
SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 28(4), 1 (April 1998)

How to Build an Interference Graph ∗

Keith D. Cooper, Timothy J. Harvey, and Linda Torczon

Rice University, 6100 S. Main – MS 132, Houston, Texas 77005, U.S.A
{email: harv@cs.rice.edu}

SUMMARY

The design and implementation of an interference graph is critical to the performance
of a graph-coloring register allocator. The cost of constructing and manipulating the
interference graph dominates the overall cost of allocation. The literature on graph-
coloring register allocation suggests the use of a bit matrix coupled with lists of edges
to represent the graph.1-3 Recently, George and Appel claimed that their tests show
better results using a hash table.4 This paper examines the tradeoffs between these two
approaches. Our experiments were conducted with an optimistic, Chaitin-style register
allocator.5 We believe, however, that the lessons learned in the experiment are applicable
to any program that needs to build and manipulate large graphs. For most graphs, we
obtained our best results, in terms of both time and space, using a modification of the
data structures suggested by both Chaitin and Briggs that we call the split bit-matrix
method. On a few large graphs, we found that a closed hash-table with the universal
hash function suggested by Cormen et al. 6 ran faster than the split bit-matrix method.
We found one case where it used less space. This suggests that the split bit-matrix
technique should be the method of choice, unless the compiler regularly encounters
large interference graphs. In that case, the best strategy might be to implement both
data structures behind a common interface, and switch between them based on graph
size.

KEY WORDS Compilers Register allocation Interference graph Hashing

Introduction

When designing a data structure for a complex application, one or both of the follow-
ing constraints inevitably arises: the machine lacks sufficient memory, or the solution
requires more computation than the user feels is justifiable. Often, the tradeoff be-
comes a simple matter of time versus space. By spending more space, the programmer
can improve running time, while decreasing space increases running time. The pro-
grammer must balance these two factors, finding a scheme that makes judicious use
of both time and space.
∗ Contract grant sponsor: Texas Advanced Technology Program; contract grant no. 003604-015

Contract grant sponsor Darpa; contract grant no. Dabt63-95-C-0115.

CCC 0038–0644/98/040001–01 Received July 18, 1997
c©1998 by John Wiley & Sons, Ltd. Revised September 5, 1997



2 K.D. COOPER, T.J. HARVEY, AND L. TORCZON

Build Time Total Time Build
Routine Name Nodes Edges (in seconds) (in seconds) %’age

fieldX.i 5936 268353 65.54 102.75 64
smoothX.i 1776 74771 57.49 85.23 67
parmvrX.i 5614 204491 50.46 82.99 61
parmovX.i 5220 195009 45.27 73.42 62
radbgX.i 2651 156978 34.42 50.12 69
twldrv.i 3135 309340 31.47 46.07 68
radf5X.i 1967 84785 26.18 42.34 62
radfgX.i 2788 148129 26.21 38.34 68
radb4X.i 1562 65070 23.19 34.56 67
fpppp.i 3899 723605 19.75 32.87 60

parmveX.i 2697 101962 18.33 28.41 65
radb5X.i 1968 84833 13.51 20.60 66

Aggregate 91870 3847704 556.28 852.45 65

Table I. Interference-Graph Build Times

In few places is this challenge more pronounced than in a compiler. Each phase of
the compiler, from parsing, through optimizing, to generating code, requires vigilance
to ensure that no algorithm slips into an undesirable running time. Complicating the
task is the complexity of a compiler’s input—the compiler cannot afford to assume
that the worst case never occurs.

The back end of a compiler includes several phases that approximate the solutions
of np-complete problems. This paper examines some data-structure design tradeoffs in
one such phase—register allocation. The register allocator must decide, at each point in
the object code, which values to keep in registers and which values to keep in memory.
A well-known and widely-used technique for solving this problem works by analogy
to graph coloring.7, 1 The compiler builds a graph, called the interference graph, that
encodes the fact that two values cannot occupy the same register or memory location.
Nodes in this graph represent values. An edge between two nodes exists if and only
if they are simultaneously live at some point in the code. Thus, an edge between n1

and n2 implies that they cannot occupy the same register. A coloring allocator solves
the problem by discovering a k-coloring for the graph—that is, a mapping of k colors
onto the nodes of the graph in such a way that no adjacent nodes have the same color.
If a k-coloring cannot be found, the allocator modifies the problem by moving some
values from registers into memory and tries again. When it discovers a k-coloring, it
then maps the k colors onto the hardware registers of the target machine.

The costs of building and accessing the interference graph largely determine the total
cost of graph-coloring register allocation. These costs are determined by two distinct
factors:

1. the representation used to implement the graph — The algorithms and data struc-
tures that the compiler writer chooses to implement directly affect the cost of
building and accessing the interference graph. This paper examines several pos-
sible implementation strategies.

2. the properties of the individual graph being colored — The size, connectedness,
and sparsity of the interference graphs seen in a coloring allocator vary widely, in

15/6/1999 15:33 PAGE PROOFS revision



HOW TO BUILD AN INTERFERENCE GRAPH 3

ways that might affect the choice of graph implementation. The compiler writer
has little or no control over these properties.

Interference graphs come in many shapes and sizes. The graph can be a complete graph,
that is, a graph that has an edge between each possible pair of nodes. A complete graph
has N (N−1)/2 edges; this is a clear upper bound. The value of N varies significantly,
as does the ratio of E/N . In our test suite of relatively small programs, N ranges from
2 to over 5,936; and E ranges from 1 to 723,605. We have seen computer-generated
procedures that create graphs with an order of magnitude larger graphs.

Table I shows the interplay between the size of the interference graph, time to
build the graph, and total allocation time. The graph was built as suggested by both
Chaitin and Briggs, using a lower-triangular bit matrix and an edge list for each node
to represent the graph. With each node, we store a tag that indicates the type of
register to which it can be assigned. For most modern microprocessors, the tag can
represent either an integer register or a floating-point register. The tags allow the
allocator to omit edges between values of different type, reducing the total number
of edges. In each case shown in Table I, building the graph required at least 60% of
the total allocation time. Across the entire suite of 169 routines from parts of the
Spec benchmark suite and Forsythe, Malcolm, and Moler’s small library of numerical
methods,8 the average time spent building the graph was 65% of total allocation time.

The choice of data structure directly affects the running time of the rest of the
allocator as well. The other phases all rely on information encoded in the graph, so
access costs are a major factor in the performance of the other phases. Both Chaitin
and Briggs stress that an efficient allocator requires both the bit-matrix for a quick
membership test and the edge lists to speed iteration over a node’s edges.1-3 We know
of several cases where implementors omitted the bit matrix in an attempt to save both
time and space; unfortunately, this produces a dramatic slowdown in the rest of the
allocator.

This paper examines several alternatives for building and representing the inter-
ference graph. Chaitin et al. first suggest the use of a hash-table for large graphs.1

Our investigation was prompted by George and Appel’s suggestion that hashing was
an improvement over a bit-matrix.4 To evaluate the issue, we built several variations
of both the bit-matrix and the hash-table schemes into the register allocator for our
research compiler.∗ Our primary motivation in this work was to examine the impact
of data-structure choice on both the time and the space required for allocation. In our
experiments, one variation of the bit-matrix scheme ran faster and used less space for
almost all of the procedures that we compiled. On a few large procedures, one of the
hash table schemes ran faster; it used less space on one procedure.
∗ Another implementation strategy would use Cai and Paige’s multiset discrimination technique to replace the

hash table.9 We did not experiment with multiset discrimination, primarily because the hash keys consist of
two relatively small integers. With these keys, we felt that the discrimination technique would devolve into
an unbalanced binary search.

15/6/1999 15:33 PAGE PROOFS revision



4 K.D. COOPER, T.J. HARVEY, AND L. TORCZON

Bit Matrix

Chaitin suggests representing the interference graph using both an edge list for each
node and a triangular bit matrix.1, 2 The edge list allows for efficient examination of a
node’s neighbors, while the bit matrix ensures a constant-time membership test. Since
the allocator uses both kinds of operation heavily, the costs of each are critical to
the allocator’s performance. The disadvantage of the triangular bit matrix lies in the
amount of space that it requires. It always requires N (N − 1)/2 bits, regardless of the
number of edges. The hash table technique replaces the bit matrix with a hash table,
on the theory that it requires space roughly proportional to E. If E � N 2, the hash
table should require less space. The hash table has the same expected case asymptotic
behavior as the bit matrix. However, the overhead per hash operation may be higher
than that required for a triangular matrix lookup, and the performance of the lookup
can degrade due to bad behavior from the hash function.

Our bit-matrix implementation uses the VectorSet implementation described by
Briggs and Torczon.10 Because the address computation for a diagonal array gener-
ates a multiplication and a division, (low+ (high× (high− 1))/2), we precompute a
lookaside array that stores all of the possible values of (high × (high − 1))/2. This
ensures that each access requires only an array lookup and an addition.

Improvements to Chaitin & Briggs

Our current implementation, which, for clarity of exposition, we will refer to as the
split bit-matrix method, departs from Chaitin and Briggs in two ways. First, it in-
corporates an insight that underlies both Gupta, Soffa, and Steele’s work on clique
separators for graph-coloring allocation11 and Koblenz and Callahan’s hierarchical col-
oring work.12 Both papers reduce the size of the interference graph by breaking it into
disjoint subgraphs. If we can determine, at design time, that two classes of nodes can-
not possibly interfere, we can construct separate and smaller graphs for each class.
Since the bit matrix requires O(N 2) space, the savings can be substantial.

Modern microprocessors feature multiple functional units and often split their regis-
ters into two or more classes. Typical processors have both integer, or general purpose,
registers and floating-point registers. This creates a natural split for register alloca-
tion. Since floating-point values and integer values cannot occupy the same hardware
registers, they cannot interfere. Thus, we can build separate interference graphs for the
integer values and the floating-point values. Initially, this idea seemed flawed: surely,
we reasoned, the ratio of integer values to floating-point values is so one-sided that
there would be little benefit from this method. (For example, all address computa-
tions require integer registers.) As Table II shows,∗ however, there is enough balance
between the two types of values in our examples that splitting the interference graph
into two disjoint graphs provides a substantial memory savings.†

∗ The row marked “Average” is the average memory savings over all 169 routines in our test suite.
† Indeed, we theorize that we could use an aggressive live-range splitting scheme like those described in Briggs’

thesis3 to provide benefits similar to Callahan and Koblenz’ tiling method, as the splits would provide natural
places to further subdivide the nodes in the interference graph.

15/6/1999 15:33 PAGE PROOFS revision



HOW TO BUILD AN INTERFERENCE GRAPH 5

Routine Number of Memory Routine Number of Memory
Name Integers Floats Savings Name Integers Floats Savings

advbndX.i 763 13060 10% pdiagX.i 721 1807 41%
bcndX.i 95 1803 10 prophy.i 211 1455 22

bcndbX.i 102 1010 17 putbX.i 495 1264 40
bcndlX.i 112 1023 18 radb2X.i 696 685 50
bcndrX.i 114 1052 18 radb3X.i 801 1013 49
bcndtX.i 104 1037 17 radb4X.i 1079 1389 49
celbndX.i 658 861 49 radb5X.i 1136 1849 47
ddeflu.i 409 3415 19 radbgX.i 2311 2419 50
debflu.i 435 3679 19 radf2X.i 702 677 50
deseco.i 891 5504 24 radf3X.i 803 1012 49

energyX.i 383 2476 23 radf4X.i 1083 1410 49
erhs.i 843 1334 47 radf5X.i 1140 1842 47

fieldX.i 3564 11669 36 radfgX.i 2436 2516 50
fpppp.i 386 4194 15 rhs.i 1096 1239 50
getbX.i 608 1639 40 rinjX.i 63 1739 7

inibndX.i 185 1460 20 slv2xyX.i 534 927 46
iniset.i 759 1308 47 smoothX.i 1299 1604 49
initX.i 936 13668 12 ssor.i 212 799 33

injbatX.i 178 3837 9 supp.i 13 988 3
injchkX.i 142 1489 16 svd.i 594 864 48

jacld.i 681 1030 48 transX.i 227 4799 9
jacu.i 531 749 48 twldrv.i 1067 16755 11
linjX.i 62 1709 7 vslv1pX.i 1206 1577 49

parmovX.i 2663 21781 19 vslv1xX.i 1099 1438 49
parmveX.i 1756 11310 23 waveX.i 88 2033 8
parmvrX.i 2818 23453 19 yeh.i 86 960 15

Average: 36%

Table II. Space Impact of a Split Interference Graph

Our second departure from prior practice relates to the construction and storage
of edge lists for each node. Both Chaitin and Briggs recommend using two passes to
build the edge lists. The first pass determines the degree of each node; the second pass
builds a precisely-sized vector to hold each edge list. To simplify the creation of the
edge vectors, entries in the bit matrix are used as flags to record the fact that each
edge has been processed. Thus, both the first pass and the second pass fill in the bit
matrix. This necessitates both clearing and setting the bit matrix twice.

The extra pass over the graph seems wasteful. While it does not change worst case
asymptotic complexity, it does increase the running time of the allocator. One alter-
native is to expend extra space in the vectors that hold the edge lists. Instead of sizing
each array precisely, the allocator can choose a standard size for an edge list vector
and chain together multiple vectors if more slots are needed. Unless all nodes have a
degree equal to an integer multiple of the number of pointers in the standard edge-list
node, some pointer slots will be empty, wasting space. Each edge-list node also needs a
pointer to the next edge-list node. However, by using this extra memory, the allocator
can avoid the initial pass over the code and its overhead, including clearing and setting
the bit matrix an extra time.

Our implementation already allowed the edge lists to be chained together for another
reason. After the interference graph has been built, the allocator attempts to coalesce
(or combine) values connected by a copy instruction. If two values are connected by
a copy and they do not otherwise interfere, they can be combined and the copy can

15/6/1999 15:33 PAGE PROOFS revision



6 K.D. COOPER, T.J. HARVEY, AND L. TORCZON

be deleted. In the interference graph, this replaces two nodes with distinct edge lists
by a new node with their combined edge list. To save an allocation followed by two
frees, the allocator simply links the edge lists together. All subsequent phases of the
allocator recognize these linked lists and handle them correctly. Thus, the first edge-
list pointer was already present, as was the code to handle them correctly throughout
the allocator.

Implementation

For our experiments, we implemented both the original Chaitin-Briggs approach and
the split bit-matrix method. Splitting the interference graph into a floating-point graph
and an integer graph saves both memory and time. Changing the representation of
the edge lists trades running time of the allocator against the use of additional mem-
ory. We present measurements of both techniques in the Experimental Results and
Observations section. The memory savings from using separate graphs more than
compensates for the memory wasted in the fixed-size edge lists. Eliminating the extra
pass required for precise-sized edge lists is a clear speed improvement. Thus, the split
bit-matrix method results in an allocator that is both faster and smaller than the
original Chaitin and Briggs scheme.

Hash Table

George and Appel, in their paper on iterated register coalescing, recommend using a
hash table in place of the bit matrix.4 Using a hash table to replace the bit matrix is
attractive because the hash table requires E table entries, where the bit-matrix needs
N (N−1)/2 entries. If the bit-matrix is sparse, implying that E � N 2, the hash table
will have many fewer entries than the bit matrix.

Because of our long-standing interest in the design and implementation of graph
coloring register allocators, we were interested in their suggestion. However, we were
concerned that the tradeoff between the two approaches was not as clear cut as the
previous argument suggests.

• The characteristics of interference graphs that determine sparsity—like size, av-
erage degree, maximum degree, and minimum degree—vary over a wide range.
These properties depend on the source language, the compiler, run-time conven-
tions, and other translation issues. Since the benefits of hashing rely on sparsity,
the variation in characteristics might complicate the choice between the hash
table and the bit matrix.
• Hashing relies on expected-case linear behavior. From the speed perspective,

the hash-table lookup must compete against a bit-matrix lookup. The latter
operation is quite simple, and most compilers do a good job of optimizing it. For
hashing to win, the hash function must retain its linear behavior and the lookup
must require just a few instructions.

To investigate these issues, we implemented several hash table schemes in our allocator

15/6/1999 15:33 PAGE PROOFS revision



HOW TO BUILD AN INTERFERENCE GRAPH 7

Routine Node Edge Edges Per Routine Node Edge Edges Per
Name Count Count Node Name Count Count Node

fieldX.i 5936 268353 45.21 putbX.i 533 13685 25.68
parmvrX.i 5614 204491 36.43 efill.i 529 22140 41.85
parmovX.i 5220 195009 37.36 pastem.i 510 7657 15.01

fpppp.i 3899 723605 185.59 tomcatv.i 497 20907 42.07
twldrv.i 3135 309340 98.67 pintgr.i 485 5819 12.00
radfgX.i 2788 148129 53.13 inisla.i 481 7720 16.05

parmveX.i 2697 101962 37.81 cosqb1X.i 468 9888 21.13
radbgX.i 2651 156978 59.21 cosqf1X.i 467 11193 23.97
deseco.i 2271 60569 26.67 dyeh.i 458 10356 22.61
radb5X.i 1968 84833 43.11 prophy.i 432 14371 33.27
radf5X.i 1967 84785 43.10 drepvi.i 427 7399 17.33

rhs.i 1826 75234 41.20 debico.i 427 4269 10.00
smoothX.i 1776 74771 42.10 orgpar.i 406 4974 12.25

erhs.i 1769 57707 32.62 yeh.i 397 4937 12.44
radf4X.i 1589 65860 41.45 heat.i 390 4201 10.77
radb4X.i 1562 65070 41.66 rkfs.i 386 6333 16.41
vslv1pX.i 1559 50308 32.27 bilan.i 345 5982 17.34
advbndX.i 1557 44711 28.72 denptX.i 307 3947 12.86
vslv1xX.i 1511 46909 31.05 rfftf1X.i 295 5987 20.29

initX.i 1422 51962 36.54 decomp.i 294 5168 17.58
ddeflu.i 1378 33509 24.32 fftbX.i 284 7022 24.73
jacld.i 1271 134765 106.03 repvid.i 281 4733 16.84

radf3X.i 1164 39162 33.64 injbatX.i 280 3288 11.74
radb3X.i 1161 39409 33.94 injallX.i 273 2385 8.74
pdiagX.i 1122 17574 15.66 fftfX.i 269 6741 25.06

svd.i 947 20418 21.56 rffti1X.i 259 5306 20.49
jacu.i 933 74914 80.29 blts.i 253 9104 35.98
paroi.i 916 15712 17.15 transX.i 251 4927 19.63
iniset.i 915 8028 8.77 rfftb1X.i 249 4378 17.58

energyX.i 915 14061 15.37 buts.i 247 8010 32.43
debflu.i 912 18111 19.86 ssor.i 238 7983 33.54
radf2X.i 869 26829 30.87 dcoera.i 238 1894 7.96
radb2X.i 869 27206 31.31 putdtX.i 237 2909 12.27

Aggregate 91870 3847704 41.88

Table III. Edge and Node Counts for the Largest of the Routines Studied

and made a series of measurements to assess the tradeoffs.
The differences between the techniques are clear. The hash table requires space

proportional to E; the bit matrix requires space proportional to N (N − 1)/2. Each
hashed access requires at least one evaluation of the hash function; each bit-matrix
access requires evaluating the address polynomial (low+ (high× (high− 1))/2) and
a mask operation to reach the appropriate bit.∗ Poor behavior from the hash function
may lead to more work; the bit matrix avoids this by spending extra space.

This creates an interesting implementation dilemma: there are a number of different
hashing methods with important tradeoffs in expected time and space requirements,
not to mention a plethora of possible hashing functions. Thus, simply comparing one
hash table implementation against the bit-matrix implementation would not supply
enough information to draw reasonable conclusions. For our experiments, we imple-
mented two different styles of hash tables, using a variety of different hash functions.
We report results for three specific hash functions: the one used by George and Appel,
along with the two best-performing functions that we discovered.
∗ Recall that we obtain high × (high− 1)/2 from a precomputed table.

15/6/1999 15:33 PAGE PROOFS revision



8 K.D. COOPER, T.J. HARVEY, AND L. TORCZON

Hash-table structure

The main consideration when choosing the hash-table data structure is to decide how
collisions will be handled. Collisions occur when two values hash to the same slot in
the hash table. Under open hashing or chaining, each entry in the table is a linked list
that contains all of the values that hash to that entry.14, 15 Under open addressing, also
called closed hashing, each entry in the table holds a single value.16, 14 When collisions
occur, the new value is put at some offset away from its hash entry. If another collision
occurs at that new point, the value moves to an offset from that position, and so forth.
The offset is either a constant (linear probing), or can be computed using a secondary
hashing function (double hashing).14-16, 6

Initial size

Regardless of the data structure employed, the final performance of the hash table
will depend heavily on the initial size of the table. If the table is too large, its space
advantage over the bit matrix method disappears. If the table is too small, the lookup
time increases and the allocator’s performance suffers. At the time that the allocator
must decide the table size, it only knows the number of nodes in the graph. The size of
the table and its resultant efficiency, however, rely on the number of edges, a number
which is unknown until the graph is built. Thus, in our experiments, the table size
selected is based on the average number of edges per node, as measured by an empirical
analysis of a sample set of codes.

George and Appel found that the ratio of E/N in their environment averaged
sixteen.4 Table III shows some of this data for the routines with the largest graphs in
our test suite. Considering just the initial graphs, we found a ratio of E/N of about
forty-two;∗ the “Aggregate” number includes the initial graph for each of the 169
Fortran routines in the test suite. To make matters worse, the ratio varied significantly,
from less than one† to one hundred and eighty five. Additionally, we were unable to
find a simple function that would predict a good initial table size—that is, provide a
value for E given N .‡

A second problem complicates this issue. The allocator may require more than one
attempt to construct a k-coloring. If it cannot construct a k-coloring, it selects some
values to spill (i.e., keep in memory rather than registers), modifies the code to reflect
these decisions, and begins the allocation cycle again on this modified code. The sub-
sequent interference graphs can have different E/N ratios. For example, including all
1,250 graphs built by the allocator for the 169 routines in the test suite drops E/N to
twenty-two, a decrease of almost one-half. While, in general, E/N decreases on subse-
∗ Remember that the number of edges is the same, whether we build the single hash table or the split hash

table, since our implementation does not add interference edges between values of differing types.
† This is a very short routine that passes two parameters and simply returns one of them; there are two nodes,

but only one interference edge. All the allocators processed this routine quickly.
‡ Of course, the functionE = N2/2 is an upper bound, but it ensures that the hash table has as many entries as

the bit matrix. Since hash table entries must be larger than the corresponding bit-matrix entries, E = N2/2
forfeits any space savings.

15/6/1999 15:33 PAGE PROOFS revision



HOW TO BUILD AN INTERFERENCE GRAPH 9

quent buildings of the interference graphs, the ratio can increase from one graph to its
successor. The complex interactions between the allocator’s copy-coalescing phase and
its spill-code insertion phase have subtle effects on the register pressure in different
regions of the code. These, in turn, change the shape of the interference graph. Thus,
if we could establish a good metric for initial table size, it would almost certainly need
to change across the different interference graphs built in a single allocation.

Since the compiler is unlikely to choose the perfect table size, our hash-table im-
plementations allow for resizing. Performance degrades sharply for hash tables that
become too full, so if our initial guess at the size of the hash table is wrong, we allocate
a new table that is roughly twice the size of the current hash table∗ and then rehash
all of the items into it, theoretically improving our performance at a small amortized
cost.

Hash functions

Because performance also depends on the behavior of the hash function, we experi-
mented with many different functions before selecting the three presented here. The
input to the function presents its own problems. Edges in the graph are represented
as an ordered pair of integers, not arbitrarily long strings. The integers are relatively
small, typically under 10,000. Thus, the hashing function does not have many signif-
icant bits with which to work. Indeed, our first simple hashing functions exhibited
undesirable behavior for precisely this reason. After much testing, we selected the
following three functions for this paper:

1. ((A× low) + (B × high)) mod table size
2. btable size × {[({low� 16} | high)× 0.6180339887] mod 1}]c
3. (low << 16 + high) mod table size

The first function is the universal hashing function described by Cormen et al.6 The
second function is the multiplicative function described by Knuth.15 The final function
comes from George and Appel’s work; their experiments used this function. The first
two were the best performing functions that we found. We included data on the third
function to allow direct comparison with George and Appel’s work.

Experimental Results and Observations

To evaluate the tradeoffs between the Chaitin-Briggs method, the split bit-matrix
method, and the hashing techniques, we implemented the techniques in the register
allocator for our laboratory compiler. We compiled each of the 169 Fortran procedures
in the test set that we use for regression testing the compiler. These routines are drawn
from a number of sources, including the Spec benchmark suite and the library orig-
inally written to accompany Forsythe, Malcolm, and Moler’s textbook on numerical
∗We precompute a table of prime numbers, each of which is close to a power of two. When the table is expanded,

the new table has the next larger size found in the table. Using appropriately chosen prime numbers ensures
that all of our closed hashing methods work correctly.

15/6/1999 15:33 PAGE PROOFS revision



10 K.D. COOPER, T.J. HARVEY, AND L. TORCZON

Routine Name Time to Build Total Compilation % of Time Spent
Graph (secs) Time (secs) Building Graph

fieldX.i 44.63 85.87 52
smoothX.i 9.60 17.80 54
parmvrX.i 28.20 54.43 52
parmovX.i 25.58 48.86 52
radbgX.i 20.14 36.00 56
twldrv.i 19.92 32.74 61
radf5X.i 17.48 30.39 58
radfgX.i 15.21 27.84 55
fpppp.i 13.58 26.19 52

radb4X.i 15.77 26.09 60
parmveX.i 10.84 19.82 55
radb5X.i 8.92 15.26 58

Aggregate 329.74 592.36 56

Table IV. Interference-Graph Build Times for the Split Bit-Matrix Method

methods.8 The tables in the Appendix present detailed results for the largest routines;
this section summarizes and interprets those results.

This section presents a series of direct comparisons. First, we derive some simple
analytical results to roughly predict the space consumption of the various techniques.
Next, we compare the space requirements of Chaitin-Briggs against hashing, of the
split bit-matrix method against hashing, and of Chaitin-Briggs against the split bit-
matrix method. We examine the speed differences between these three methods, and,
finally, look at the impact of the different methods on total allocation time.

Simple Analytical Results

Using simple analysis, we can establish some expectations for the space required by
the various methods. The Chaitin-Briggs method constructs a single lower-triangular
bit-matrix, without the diagonal. It uses a single bit to represent each possible edge
in the graph, which gives it a significant, albeit constant, advantage over the hashing
methods. For a graph with N nodes, this always requires N(N−1)

2 useful bits or N(N−1)
16

bytes.
The hashing methods use at least one word per edge, but they need only represent

edges that exist, plus enough overhead space to allow the specific hash function to
achieve a reasonable distribution. Thus, they require at least E entries, each occupying
a word of memory. Closed hashing uses one word per entry, for a lower bound of E
words. Open hashing represents each entry with a word holding the edge’s identity, plus
a pointer to another entry in the same bucket. This requires 2 ·E words. Additionally,
open hashing has an array of pointers to the linked lists; the size of this array is
independent of both N and E.

To compare these bounds, we need to understand the relationship between N and E.
Unfortunately, E can only be discovered by building the graph. We can try to estimate
E as a function of N , but it varies widely, as shown previously (see Table III). Taken
over all 1,250 graphs that the allocator builds for the test suite, E/N averaged twenty-

15/6/1999 15:33 PAGE PROOFS revision



HOW TO BUILD AN INTERFERENCE GRAPH 11

two edges per node. By assuming that E = 22 · N, we can estimate the value for N
where the memory requirements of the hash table techniques become smaller than
those of the bit-matrix method. Ignoring any table expansion done to accommodate
excess collisions, the closed table will use 22·4·N bytes. Including the array of pointers,
the open table will require 22 · 12 ·N bytes.∗

If we graph these lower bounds on space requirements, we see that the closed hash
table’s equation intersects the bit-matrix’s equation when N = 1409. Thus, for graphs
with fewer than 1409 nodes, with E/N of twenty-two, the Chaitin-Briggs method
should use less space. The open hash table’s function crosses the bit-matrix func-
tion at N = 4224. We expect the split bit-matrix method to require less space than
Chaitin-Briggs. These numbers are crude approximations; minor changes in E/N can
move these cross-over points dramatically, and the lower bounds for the hash table
memory usage are likely to be exceeded. Thus, actual behavior will almost certainly
vary from the predicted behavior. However, these numbers provide a starting point for
our analysis.

Space Comparisons

To compare the actual space requirements, we measured the memory usage of all
the implementations. The results are summarized in Tables V through VII in the
Appendix.

Chaitin-Briggs versus Hashing Table V compares the Chaitin-Briggs method,
which builds a single table, against the various hash-table implementations. It shows
that Chaitin-Briggs requires less memory than hashing for all but the largest graphs in
our study. For the largest examples, closed hashing with either the universal or the mul-
tiplicative hash function demonstrates consistent improvement over Chaitin-Briggs.
The analytical results suggest that open hashing will eventually show improvement as
well, but that closed hashing will always use less space than open hashing.

The Split Bit-Matrix Method versus Hashing Table VI compares the split bit-
matrix method, with thirty-element edge lists, against the various hash-table imple-
mentations. The split bit-matrix method beats hashing on 168 out of the 169 routines;
we would expect it to outperform Chaitin-Briggs in this test. (Closed hashing beats the
split bit-matrix method on routine parmvrX.) Splitting the interference graph changes
the constants in the equation, but it does not change the asymptote. For large enough
graphs, closed hashing should become the most space efficient technique.

Chaitin-Briggs versus the Split Bit-Matrix Method Table VII compares the
memory requirements of the Chaitin-Briggs method against those of the split bit-
matrix method. Two effects come into play in this comparison. The split bit-matrix
method builds two smaller bit-matrices; this reduces the total space for the bit matrix.
∗ Our implementation expands the hash table if the length of a collision-induced chain gets too long. In the

closed table, this expands the table and rehashes into it. In the open table, this expands the pointer array
and rehashes into it. On our test routines, the open table never rehashed; the average list length was almost
always less than two.

15/6/1999 15:33 PAGE PROOFS revision



12 K.D. COOPER, T.J. HARVEY, AND L. TORCZON

The fixed-length arrays used for edge-lists waste some space; this increases space for
the edge lists. The table shows that the former effect usually dominates the latter.

Results are shown for edge-list array sizes of 10, 20, and 30 elements. In general,
longer vectors improve memory efficiency; however, the impact of the space wasted
by fixed-size arrays and their links is larger on the smaller graphs. (Splitting the
graph should not exacerbate this problem since it eliminates no edges.) Note that
the Aggregate numbers give greater weight to large routines since they are simple
arithmetic sums.

Speed Comparisons

The previous section examined the implementations from the perspective of memory
consumed. The second important difference between these methods is the speed of al-
location. To assess the impact of different graph implementations on allocation speed,
we measured the time required to build the interference graph under each method.
Tables VIII through X compare the time required by the various implementations to
build interference graphs. Finally, Table XI shows the impact of the differing imple-
mentation techniques on total allocation time.

As many other authors have noted, the overhead costs of heap allocation can be
significant in allocation-intensive tasks. For open hashing and the single-size edge
lists used in the split matrix method, the cost of allocation might be important. In our
implementations, we use an allocator based on Hanson’s Arena data structure,17 rather
than the standard system calls. This drastically reduces the time spent in allocation
and deallocation.

Chaitin-Briggs versus Hashing Table VIII compares the time required to build
the interference graph with Chaitin-Briggs against the various hash-table implementa-
tions. In addition to requiring more memory, hashing can also be slower. Open hashing
is noticeably slower on our example programs; closed hashing is sometimes faster than
the Chaitin-Briggs method. The degradation for fpppp.i and twldrv.i under closed
hashing is particularly striking. Of the hash implementations, closed hashing with the
universal hash function is the clear winner.

The Split Bit-Matrix Method versus Hashing Table IX compares the time
required to build the interference graph with the split bit-matrix method against the
various hash-table implementations. An array size of thirty was used for the edge lists.
The split bit-matrix method does better against closed hashing on the examples where
closed hashing beat Chaitin-Briggs (see Table VIII). Closed hashing still wins in three
individual cases.

Chaitin-Briggs versus the Split Bit-Matrix Method Table X compares the
interference graph build times for Chaitin-Briggs against the split bit-matrix method.
Times for Chaitin-Briggs are given in seconds. In most cases, the split bit-matrix
method is faster. Using fixed-length edge-list arrays eliminates one pass over the code;
this usually results in a speed improvement. Longer edge-list arrays often improve

15/6/1999 15:33 PAGE PROOFS revision



HOW TO BUILD AN INTERFERENCE GRAPH 13

the split bit-matrix method’s performance. A few routines are slower with the split
bit-matrix technique; these are small routines with relatively short allocation times.

Total Allocation Speed Table XI shows the total allocation time for the largest
routines. The initial number is for Chaitin-Briggs; the other methods are shown relative
to Chaitin-Briggs. We might have expected to see a change in the relative advantage of
one method over another if the cost of other operations, like membership testing, varied
in a different way than the cost of building the graph. The table shows that this is not
the case—the split bit-matrix method is usually faster than the other methods. Closed
hashing, with the universal function, beat it on radb4X.i. Consulting the other tables
shows that closed hashing is faster than the split bit-matrix method for this routine,
but uses more space for the graph. Similarly, Chaitin-Briggs beat the split bit-matrix
method on radf3X.i. The earlier tables show that, for this routine, Chaitin-Briggs
wins on time but not space for edge-list arrays of thirty and wins on space but not
time for edge-list arrays of ten.

Conclusions

Building the interference graph has always consumed a large part of the time and
space required by a graph-coloring allocator. The experiments described in this paper
explore the tradeoffs between several implementation approaches. The results are quite
clear. Below some threshold size, the split bit-matrix method generally requires less
space and time than either hashing or the original Chaitin-Briggs method. Above the
threshold, closed hashing with the universal hash function becomes the most time and
space efficient method. In practice, the threshold will be a function of the specific
implementations used and the properties of a “typical” input program. This suggests
that the split bit-matrix technique should be the method of choice, unless the compiler
regularly encounters large interference graphs. In that case, the best strategy might
be to implement both data structures behind a common interface, and switch between
them based on graph size. In such an implementation, the compiler writer should
determine the threshold experimentally.

Acknowledgments

The authors would like to thank Mark Krentel for his assistance in finding interesting
hash functions to test. We also thank Preston Briggs for his tireless patience as a
sounding board for ideas and advice. Without help from Lal George, this work would
not have moved forward; he was quick with a reply to every question that we asked.
Finally, we thank the members of the Massively Scalar Compiler Group, who wrote
and support the large amount of code necessary to enable these experiments: Preston
Briggs, John Lu, Rob Shillner, Phil Shielke, Taylor Simpson, Lisa Thomas, and Edmar
Wienskowski.

15/6/1999 15:33 PAGE PROOFS revision



14 K.D. COOPER, T.J. HARVEY, AND L. TORCZON

REFERENCES

1. Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke, Martin E. Hopkins, and

Peter W. Markstein, ‘Register allocation via coloring’, Computer Languages, 6(1), 47–57 (1981).

2. Gregory J. Chaitin, ‘Register allocation and spilling via graph coloring’, SIGPLAN Notices, 17(6),

98–105 (1982). Proceedings of the ACM SIGPLAN ’82 Symposium on Compiler Construction.

3. Preston Briggs, ‘Register allocation via graph coloring’, Ph.D. Thesis, Rice University, April 1992.

4. Lal George and Andrew W. Appel, ‘Iterated register coalescing’, Conference Record of POPL

’96: 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, St.

Petersburg Beach, Florida, January 1996, pp. 208–218.

5. Preston Briggs, Keith D. Cooper, and Linda Torczon, ‘Improvements to graph coloring register

allocation’, ACM Transactions on Programming Languages and Systems, 16(3), 428–455 (1994).

6. Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest, Introduction to Algorithms, The

MIT Press, 1992.

7. S. S. Lavrov, ‘Store economy in closed operator schemes’, Journal of Computational Mathematics

and Mathematical Physics, 1(4), 687–701 (1961). English translation in U.S.S.R. Computational

Mathematics and Mathematical Physics 3:810-828, 1962.

8. George E. Forsythe, Michael A. Malcolm, and Cleve B. Moler, Computer Methods for Mathemat-

ical Computations, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1977.

9. Jiazhen Cai and Robert Paige, “‘Look Ma, no hashing, and no arrays neither”’, Conference Record

of the Eighteenth Annual ACM Symposium on Principles of Programming Languages, Orlando,

Florida, January 1991, pp. 143–154.

10. Preston Briggs and Linda Torczon, ‘An efficient representation for sparse sets’, ACM Letters on

Programming Languages and Systems, 2(1–4), 59–69 (1993).

11. Rajiv Gupta, Mary Lou Soffa, and Tim Steele, ‘Register allocation via clique separators’, SIG-

PLAN Notices, 24(7), 264–274 (1989). Proceedings of the ACM SIGPLAN ’89 Conference on

Programming Language Design and Implementation.

12. David Callahan and Brian Koblenz, ‘Register allocation via hierarchical graph coloring’, SIG-

PLAN Notices, 26(6), 192–203 (1991). Proceedings of the ACM SIGPLAN ’91 Conference on

15/6/1999 15:33 PAGE PROOFS revision



HOW TO BUILD AN INTERFERENCE GRAPH 15

Programming Language Design and Implementation.

13. Preston Briggs, Keith D. Cooper, and Linda Torczon, ‘Aggressive live range splitting’, Technical

Report 90-126, Rice University, November 1990.

14. Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman, Data Structures and Algorithms,

Addison-Wesley, 1992.

15. Donald E. Knuth, The Art of Computer Programming, volume 3, Addison-Wesley, 1973.

16. Robert Sedgewick, Algorithms in C++, Addison-Wesley, 1992.

17. David R. Hanson, ‘Fast allocation and deallocation of memory based on object lifetimes’, Software

– Practice and Experience, 20(1), 5–12 (1990).

15/6/1999 15:33 PAGE PROOFS revision



16 K.D. COOPER, T.J. HARVEY, AND L. TORCZON

APPENDIX: Tables of Data

Space constraints restrict the amount of data shown. However, the Aggregate field
on each table shows the accumulated totals for all 169 routines studied. In all of the
tables except Table V, the first column of numbers in each table presents the base
case; subsequent columns compare other methods against the base case. In Table V,
the ratio of edges to nodes (E/N ) appears before the base case.

The comparisons are expressed as ratios. For example, Table V compares the mem-
ory requirements of the hashing implementations to the Chaitin-Briggs method. The
hashing results report the ratio (bytes for hashing)

(bytes for Chaitin-Briggs) .

15/6/1999 15:33 PAGE PROOFS revision



HOW TO BUILD AN INTERFERENCE GRAPH 17

Chaitin- Open Hashing Closed Hashing
Routine E/N Briggs Uni- Multi- George Uni- Multi- George
Name (bytes) versal plicative & Appel versal plicative & Appel

Aggregate 12580123 3.37 3.37 3.37 1.99 1.99 6.55

fieldX.i 45.21 2202256 1.21 1.21 1.21 0.95 0.95 3.81
parmvrX.i 36.42 1969812 1.10 1.10 1.10 0.53 0.53 2.13
parmovX.i 37.36 1703025 1.22 1.22 1.22 0.62 0.62 2.46

fpppp.i 185.59 950137 6.64 6.64 6.64 4.41 4.41 17.66
twldrv.i 103.61 614264 4.88 4.88 4.88 3.41 3.41 13.66
radfgX.i 52.65 485809 2.98 2.98 2.98 2.16 2.16 8.63

parmveX.i 37.80 454613 2.37 2.37 2.37 1.15 1.15 4.61
radbgX.i 59.20 439237 3.46 3.46 3.46 2.39 2.39 9.55
deseco.i 26.57 322340 2.32 2.32 2.32 0.81 0.81 3.25
radb5X.i 43.08 242064 3.89 3.89 3.89 2.17 2.17 8.66
radf5X.i 43.08 241818 3.89 3.89 3.89 2.17 2.17 8.67

rhs.i 41.19 208392 4.15 4.15 4.15 2.52 2.52 10.06
smoothX.i 42.09 197136 4.36 4.36 4.36 2.66 2.66 10.64

erhs.i 32.61 195585 3.70 3.70 3.70 1.34 1.34 5.36
radf4X.i 41.44 157807 5.00 5.00 5.00 3.32 3.32 6.64
radb4X.i 41.65 152490 5.13 5.13 5.13 1.72 1.72 6.88
vslv1pX.i 32.27 151905 4.37 4.37 4.37 1.73 1.73 6.90
advbndX.i 29.43 151515 4.09 4.09 4.09 1.73 1.73 6.92
vslv1xX.i 31.04 142695 4.47 4.47 4.47 1.84 1.84 7.35

initX.i 36.51 126380 4.33 4.33 4.33 2.07 2.07 8.30
ddeflu.i 23.28 118680 3.36 3.36 3.36 2.21 2.21 4.42
jacld.i 105.98 100965 11.98 11.98 11.98 10.39 10.39 20.77

radf3X.i 33.62 84681 5.25 5.25 5.25 3.09 3.09 6.19
radb3X.i 33.92 84245 5.30 5.30 5.30 3.11 3.11 6.22
pdiagX.i 15.60 78680 3.45 3.45 3.45 1.67 1.67 3.33

svd.i 21.54 56050 5.25 5.25 5.25 2.34 2.34 2.34
jacu.i 80.25 54405 13.43 13.43 13.43 9.64 9.64 38.55
paroi.i 17.09 52441 4.90 4.90 4.90 2.50 2.50 2.50
iniset.i 8.80 52326 3.73 3.73 3.73 2.51 2.51 2.51

energyX.i 15.37 52326 4.65 4.65 4.65 2.51 2.51 5.01
debflu.i 19.54 51984 5.31 5.31 5.31 2.52 2.52 5.04
radf2X.i 30.87 47197 7.32 7.32 7.32 2.78 2.78 11.11
radb2X.i 31.30 47197 7.39 7.39 7.39 2.78 2.78 5.55
slv2xyX.i 20.66 44838 6.05 6.05 6.05 2.92 2.92 2.92
celbndX.i 26.42 43995 7.01 7.01 7.01 2.98 2.98 11.92
saturr.i 37.42 34782 10.19 10.19 10.19 3.77 3.77 3.77

Table V. Memory Requirements: Chaitin-Briggs Versus Hashing

15/6/1999 15:33 PAGE PROOFS revision



18 K.D. COOPER, T.J. HARVEY, AND L. TORCZON

Table VI compares the split bit-matrix method against the hash-table methods. An
array size of thirty was used for the edge lists.

Split Open Hashing Closed Hashing
Routine Bit-Matrix Universal Multi- George Universal Multi- George
Name (bytes) plicative & Appel plicative & Appel

Aggregate 9549088 4.44 4.44 4.44 2.62 2.62 8.63

fieldX.i 1313217 2.03 2.03 2.03 1.60 1.60 6.39
fpppp.i 1173269 5.38 5.38 5.38 3.57 3.57 14.30

parmvrX.i 1112017 1.94 1.94 1.94 0.94 0.94 3.77
parmovX.i 972020 2.14 2.14 2.14 1.08 1.08 4.32

twldrv.i 503571 5.96 5.96 5.96 4.16 4.16 16.66
radfgX.i 453014 3.19 3.19 3.19 2.31 2.31 9.26
radbgX.i 418153 3.63 3.63 3.63 2.51 2.51 10.03

parmveX.i 311149 3.46 3.46 3.46 1.68 1.68 6.74
deseco.i 202970 3.68 3.68 3.68 1.29 1.29 5.17
radf5X.i 174669 5.38 5.38 5.38 3.00 3.00 12.01
radb5X.i 174590 5.39 5.39 5.39 3.00 3.00 12.01

smoothX.i 172173 5.00 5.00 5.00 3.05 3.05 12.18
rhs.i 154417 5.59 5.59 5.59 3.40 3.40 13.58

vslv1pX.i 136871 4.86 4.86 4.86 1.91 1.91 7.66
erhs.i 132801 5.45 5.45 5.45 1.97 1.97 7.90

radf4X.i 129604 6.09 6.09 6.09 4.05 4.05 8.09
radb4X.i 127521 6.14 6.14 6.14 2.06 2.06 8.22

jacld.i 125450 9.64 9.64 9.64 8.36 8.36 16.72
vslv1xX.i 122746 5.19 5.19 5.19 2.14 2.14 8.54

initX.i 104333 5.24 5.24 5.24 2.51 2.51 10.05
advbndX.i 103108 6.01 6.01 6.01 2.54 2.54 10.17

ddeflu.i 89737 4.45 4.45 4.45 2.92 2.92 5.84
radf3X.i 73794 6.02 6.02 6.02 3.55 3.55 7.10
radb3X.i 73693 6.06 6.06 6.06 3.56 3.56 7.11

jacu.i 70492 10.36 10.36 10.36 7.44 7.44 29.75
supp.i 63363 7.75 7.75 7.75 4.14 4.14 16.55
iniset.i 60074 3.25 3.25 3.25 2.18 2.18 2.18

pdiagX.i 54256 5.01 5.01 5.01 2.42 2.42 4.83
radb2X.i 50387 6.92 6.92 6.92 2.60 2.60 5.20
radf2X.i 50331 6.87 6.87 6.87 2.60 2.60 10.42
saturr.i 49245 7.20 7.20 7.20 2.66 2.66 2.66

celbndX.i 46457 6.64 6.64 6.64 2.82 2.82 11.29
svd.i 44166 6.67 6.67 6.67 2.97 2.97 2.97

subb.i 39055 9.36 9.36 9.36 6.71 6.71 6.71
paroi.i 38479 6.67 6.67 6.67 3.41 3.41 3.41

Table VI. Memory Requirements: Split Bit-Matrix Versus Hashing

15/6/1999 15:33 PAGE PROOFS revision



HOW TO BUILD AN INTERFERENCE GRAPH 19

Table VII compares the memory requirements of the Chaitin-Briggs method against
the split bit-matrix method. The memory shown includes the total memory allocated
to hold the matrix and the bit vectors.

Chaitin- Split Bit-Matrix Chaitin- Split Bit-Matrix
Routine Briggs Array Size: Routine Briggs Array Size:
Name (bytes) 10 20 30 Name (bytes) 10 20 30

Aggregate 12580123 1.08 0.84 0.76

fieldX.i 2202256 0.72 0.63 0.60 subb.i 18428 4.24 2.64 2.12
parmvrX.i 1969812 0.67 0.59 0.56 putbX.i 17755 2.18 1.58 1.39
parmovX.i 1703025 0.69 0.60 0.57 efill.i 17490 2.59 1.57 1.25

fpppp.i 950137 2.05 1.44 1.23 pastem.i 16256 1.28 0.94 0.86
twldrv.i 614264 1.36 0.96 0.82 tomcatv.i 15438 2.77 1.69 1.36
radfgX.i 485809 1.25 1.01 0.93 pintgr.i 14701 1.19 0.90 0.82

parmveX.i 454613 0.91 0.74 0.68 inisla.i 14460 1.44 1.02 0.93
radbgX.i 439237 1.32 1.04 0.95 cosqb1X.i 13689 1.87 1.33 1.16
deseco.i 322340 0.82 0.68 0.63 cosqf1X.i 13630 2.05 1.43 1.22
radb5X.i 242064 1.09 0.81 0.72 dyeh.i 13110 2.08 1.47 1.25
radf5X.i 241818 1.09 0.81 0.72 prophy.i 11664 2.52 1.57 1.21

rhs.i 208392 1.12 0.83 0.74 drepvi.i 11395 1.70 1.21 1.02
smoothX.i 197136 1.27 0.97 0.87 debico.i 11395 1.17 0.90 0.82

erhs.i 195585 0.98 0.75 0.68 orgpar.i 10302 1.32 0.93 0.85
radf4X.i 157807 1.26 0.93 0.82 yeh.i 9850 1.50 1.12 1.01
radb4X.i 152490 1.28 0.94 0.84 heat.i 9506 1.29 0.96 0.91
vslv1pX.i 151905 1.23 0.98 0.90 rkfs.i 9312 1.64 1.12 0.97
advbndX.i 151515 0.99 0.75 0.68 bilan.i 7439 1.86 1.27 1.08
vslv1xX.i 142695 1.19 0.94 0.86 denptX.i 5890 1.76 1.23 1.11

initX.i 126380 1.25 0.93 0.83 rfftf1X.i 5439 2.75 1.97 1.56
ddeflu.i 118680 1.03 0.81 0.76 decomp.i 5402 2.18 1.49 1.25
jacld.i 100965 2.65 1.60 1.24 fftbX.i 5041 3.17 2.08 1.76

radf3X.i 84681 1.35 0.99 0.87 repvid.i 4935 2.14 1.33 1.21
radb3X.i 84245 1.36 0.99 0.87 injbatX.i 4900 1.72 1.26 1.06
pdiagX.i 78680 0.93 0.76 0.69 injallX.i 4658 1.50 1.08 1.05

svd.i 56050 1.13 0.85 0.79 fftfX.i 4522 3.38 2.22 1.87
jacu.i 54405 2.73 1.65 1.30 rffti1X.i 4192 2.83 1.86 1.57
paroi.i 52441 1.01 0.80 0.73 blts.i 4000 4.43 2.65 2.09
iniset.i 52326 1.27 1.15 1.15 transX.i 3937 2.94 2.06 1.59

energyX.i 52326 0.96 0.76 0.71 rfftb1X.i 3875 2.86 2.05 1.56
debflu.i 51984 1.07 0.81 0.71 buts.i 3813 4.11 2.47 1.93
radf2X.i 47197 1.65 1.21 1.07 ssor.i 3540 4.57 2.83 2.18
radb2X.i 47197 1.66 1.21 1.07 dcoera.i 3540 1.58 1.22 1.20
slv2xyX.i 44838 1.19 0.91 0.82 putdtX.i 3510 2.33 1.68 1.51
celbndX.i 43995 1.56 1.16 1.06 inibndX.i 3422 2.33 1.60 1.39

Table VII. Memory Requirements: Chaitin-Briggs Versus Split Bit-Matrix

15/6/1999 15:33 PAGE PROOFS revision



20 K.D. COOPER, T.J. HARVEY, AND L. TORCZON

Table VIII compares the time required to build the interference graph with Chaitin-
Briggs against the various hash-table implementations.

Chaitin- Open Hashing Closed Hashing
Routine Briggs Universal Multi- George Universal Multi- George
Name (seconds) plicative & Appel plicative & Appel

Aggregate 852.45 1.83 2.20 2.39 1.26 1.37 46.26

fieldX.i 102.75 1.51 1.75 1.61 1.54 1.62 87.35
smoothX.i 85.23 1.68 2.02 1.61 0.28 0.32 3.80
parmvrX.i 82.99 1.38 1.59 1.35 0.63 0.70 36.26
parmovX.i 73.42 1.41 1.63 1.38 0.70 0.75 29.32
radbgX.i 50.12 1.65 1.90 2.62 1.24 1.33 26.66
twldrv.i 46.07 2.34 2.71 4.54 3.06 3.21 106.05
radf5X.i 42.34 1.97 2.43 1.85 0.53 0.57 9.13
radfgX.i 38.34 1.68 1.93 1.97 1.47 1.65 54.69
radb4X.i 34.56 2.04 2.48 3.16 0.51 0.57 7.00
fpppp.i 32.87 2.69 3.04 9.98 3.21 3.41 341.00

parmveX.i 28.41 1.54 1.85 1.55 0.72 0.86 17.92
radb5X.i 20.60 2.10 2.59 2.08 1.09 1.18 19.29
deseco.i 14.43 1.89 2.27 1.92 1.15 1.30 9.86
jacld.i 12.71 2.89 3.47 4.28 2.67 3.50 70.72

vslv1xX.i 12.24 1.86 2.21 1.99 1.27 1.37 15.33
vslv1pX.i 11.70 1.87 2.20 1.96 1.35 1.43 31.82

rhs.i 11.47 1.99 2.38 2.06 1.49 2.07 29.15
initX.i 11.38 1.86 2.22 1.98 1.35 1.61 15.32

radf4X.i 11.27 2.23 2.82 2.25 1.51 1.69 20.08
erhs.i 11.18 1.96 2.24 1.92 1.36 1.62 9.97

advbndX.i 10.50 2.01 2.54 2.13 1.40 1.56 21.40
radb3X.i 7.80 2.17 4.83 2.12 1.12 1.29 12.10
ddeflu.i 7.51 2.28 2.82 2.35 2.99 1.69 8.28
jacu.i 7.17 2.75 3.34 3.68 2.47 2.93 67.93

radf3X.i 6.06 2.35 2.79 2.23 1.47 1.63 18.66
svd.i 5.99 1.78 2.09 1.73 0.92 1.03 2.67

pdiagX.i 4.61 1.80 2.14 1.75 0.94 1.06 6.83
radb2X.i 4.00 2.12 2.46 2.09 1.49 1.69 6.64
radf2X.i 3.90 2.18 3.42 2.15 1.49 1.89 8.02

energyX.i 3.65 2.09 2.67 1.97 0.74 0.88 5.90
debflu.i 3.01 2.24 2.68 2.08 1.28 1.42 7.52
supp.i 2.77 2.94 3.55 3.88 2.50 3.04 22.26
paroi.i 2.45 2.04 2.41 2.22 1.17 1.38 4.71

Table VIII. Interference-Graph Build Times, Chaitin-Briggs Versus Hashing

15/6/1999 15:33 PAGE PROOFS revision



HOW TO BUILD AN INTERFERENCE GRAPH 21

Table IX compares the time required to build the interference graph with the split
bit-matrix method against the various hash-table implementations. An array size of
thirty was used for the edge lists.

Split Open Hashing Closed Hashing
Routine Bit-Matrix Universal Multi- George Universal Multi- George
Name (seconds) plicative & Appel plicative & Appel

Aggregate 592.36 2.64 3.16 3.44 1.81 1.98 66.57

fieldX.i 85.87 1.81 2.09 1.93 1.85 1.93 104.53
parmvrX.i 54.43 2.10 2.43 2.06 0.97 1.07 55.28
parmovX.i 48.86 2.11 2.44 2.07 1.05 1.13 44.06
radbgX.i 36.00 2.30 2.64 3.65 1.73 1.85 37.12
twldrv.i 32.74 3.29 3.81 6.39 4.31 4.51 149.22
radf5X.i 30.39 2.74 3.39 2.58 0.73 0.80 12.73
radfgX.i 27.84 2.31 2.66 2.71 2.03 2.28 75.32
fpppp.i 26.19 3.37 3.81 12.52 4.02 4.28 427.97

radb4X.i 26.09 2.70 3.29 4.18 0.67 0.76 9.28
parmveX.i 19.82 2.21 2.65 2.23 1.03 1.24 25.69
smoothX.i 17.80 8.07 9.65 7.70 1.35 1.51 18.19
radb5X.i 15.26 2.83 3.50 2.80 1.47 1.60 26.05

jacld.i 10.66 3.44 4.14 5.10 3.18 4.17 84.32
deseco.i 10.08 2.70 3.24 2.74 1.65 1.86 14.12
erhs.i 9.43 2.32 2.66 2.28 1.61 1.92 11.82

vslv1xX.i 9.28 2.45 2.91 2.62 1.67 1.81 20.22
vslv1pX.i 9.02 2.42 2.85 2.54 1.75 1.85 41.27

rhs.i 8.84 2.58 3.09 2.67 1.94 2.69 37.82
radf4X.i 8.64 2.91 3.68 2.93 1.97 2.20 26.19
initX.i 8.57 2.47 2.95 2.63 1.79 2.13 20.34

advbndX.i 7.62 2.77 3.50 2.94 1.93 2.15 29.49
radf3X.i 7.42 1.92 2.28 1.82 1.20 1.33 15.24

jacu.i 6.31 3.13 3.80 4.19 2.81 3.33 77.19
ddeflu.i 5.48 3.13 3.86 3.22 4.10 2.32 11.35

radb3X.i 4.71 3.59 8.01 3.51 1.85 2.13 20.04
svd.i 4.44 2.41 2.82 2.33 1.24 1.39 3.60

radb2X.i 4.14 2.04 2.38 2.02 1.43 1.63 6.42
radf2X.i 3.93 2.16 3.39 2.13 1.48 1.87 7.96
pdiagX.i 3.30 2.52 2.99 2.44 1.32 1.48 9.54
energyX.i 2.66 2.87 3.67 2.71 1.01 1.21 8.09

supp.i 2.39 3.41 4.11 4.50 2.90 3.53 25.80
debflu.i 2.30 2.93 3.51 2.72 1.68 1.86 9.84
subb.i 1.97 2.85 3.56 3.45 1.83 2.13 4.65
iniset.i 1.97 2.22 2.50 2.83 3.30 3.67 43.50

prophy.i 1.96 3.14 3.83 3.47 1.22 1.41 2.39
celbndX.i 1.94 2.63 3.28 2.82 2.33 2.51 10.25

Table IX. Interference-Graph Build Times, Split Bit-Matrix Method Versus Hashing

15/6/1999 15:33 PAGE PROOFS revision



22 K.D. COOPER, T.J. HARVEY, AND L. TORCZON

Table X compares the interference graph build times for Chaitin-Briggs against the
split bit-matrix method.

Chaitin- Split Bit-Matrix Chaitin- Split Bit-Matrix
Routine Briggs Array Size: Routine Briggs Array Size:
Name (seconds) 10 20 30 Name (seconds) 10 20 30

Aggregate 852.45 0.71 0.71 0.69

fieldX.i 102.75 0.87 0.87 0.84 efill.i 2.07 0.78 0.79 0.75
smoothX.i 85.23 0.24 0.19 0.21 slv2xyX.i 1.99 0.82 0.79 0.79
parmvrX.i 82.99 0.67 0.66 0.66 getbX.i 1.79 0.86 0.83 0.88
parmovX.i 73.42 0.68 0.66 0.67 putbX.i 1.58 0.81 0.79 0.84
radbgX.i 50.12 0.75 0.75 0.72 drepvi.i 1.45 0.94 0.77 0.74
twldrv.i 46.07 0.60 0.98 0.71 cosqf1X.i 1.45 0.77 0.67 0.68
radf5X.i 42.34 0.31 0.72 0.72 pastem.i 1.42 0.75 0.71 0.73
radfgX.i 38.34 0.76 0.73 0.73 dyeh.i 1.17 1.08 0.79 0.85
radb4X.i 34.56 0.81 0.75 0.75 cosqb1X.i 1.13 0.85 0.79 0.87
fpppp.i 32.87 0.83 0.82 0.80 inithx.i 1.07 0.79 0.78 0.76

parmveX.i 28.41 0.72 0.70 0.70 inisla.i 1.01 0.84 0.81 0.81
radb5X.i 20.60 0.75 0.73 0.74 rkfs.i 0.90 0.84 0.81 0.79
deseco.i 14.43 0.84 0.70 0.70 fftbX.i 0.74 0.93 0.93 0.78
jacld.i 12.71 0.99 0.90 0.84 decomp.i 0.73 0.86 0.92 0.93

vslv1xX.i 12.24 0.79 0.76 0.76 blts.i 0.70 0.87 0.91 0.87
vslv1pX.i 11.70 0.79 0.76 0.77 orgpar.i 0.68 0.74 0.72 0.75

rhs.i 11.47 0.84 0.79 0.77 repvid.i 0.64 0.91 0.77 0.80
initX.i 11.38 0.81 0.75 0.75 fftfX.i 0.63 0.87 0.79 0.92

radf4X.i 11.27 1.86 0.94 0.77 heat.i 0.58 0.95 0.81 0.79
erhs.i 11.18 0.73 0.72 0.84 bilan.i 0.55 0.76 0.76 0.78

advbndX.i 10.50 0.76 0.72 0.73 ssor.i 0.52 0.88 0.88 0.94
radb3X.i 7.80 0.64 0.61 0.60 pintgr.i 0.52 0.77 0.81 0.67
ddeflu.i 7.51 0.94 0.75 0.73 rfftf1X.i 0.51 0.92 0.96 0.86
jacu.i 7.17 0.98 0.91 0.88 rffti1X.i 0.48 0.98 0.85 0.85

radf3X.i 6.06 0.81 0.79 1.22 bilsla.i 0.46 0.80 0.89 0.87
svd.i 5.99 0.73 0.73 0.74 inibndX.i 0.45 0.91 0.91 0.91

pdiagX.i 4.61 0.74 0.72 0.72 transX.i 0.44 0.95 0.91 0.91
radb2X.i 4.00 0.82 1.03 1.03 denptX.i 0.43 0.95 0.93 0.86
radf2X.i 3.90 0.84 0.82 1.01 buts.i 0.43 1.09 0.93 0.93

energyX.i 3.65 0.84 0.75 0.73 colbur.i 0.39 0.69 0.74 0.74
debflu.i 3.01 0.95 0.77 0.76 yeh.i 0.37 0.89 0.73 0.76
supp.i 2.77 0.93 0.91 0.86 ihbtr.i 0.37 1.05 0.86 0.97
paroi.i 2.45 0.76 0.73 0.73 debico.i 0.36 1.03 0.83 0.81

tomcatv.i 2.35 0.79 0.82 0.81 putdtX.i 0.35 0.80 0.80 0.83
prophy.i 2.35 0.84 0.84 0.83 injbatX.i 0.31 0.97 0.97 0.71

Table X. Interference-Graph Build Times, Chaitin-Briggs Versus Split Bit-Matrix Method

15/6/1999 15:33 PAGE PROOFS revision



HOW TO BUILD AN INTERFERENCE GRAPH 23

Finally, Table XI shows the total time for the entire register-allocation process. An
array size of thirty was used for the edge lists in the split bit-matrix method.

Bit Matrix Open Hashing Closed Hashing
Routine Chaitin- Split Uni- Multi- George Uni- Multi- George
Name Briggs Bit versal plicative & Appel versal plicative & Appel

(seconds) Mat.

Aggregate 865.62 0.68 1.81 2.16 2.35 1.24 1.35 45.55

fieldX.i 98.34 0.87 1.58 1.83 1.68 1.61 1.69 91.27
smoothX.i 86.04 0.21 1.67 2.00 1.59 0.28 0.31 3.76
parmvrX.i 78.02 0.70 1.47 1.69 1.44 0.67 0.75 38.56
parmovX.i 69.54 0.70 1.49 1.72 1.45 0.74 0.79 30.95
radbgX.i 52.31 0.69 1.58 1.82 2.51 1.19 1.27 25.55
twldrv.i 47.17 0.69 2.28 2.65 4.43 2.99 3.13 103.57
radf5X.i 41.79 0.73 2.00 2.47 1.88 0.53 0.58 9.26
radfgX.i 40.01 0.70 1.61 1.85 1.89 1.41 1.58 52.41
radb4X.i 36.22 0.72 1.94 2.37 3.01 0.49 0.54 6.68
fpppp.i 35.08 0.75 2.52 2.85 9.35 3.00 3.19 319.52

parmveX.i 28.38 0.70 1.54 1.85 1.55 0.72 0.86 17.94
radb5X.i 21.00 0.73 2.06 2.54 2.04 1.06 1.16 18.93
deseco.i 14.61 0.69 1.87 2.24 1.89 1.14 1.28 9.74
jacld.i 13.80 0.77 2.66 3.20 3.94 2.46 3.22 65.13

vslv1xX.i 13.08 0.71 1.74 2.07 1.86 1.19 1.29 14.35
vslv1pX.i 12.48 0.72 1.75 2.06 1.84 1.26 1.34 29.83
radf4X.i 12.14 0.71 2.07 2.62 2.09 1.40 1.57 18.64
initX.i 12.05 0.71 1.76 2.10 1.87 1.27 1.52 14.47
rhs.i 11.96 0.74 1.91 2.29 1.97 1.43 1.99 27.95
erhs.i 11.45 0.82 1.91 2.19 1.88 1.33 1.58 9.73

advbndX.i 10.82 0.70 1.95 2.47 2.07 1.36 1.51 20.77
radb3X.i 8.38 0.56 2.02 4.50 1.97 1.04 1.20 11.26

jacu.i 8.17 0.77 2.42 2.94 3.23 2.17 2.57 59.62
ddeflu.i 8.05 0.68 2.13 2.63 2.19 2.79 1.58 7.72
radf3X.i 6.62 1.12 2.15 2.55 2.05 1.35 1.49 17.08

svd.i 6.48 0.69 1.65 1.94 1.60 0.85 0.95 2.47
pdiagX.i 4.64 0.71 1.79 2.12 1.74 0.94 1.05 6.78
radb2X.i 4.45 0.93 1.90 2.22 1.88 1.33 1.52 5.97
radf2X.i 4.35 0.90 1.95 3.07 1.93 1.34 1.69 7.19

energyX.i 3.94 0.68 1.94 2.47 1.83 0.68 0.82 5.46
supp.i 3.24 0.74 2.51 3.03 3.32 2.14 2.60 19.03

debflu.i 3.24 0.71 2.08 2.49 1.93 1.19 1.32 6.99
prophy.i 2.80 0.70 2.20 2.68 2.43 0.85 0.99 1.68

Table XI. Total register-allocation times for each method

15/6/1999 15:33 PAGE PROOFS revision


