1974).

15SUN is a trademark of SUN Microsystems, Incorporated.

23



2. Allen, F.E. and Cocke J. A catalogue of optimizing transformations. InDesign and Optimization of
Compilers, Rustin, R., Ed., Prentice Hall, Englewood Cliffs, N.J. (1972), 1-30.

3. Allen, J.R. and Kennedy, K. PFC: a program to convert Fortran to parallel form. InSupercomputers:
Design and Applications, Hwang, K., Ed., IEEE Computer Society Press (1984), 186-205.

4. Allen, J.R. and Kennedy, K. A parallel programming environment.IEEE Software 2, 4 (July 1985),
22-29.

5. American National Standards Institute.American National Standard Pro gramming Language Fortran,
X3.9-1978(1978).

6. American National Standards Institute. Proposals approved for Fortran 8x. X3J3/S6.80 (1981).

7. Ball, J.E. Predicting the effects of optimization on a procedure body.Proceedings of the SIGPLAN 79
Symposium on Compiler Construction, SIGPLAN Notices 14, 8 (Aug. 1979), 214-220.

8. Banning, J.P. An efficient way to find the side effects of procedure calls and the aliases of variables.
Proceedings of the Sixth Annual ACM Symposium on Principles of Programming Languages(Jan.
1979), 29-41.

9. Barth, J.M. A practical interprocedural data flow analysis algorithm.Communications of the ACM 21,
9 (Oct. 1972), 613-640.

10. Burke, M. Private communication. (Nov. 1983).

11. Burke, M. An interval analysis approach toward interprocedural data flow. Report RC 10640, IBM
T.J. Watson Research Center, Yorktown Heights, N.Y. (July 1984).

12. Callahan, D., Cooper, K.D, Kennedy, K. and Torczon, L.M. Interprocedural constant propagation.
Proceedings of the SIGPLAN 86 Symposium on Compiler Construction, (June 1986).

13. Conradi, R. Inter-procedural optimization of object code. Tech Report 25/83, Univ. of Trondheim,
Div. of Computer Science, Trondheim-NTH, Norway (1983).

14. Cooper, K.D. Interprocedural data flow analysis in a programming environment. Ph.D. Dissertation,
Rice Univ., Dept. of Mathematical Sciences, Houston TX (May 1983).

15. Cooper, K.D. Analyzing aliases of reference formal parameters.Proceedings of the Twelfth Annual
ACM Symposium on Principles of Programming Languages(Jan. 1985), 281-290.

16. Cooper, K.D. and Kennedy, K. Efficient computation of flow insensitive interprocedural summary
information. Proceedings of the SIGPLAN 84 Symposium on Compiler Construction, SIGPLAN
Notices, 19, 6 (June 1984), 247-258.

17. Cooper, K.D., Kennedy, K. and Torczon, L. Interprocedural optimization: eliminating unnecessary
recompilation.Proceedings of the SIGPLAN 86 Symposium on Compiler Construction, (June 1986).

18. DeRemer, F. and Kron, H.H. Programming-in-the-large versus programming-in-the-small.IEEE
Tr ansactions on Software Engineering SE-2, 2 (June 1976), 80-86.

19. Dongarra, J. LINPACK working note #3: FORTRAN BLAS timing. Tech. Report ANL-80-24,
Argonne National Laboratory (Feb. 1980).

20. Dongarra, J. J., Bunch, J.R., Moler, C.B, and Stewart, G.W.LINPACK users’ guide, SIAM, Philadel-
phia, PA (1979).

21. Ershov, A. ALPHA - an automatic programming system of high efficiency.Journal of the ACM 13, 1
(Jan. 1966), 17-24.

22. Fabri, J. Automatic storage optimization.Proceedings of the SIGPLAN 79 Symposium on Compiler
Construction, SIGPLAN Notices, 14, 8 (Aug. 1979), 83-91.

23. Feldman, S. Make - a computer program for maintaining computer programs.Software Practice and
Experience 9(1979), 255-265.

24



24. Graham, S.L. and Wegman, M. A fast and usually linear algorithm for global flow analysis.Journal
of the ACM 23, 1 (Jan. 1976), 172-202.

25. Hecht, M.S. and Ullman, J.D. A simple algorithm for global data flow analysis problems.SIAM J.
Computing 1, 2 (Dec. 1975), 519-532.

26. Hood, R.T. and Kennedy, K. A programming environment for Fortran.Proceedings of the Eighteenth
Annual Hawaii International Conference on Systems Sciences, (Jan. 1985), 625-637.

27. Hood, R.T. and Kennedy, K. Programming language support for supercomputers. InFr ontiers of
Supercomputing, Metropolis, Sharp, Worlton and Ames, Eds., Univ. of California Press, Berkeley, CA
(1986), 282-311.

28. Kam, J. and Ullman, J. Global data flow analysis and iterative algorithms.Journal of the ACM 23, 1
(1976), 158-171.

29. Kam, J. and Ullman, J. Monotone data flow analysis frameworks.Acta Informatica 7, Springer-
Verlag (1977), 305-317.

30. Kennedy, K. A survey of data flow analysis techniques. InProgram Flow Analysis: Theory and
Applications, Muchnick, S.S. and Jones, N.D., Eds., Prentice-Hall (1981), 5-54.

31. Lampson, B.W. and Schmidt, E.E. Organizing software in a distributed environment.SIGPLAN 83
Symposium on Programming Language Issues in Software Systems, (June 1983), 1-13.

32. Leblang, D.B. and McLean, G.D. Configuration management for large-scale software development
efforts. Workshop on Software Engineering Environments for Programming-in-the-large, Harwich-
port, MA (June 1985).

33. Masinter, L. Global program analysis in an interactive environment. Tech. Report SSL-80-1, Xerox
Palo Alto Research Center, Palo Alto, CA (Jan. 1980).

34. Mitchell, J., Maybury, W. and Sweet, R. Mesa language manual. Tech. Report CSL-79-3, Xerox Palo
Alto Research Center, Palo Alto, CA (April 1979).

35. Myers, E.W. A precise and efficient algorithm for determining existential summary data flow informa-
tion. Tech Report CU-CS-175-80, Univ. of Colorado Dept. of Computer Science, Boulder, CO (March
1980).

36. Myers, E.W. A precise inter-procedural data flow algorithm.Proceedings of the Eighth Annual ACM
Symposium on Principles of Programming Languages, (Jan. 1981), 219-230.

37. Osterweil, L.J. and Fosdick, L.D. Dave - a validation, error detection and documentation system for
FORTRAN programs. Tech. Report CU-CS-071-75,Univ. of Colorado, Dept. of Computer Science,
Boulder, CO (June 1975).

38. Reif, J.H. and Lewis, H.R. Symbolic evaluation and the global value graph. Tech. Report 37-82, Har-
vard Univ., Aiken Computation Laboratory (1982).

39. Rochkind, M.J. The source code control system.IEEE Transactions on Software Engineering SE-1, 4
(Dec. 1975), 364-370.

40. Rosen, B.K. Data flow analysis for procedural languages.Journal of the ACM 26, 2 (April 1979),
322-344.

41. Tarjan, R.E. A unified approach to path problems.Journal of the ACM 28, 3 (1981), 577-593.

42. Tarjan, R.E. Fast algorithms for solving path problems.Journal of the ACM 28, 3 (1981), 594-614.

43. Tichy, W.F. A data model for programming support environments and its applications. InAutomated
Tools for Information Systems Design, Schneider, H-J. and Wasserman, A.L, Eds., North-Holland
(1982).

44. Tichy, W.F. and Baker, M.C. Smart recompilation.Proceedings of the Twelfth Annual ACM Sympo-
sium on Principles of Programming Languages, (Jan. 1985), 236-244.

25



45. Torczon, L.M. Compilation dependences in an ambitious optimizing compiler. Ph.D. Dissertation,
Rice Univ., Dept. of Computer Science, Houston, TX (May 1985).

46. Wegman, M. and Zadeck, F.K. Constant propagation with conditional branches.Proceedings of the
Twelfth Annual ACM Symposium on Principles of Programming Languages, (Jan. 1985), 291-299.

47. Zadeck, F.K. Incremental data flow analysis in a structured program editor. Ph.D. Dissertation, Rice
Univ., Dept. of Mathematical Sciences, Houston TX (Oct. 1983).

26


