
An Experiment with Inline Substitution

Keith D. Cooper
Mary W. Hall
Linda Torczon

Department of Computer Science
Rice University

Houston, Texas 77251-1892

ABSTRACT

This paper describes an experiment undertaken to evaluate the effectiveness of inline substitution as a
method of improving the running time of compiled code. Our particular interests are in the interaction be-
tween inline substitution and aggressive code optimization. To understand this relationship, we used com-
mercially available FORTRAN optimizing compilers as the basis for our study. This paper reports on the ef-
fectiveness of the various compilers at optimizing the inlined code. We examine both the run-time perfor-
mance of the resulting code and the compile-time performance of the compilers. This work can be viewed
as a study of the effectiveness of inlining in modern optimizers; alternatively, it can be viewed as one data
point on the overall effectiveness of modern optimizing compilers. We discovered that, with optimizing
FORTRAN compilers, (1) object-code growth from inlining is substantially smaller than source-code growth,
(2) compile-time growth from inlining is smaller than source-code growth, and (3) the compilers we tested
were not able to capitalize consistently on the opportunities presented by inlining.

INTRODUCTION
In applying code improvement techniques, an optimizing compiler is often limited by the amount of context
provided to it. Realization of this fact led compiler builders to extend the scope of their techniques from a
single basic block to encompass entire procedures. Recently, the literature has seen a spate of articles on

cross-procedural optimizations.6,8,15,16,17,18,19,21,22,23A number of these have focused on the specific opti-
mization calledinline substitution. This paper describes an experiment that uses commercially available
compilers to assess the efficacy of inline substitution in FORTRAN.

Inline substitution is not a new idea. As early as 1966, Ershov recognized that general procedure linkages

presented an opportunity for optimization.9 Allen and Cocke described several types of procedure linkages
in their 1972 catalog of optimizations; among these wasinline substitution, also calledprocedure integra-

tion or anopen linkage.1 To perform inline substitution, the compiler replaces the text of a procedure call
with the body of the called procedure, applying appropriate substitutions to model the effects of parameter
binding.

Inlining a procedure can improve run-time performance. The increased speed derives from several distinct
sources.

(1) The actual code for the procedure linkage is eliminated. This can include the code to save and
restore registers, allocate new local storage and establish its addressability. Additionally, it sav es
the actual branch to the subroutine.

(2) In the caller, the code surrounding the call site can be improved. Analyzing and optimizing the
combined procedures can yield better results than treating them separately.

(3) The code from the callee can be tailored to the context of the specific call site. This can improve
constant folding, expose additional dead code, and lead to more efficient code.

It is widely believed that inlining often leads to substantial run-time improvement. Several studies have
either shown or predicted improvement. Scheifler, in a study of CLU programs, demonstrated

improvements in the range of five to twenty-eight percent.20 Hecht, in his optimizer for SIMPL-T, showed a
one to two percent reduction in the number of quads for a program, before optimization, and predicted fur-

ther improvement from optimization.11 Davidson and Holler, in a study of C programs, averaged twelve

percent across a variety of programs and four different compilers.8,12 (None of the compilers did significant

1



FORTRAN

source
user-controlled

inliner

FORTRAN

source

FORTRAN compile and run

Figure 1 - Structure of the Experiment

optimization.) Richardson and Ganapathi, working with an optimizing Pascal compiler, obtained an aver-

age twenty percent improvement.18 Huson, working inside the Parafrase system, looked at the impact of

inline substitution on parallelization.13 In reading the papers describing other studies, it appeared to us that
the results varied both with the programming language and the amount of optimization performed in the
compiler. To test this idea, we began an inv estigation into the efficacy of inlining in FORTRAN, a language
with a long tradition of high quality optimizing compilers.

We beg an this study with two distinct goals. First, we were interested in understanding the interactions
between single-procedure optimization and inline substitution. Folklore, the literature, and common sense

all suggest that the value of inline substitution should be enhanced by subsequent global optimization.11,20

In particular, prior work suggests that improvements will arise from (1) propagating constant-valued param-
eters through the body of the called procedure, (2) enabling code motion across the former call site, and (3)

exposing more information to the register allocator.2,18,24Second, we were interested in discovering a set of
heuristics that would guide a compiler to profitable application of inline substitution. Here, our aim was to
discover a set of simple, inexpensive heuristics that accurately predicted run-time improvement.

To explore these issues, we conducted the experiment depicted in figure 1. We built a user-controlled,
source-to-source inlining facility. This tool allows us to examine a FORTRAN source program, apply an
inlining strategy by manually marking call sites, and automatically produce a transformed FORTRAN source
that reflects the inlining. Because both the original source and the transformed source are valid FORTRAN

programs, we can then compile and execute them on a variety of target machines. To serve as a basis for
our study, we transformed a set of eight programs. We then compiled and ran them on five different
machines, taking measurements throughout the process.

The remainder of this paper divides into three major sections and an appendix. The next section discusses
the experimental methodology in more detail. The second section summarizes our measurements and dis-
cusses what these findings show about changes in source-code size, object-code size, compilation time, and
execution time. The final section draws together conclusions from the preceding sections and summarizes
them. The appendix discusses issues that arose in the implementation of the inlining tool itself. It provides
an overview of the implementation, followed by some detailed discussion of cases where the tool cannot
inline a call site.

EXPERIMENTAL METHODOLOGY
The experiment took place in two distinct phases. In the first phase, we created a set of transformed pro-
grams. In the second phase, we compiled both the original source and the transformed source on each

2



machine, and took measurements of the compile time and run time of each.

Phase 1

To create the transformed source, we extended tools in the programming environment to create a facility for

user-directed inline substitution.5 The facility has two distinct parts. First, we built an interface to the envi-
ronment’s program compiler that allows the user to specify, on a call site by call site basis, those calls that
are to be inlined. The level of granularity is important; selecting individual call sites gives us maximal free-
dom in designing inlining strategies to evaluate. Of course, we can use our tool to simulate other granulari-
ties. For example, to simulate a procedure level specification of inlining, we can simply mark all call sites
for a procedure whenever we mark one of them. The tool allows the user to navigate around the call graph,
simplifying the task of finding all such call sites.

The second step of the process actually constructs the transformed source. The inliner reads the program
description and the annotations that specify the inlining pattern. Using these two data structures, it con-
structs a new abstract syntax tree for each procedure in the transformed program. To do this, it reads in the
abstract syntax tree for the base procedure and then merges into that tree the abstract syntax trees for the
inlined procedures. It then prettyprints the tree to produce a text file containing the transformed FORTRAN

source.

Call sites are processed in reverse topological order. Thus, all call sites inside some procedurep will be
processed before any calls top are inlined. This avoids redundant inlining. For a recursive program, no
topological order exists; the tool will process the recursive cycle in arbitrary order and rely on topological
order outside the cycle. None of the programs in the study are recursive.

The tools inside the environment imposed a limit on our ability to inline. The abstract syntax tree used to
represent FORTRAN source is relatively large, around 1000 bytes of tree per line of source text. This
imposed a practical limit of 2500 lines on the size of any single procedure. For larger trees, the perfor-
mance of the tools on our workstations degraded quickly due to the large virtual working sets. Given this
restriction, we inlined any call site that met one of the following criteria:

(1) It invoked a procedure of fewer than 25 source-code lines.

(2) It was the sole call to a procedure of less than 100 source-code lines.

(3) It was contained in a loop and invoked a procedure of less than 175 source-code lines.

Due to limitations imposed by features of FORTRAN or details of the tool’s implementation, we could not
inline some call sites. The five cases that arose are discussed in detail in Appendix A.

Initially, we examined 12 numerically intensive FORTRAN programs. As the study progressed, we dropped
four of the programs due to limitations in the inlining tool, specific properties of the individual programs, or
implementation limits in the surrounding programming environment. The remaining programs are of mod-
erate size, ranging from 297 to 5979 non-comment lines of code. The eight programs included in the study
are:

vortex a particle dynamics code simulating the dynamics of a one-dimensional vortex sheet via dis-
crete vortices;

shal64 a simple atmospheric dynamics model based on the "shallow-water" equations;

efie304 a code for solving electromagnetic scattering problems involving arbitrarily shaped conducting
surfaces;

wanal1 a conjugate gradient code for boundary control of the wav e equation;

wave a 2-dimensional relativistic electromagnetic particle simulation used to study plasma phenom-
ena;

euler a 1-dimensional spectral code modeling shock wav es propagating in a tube, bursting
diaphragm flows and colliding shock wav e flows;

3



Original Source Transformed Source

Total % Inlined Total Total Avg Proc Total Total Avg Proc
Name Calls Stat Dyn Lines Procs Length Lines Procs Length

vortex 19 100 100 534 19 28 527 1 527
shal64 25 96 100 297 8 37 321 2 161
efie304 40 83 100 1248 18 69 1456 8 182
wanal1 43 84 100 1252 11 114 1751 8 219
wave 223 52 75 5979 92 65 8820 53 166
euler 31 65 57 1098 13 84 1646 4 412
cedeta 247 79 82 4269 48 89 9296 20 465
linpackd 34 44 100 417 10 42 988 4 247

Av erage 83 75 89 1887 27 66 3101 13 297

Figure 2 — Characteristics of Original Programs

cedeta an implementation of the Celis-Dennis-Tapia method for equality constrained global minimiza-
tion; and

linpackd the classical ‘‘Dongarra’’ benchmark of LINPACK routines.

Figure 2 gives some basic information about each of the programs included in the study, in both the original
and transformed state. The programs are ordered by percentage growth in text size. We use this ordering
throughout the paper, in both tables and graphs, except where explicitly stated otherwise. The ‘‘Total
Calls’’ column includes all calls to subroutines, functions, and libraries. It excludes calls to intrinsics. The
statistics on percentage of calls inlined gives a direct measure of our heuristics’ effectiveness. The column
labeled ‘‘Stat’’ giv es a static count of inlined calls. This shows that, on average, seventy-five percent of the
call sites were eliminated from the programs. Every program except vortex grew longer with inlining.
Av erage procedure length grew in every case.

The column under ‘‘% Inlined’’ labeled ‘‘Dyn’’ shows the number of executions of the procedure call
instruction that were eliminated. This number is expressed as a percentage of the calls executed by the
original program on the same data. On average, our heuristics were able to eliminate eighty-nine percent of
the dynamically executed procedure calls. Thus, the transformations eliminated the vast majority of the
time spent in procedure call overhead at run time. In five of the programs, we eliminated over ninety-nine
and one-half percent of the dynamic calls.

Number Memory Compiler &
Machine CPU CPUs Size(mb) Version

IBM 3081d 3081 1 32 VS FORTRAN 2

MIPS R2000 1 16 MIPS FORTRAN 2.0

Sequent S81 80386 1 80 SVS FORTRAN 3.2

Convex C240 Convex 4 512 Convex FORTRAN V5

Stardent Titan-p2 R2000 4 64 Stardent FORTRAN 2.1.1

Figure 3 — Target Machines and Compilers

4



Phase 2

To evaluate the effectiveness of the inlining strategy, we compiled each program, both the original and
transformed version, on each of our target machines. We recorded compile time and run time for each pro-
gram at each level of optimization provided by the compiler. To obtain reliable timing information, we
repeated each operation multiple times.

This part of the experiment was performed on each of five machines. Three of them are scalar machines:
an IBM 3081d, a MIPS 120/5, and a Sequent Symmetry S81 (used as an 80386 uniprocessor). The other
two machines are vector multiprocessors: a Stardent Titan and a Convex C240. These two machines pro-
vided us with some insight into the expected results on a large class of modern supercomputers or minisu-
percomputers. Figure 3 shows configuration information about each of the target machines.

While this collection of machines is small, we feel that it is reasonably representative of the market today.
Each machine is a well established platform that, within its market niche, is regarded as having relatively
stable and solid software.

Figure 4 provides baseline data for later comparison. The first table shows execution times for each pro-
gram on each machine. The measurements were made using the original source code, with no code opti-
mization. Throughout the paper, execution times are given as percentages of these base times. The second
table shows compile times for each program on each machine. In each case, the measured compilation is at

Execution Times — Base Numbers
(hours:minutes:seconds)

3081d M120 S81 C240 Titan

vortex 17:20.9 15:10.4 49:05.8 8:21.5 38:41.2

shal64 1:37:00.5 42:20.4 2:57:36.6 11:03.1 32:27.8

efie304 16.8 14.6 1:02.9 7.9 29.1

wanal1 6:57:45.0 4:51:03.9 15:22:09.6 54:36.1 2:53:53.8

wave 1:23:18.3 1:11:55.7 2:52:40.2 25:12.8 1:11:55.5

euler 1:09.7 47.1 3:09.6 20.8 32.9

cedeta 34.1 30.8 1:17.1 14.5 41.0

linpackd 34.7 25.1 1:59.4 14.6 31.0

Compilation Times — Full Optimization
(minutes:seconds)

3081d M120 S81 C240 Titan

vortex 2.6 10.3 7.2 13.4 39.9

shal64 1.7 7.9 5.1 7.8 21.5

efie304 7.6 52.6 13.3 26.2 1:32.0

wanal1 19.8 8:42.4 20.2 1:37.0 3:49.6

wave 35.0 2:54.7 1:05.2 2:14.6 9:25.4

euler 5.0 29.6 12.9 23.4 1:15.0

cedeta 18.1 1:39.1 2:01.1 1:12.4 8:55.2

linpackd 2.6 11.3 5.8 12.6 31.6

Figure 4 — Baseline Data For Comparisons

5



the highest level of optimization available on the machine (vector multiprocessor mode on the Convex and
Stardent machines).

RESULTS
One of our primary goals was to gain an understanding of the efficacy of inline substitution in reasonable
quality commercial FORTRAN compilers. Three key issues arise: (1) growth in object-code size, (2) growth
in compile time, and (3) improved run-time efficiency. In this section, we examine the data collected in our
experiments and draw some conclusions about each of these issues.

In general, the conclusions that can be drawn from our experiment present a mixed picture. To simplify the
presentation, we will first discuss overall trends and conclusions, and then consider any differences between
the scalar machines and the vector multiprocessors.

In the experiment, we gathered data on each compiler at each of its various levels of optimization. Unless
otherwise stated, we will cite numbers for each compiler at its highest level of optimization.

Program Characteristics

The three issues listed above all arise because inlining changes fundamentally the characteristics of the
user’s program. As shown in figure 2, the transformed program is almost always larger than the original
program, both in terms of total source lines and the size of an average procedure.

Because the procedures in the transformed source are constructed mechanically, their name spaces are
likely to be larger than those of equivalent procedures written by humans – a human would re-use tempo-
rary names where the inliner will merge the two name spaces and rename to avoid conflicts. Thus, if we
inline procedureq into p at two distinct call sites, the resulting code will contain two complete copies of
q’s local name space, rather than the single copy (or less) that a version of the same code written by a
human would use.

Finally, the transformed source, with its larger procedures, should provide more contextual information to
the compiler and its optimizer. Expanding the callee’s body at the call site exposes a wealth of information
to the compiler. Aliases that arise from parameter binding are made explicit. Constant-valued formal
parameters are exposed. Definitions and uses are now susceptible to standard single-procedure analysis
techniques. Loops that previously contained calls are now susceptible to analysis with standard techniques,
like strength reduction, that are not applied to a loop that contains a call. (On the SVS compiler for the
Sequent, this effect was particularly noticeable. The improvement in execution time due to enabling
strength reduction was always larger in the inlined programs than in the original versions.) In some cases,
this information could be derived by an aggressive interprocedural analysis of the original source code. In
many cases, however, the program is subject to more precise analysis after inlining because of the addi-
tional information that is exposed through inlining.

During the study, we encountered a number of coding practices that made inline substitution impossible.
Most of these also violate the FORTRAN standard. Procedures that rely on a default assumption of static
allocation for all local variables was the most common problem encountered. In general, these variables
appeared in DAT A statements. Explicitly passed array dimensions that varied across the invocations of call
sites was a second common problem. In most cases, this arose in connection with an array used to provide
temporary storage. (The lack of dynamic allocation has given rise to this style of programming.) We
encountered several call sites where actual parameters and their corresponding formals had different types.
Finally, two of the programs contain jumps into loops from outside the loop. The programs containing
these problems were either corrected or removed from consideration in the study.

Object-Code Size

Most discussions of inline substitution include a cautionary word or two about growth in the size of the pro-
gram’s executable image. Inlining can increase object-code size. This can have a neg ative effect on the
program’s execution time in several ways. A general increase in object-code size might lead to a larger
working set size. This, in turn, could cause thrashing in a demand paged virtual memory system. Increas-
ing the size of an individual loop might result in an instruction cache overflow.

6



0 50 100

-50

0

50

Object Code Size
(% change)

Te xt Size
(% change)

•

•

∆ •

•

∆ •

•

∆

•

•

∆ •

•

∆ •
•∆

•

•

∆

•

•

∆
• • •

•
•

•

•
∆

∆ ∆

∆

∆

∆
∆

•

•

•

∆
∆

•

•

•

∆
∆

C240
3081d
M120
S81
Titan

Figure 5 – Object Size versus Source-Text Size

We found no obvious evidence of either thrashing or instruction cache overflow. The only thrashing we
encountered was at compile time with one of the compilers. Our previous experience suggests that expand-
ing a loop to the point where it overflows the instruction cache has a dramatic effect on execution time; we
saw no striking degradations in execution speed. Measuring other effects of object-code growth on running
time is a subtle issue, well beyond the scope of our experiment. In her thesis, Holler examined both virtual
memory and cache effects that result from inlining; she saw little change in the paging or cache behavior of

the programs in her study.12 Hwu and Chang report improved instruction cache behavior from inlining.14

Even though we saw no striking degradation in run-time speed, object-code growth is still of interest. It
can change compile times. It can radically change the compiler’s memory use. Furthermore, it provides
some insight into the extent to which post-inlining optimization can tailor the executable code. The argu-
ments presented in the introduction suggest that optimization should moderate object-code expansion.
Those improvements have two sources: eliminating unneeded code and generating specialized code. The
former directly shrinks the object code. The latter is expected to eliminate control flow, expose additional
dead code, and increase the effectiveness of techniques like common subexpression elimination and con-
stant folding. These, in turn, should lead to some reduction in object-code size.

Figure 5 plots object-code growth against source-text growth for the eight programs. It shows the change in
object-code size, for full optimization, between the original and inlined programs. (For the Convex and
Stardent machines, both figures 5 and 6 are based on compilations for a scalar, uniprocessor configuration –
no attempt to use vector or parallel hardware.) While the results varied with both program and compiler,
none of the compilers exhibited linear growth in object-code size. Four of the five compilers exhibited
av erage growth of less than six percent, while the fifth (the SVS FORTRAN compiler) averaged less than ten
percent. The MIPS compiler showed minimal variation; its growth numbers all fall within eleven percent
of the original code. The largest variation came with the VS FORTRAN compiler; it showed a range from
negative fifty-seven percent on vortex to fifty-eight percent on cedeta. Almost all of the individual data
points lie in the range between negative five and twenty-five percent growth.

7



Change in Object-Code Size%
Te xt 3081d M120 S81 C240 Titan

Size% orig inl’d orig inl’d orig inl’d orig inl’d orig inl’d

vortex -1 -17 -28 -3 -3 -6 6 0 -2 0 0

shal64 8 -25 -35 -1 -2 0 0 -2 -2 0 *

efie304 17 -19 -23 -6 -7 0 0 -2 -2 -3 -3

wanal1 40 -36 -36 -10 * 0 -6 -2 0 -7 -7

wave 48 -21 -25 -8 -8 -1 -1 0 0 0 0

euler 50 -22 -27 -4 -13 0 -3 0 -2 0 -3

cedeta 118 -21 -26 -13 -24 11 9 -1 -1 -2 -2

linpackd 137 -17 -25 -1 -9 -5 * 0 0 0 0

Av erage 52 -22 -28 -5 -9 -1 1 -1 -1 -2 -2

Figure 6 — Effect of Optimization on Object-Code Growth

This suggests that optimization did indeed mitigate growth in object code. To examine this issue in more
detail, we computed the reduction in object-code size that results from full optimization. Improvement was
calculated as the difference in size between unoptimized and optimized code divided by the unoptimized
code size. This is a simple measure of the optimizer’s effectiveness at reducing code size. To understand
the interaction with inlining, we compared the numbers for the original programs with those for the inlined
programs. Figure 6 giv es these numbers. For each compiler, the left column shows the change in object-
code size for the original program and the right column shows the change for the inlined program. An
asterisk indicates that the compiler did not successfully translate this version of the program. When a pro-
gram did not compile on some machine, we discarded that program when computing averages for that com-
piler. We use this convention throughout the paper.

The ability of the individual compilers to reduce object-code size through optimization differs greatly. The
Convex and Stardent compilers show average decreases in the range of one to two percent. The MIPS com-
piler produced decreases of five and nine percent. The VS FORTRAN compiler does better; it produces aver-
age decreases between of twenty-two and twenty-eight percent. The SVS compiler exhibits code growth as
a result of optimization in three cases. To isolate the problem, we compared object-code sizes generated by
different settings of the optimization flag. On the inlined version of vortex, the problem first appears when
global register allocation is enabled. On both versions of cedeta, the increased size appears when, accord-
ing to the compiler manual, only constant folding is enabled.

The general trend in the data in figure 6 suggests that decreases in object-code size as a result of optimiza-
tion are greater for the inlined version of the program than for the original version. With the exception of
the SVS compiler, all compilers showed a greater percentage decrease in object-code size in the inlined ver-
sion for at least one program. The differences are very small for the Convex and Stardent compilers, but
are significant for the IBM and the MIPS compilers. Comparing the thirty-seven pairs of entries in the
table, there are seventeen pairs where the reduction for the inlined program is greater than for the original
program. There are only three where the reduction is greater for the original program, and two of these
occurred with the SVS compiler. Three pairs are excluded from the count because the numbers for the
inlined versions were unavailable.

Taken as a whole, these numbers suggest that the object-code growth resulting from inlining is manageable.
Given the large percentage of dynamic calls eliminated by our heuristic, it appears that, in most situations,
the compiler can eliminate the majority of calls, and, hence, most procedure call overhead, without a sub-
stantial increase in object-code size.

8



Compile Time

A second argument used against inline substitution is the potential for dramatic increases in com-
pile time. In practice, compilers use some algorithms that have non-linear asymptotic complexi-
ties. This raises the concern that inlining can lead to unacceptable increases in compile time.

Figure 7 plots increase in compile time against increase in program size. All compilations are shown with
full optimization enabled. From the plot, it appears that euler has some fundamentally different characteris-
tics from a compiler’s viewpoint. Each compiler showed a large jump in growth of compile time between
wave and euler. The times for cedeta and linpackd appear to better fit the trend established without euler.

Most of the compilers had fairly stable compilation times. Compile time on the Convex nev er grew faster
than source-text size. The Stardent and SVS compilers each had one program where growth in compile
time exceeded growth in source text. The VS FORTRAN compiler had mixed results; its compile-time
growth exceeded source-text growth half of the time. (On the other hand, it alone showed substantial
decreases in object-code size!) Finally, the MIPS compiler appears to be extremely sensitive to average

procedure size. It alone showed consistent superlinear growth in compile time.*

The performance of both the Convex and Stardent compilers is particularly satisfying since both perform
sophisticated data-dependence analysis to support their vector and parallel hardware. Despite the costs
associated with this analysis, neither compiler saw extraordinary growth in compile time when dependence

0 50 100

0

200

400

600

Compile Time
(% change)

Te xt Size
(% change)

••∆
••∆ •

•∆ ••∆ ••∆ •

•
∆ •

•

∆
•

•
∆

•

•
• •

•

•

•

∆ ∆ ∆
∆ ∆

∆
∆

•

•

•

∆
∆

•

•

•

∆
∆

C240
3081d
M120
S81
Titan

Figure 7 – Compile Time versus Source-Text Size

* The MIPS compiler also showed a surprising growth in working set size for compilation. To obtain timings that were not
dominated by paging overhead required a machine with forty-eight megabytes of memory. Running the compiler as the only job on a
machine with sixteen megabytes of memory resulted in radical increases in compile time. For example, wanal1before inliningre-
quired over ninety five hours of wall time to compile. On the forty-eight megabyte system, that compilation required eight minutes
and forty-two seconds.

9



analysis was enabled. While the numbers in figure 4 suggest that the Stardent compiler is somewhat slower
than the other compilers in the study, the speed problem shows up when compiling the original source with-
out optimization for a uniprocessor machine. This strongly suggests that it is not related to either optimiza-
tion or dependence analysis.

Execution Time

Given that compilers can mitigate the potential for explosion in object-code size and compile time, one key
question remains. Can compilers capitalize on the opportunities presented by inlining to improve the actual
execution time of programs? Figure 8 shows the overall effectiveness of inlining by plotting the change in
execution times for each combination of program and machine. Figure 9 plots the change in execution time
as a function of change in compile time. In both figures, the times shown for the Convex and Stardent
machines are for multiprocessor vector execution.

Figure 10 gives the raw data from which these plots are derived. In figure 10, the averages for a compiler
were computed by completely discarding any program that the compiler failed to successfully translate.

Scalar Results

In figure 8, it is clear that there is no real trend, either by compiler or by program. The results are mixed,
with many instances each of improvement and of degradation.

• The IBM compiler had the most stable performance, across the board. It produced the best
improvement of the three scalar machines, sixteen percent on cedeta. There were two cases where
inlining caused it to produce slower code; in each case the degradation amounted to less than one per-
cent of the execution time. In general, the IBM compiler was able to improve the code after inlining.

• The MIPS compiler exhibited relatively stable performance. It produced little improvement or degrada-

-20

-10

0

10

20

Execution Time
(% change)

Programs
vortex shal64 efie304 wanal1 wave euler cedeta linpackd

∆

∆

∆

∆

∆

∆

∆

•

•

•

•

•

•

••

•

•
•

•

•

•

•
•

•
•

•

•

•

•

•

∆

∆

∆ ∆

∆

∆ ∆

•

•

•

∆
∆

•

•

•

∆
∆

C240
3081d
M120
S81
Titan

Figure 8 – Change in Execution Time from Inlining

10



tion as a result of inlining, with one exception being a twelve percent degradation on cedeta.*

• The SVS compiler had mixed results — four wins and two losses. It produced the single largest degra-
dation among the scalar machines, fifteen percent on shal64.

• The Convex compiler, targeting a uniprocessor vector configuration, profited from the transformation.
Six of the programs showed improvement; the two degradations were both small. It showed the largest
overall improvement, twenty percent on cedeta.

• The Stardent compiler, targeting a uniprocessor vector configuration, showed little improvement from
inlining. Its best improvement was five percent on efie304. Its worst degradation was eighteen percent
on cedeta.

There does not appear to be a clear trend in the data, either by compiler or by program. Overall, wins out-
number losses. However, the vast majority of the wins fall in the range between infinitesimal improvement
and five percent.

Figure 9 suggests that increased compile time also fails to predict improved execution time. Three of the
compilers get marginally better results at the high end of the compile-time scale; the MIPS compiler often
fails to get back to the original program’s execution time.

These results provide insight into another issue: the relative importance of procedure call overhead. The
transformation process eliminated most procedure calls; in five of the programs, we eliminated over ninety-

0 200 400 600

-40

-20

0

20

Execution Time
(% change)

Compile Time
(% change)

•

• •

•

•
•

•

•

•
• •

• •
•

•
•

•
• •

•

•
•

∆

∆

∆
∆

∆ ∆ ∆
∆

∆

∆

∆

∆

∆

∆

•

•

•

∆
∆

•

•

•

∆
∆

C240
3081d
M120
S81
Titan

Figure 9 – Change in Execution Time versus Compile Time

* At its highest level of optimization, the MIPS compiler performs interprocedural register allocation. Because the effects of in-
terprocedural register allocation could mask the effects of inlining, the numbers reported for the MIPS are without interprocedural reg-
ister allocation. In most cases, the performance change after interprocedural register allocation was negligible, with four exceptions:
the inlined version of cedeta exhibited a fifteen percent improvement due to interprocedural register allocation; both versions of lin-
packd were slowed down by about five percent after interprocedural register allocation; and the inlined version of efie304 was slowed
down by twenty-seven percent.

11



nine percent of the executed calls! This did not lead to consistently faster execution.

Tw o conclusions are possible. Either call overhead is a negligible part of program execution, or program
properties introduced by inlining resulted in decreased code quality that masked the savings in call over-
head. We believe the latter statement. To reinforce this point, look at the numbers for unoptimized execu-
tion of the transformed source in figure 10. The three scalar machines show little improvement from elimi-
nating calls; the Convex and Stardent compilers do a somewhat better job. This suggests that the other
effects in the compiler are hiding the call overhead savings. For example, we know from experience with
our own compiler that inlining often increases register pressure.

Parallel Results

Tw o of the machines are vector multiprocessors, the Stardent Titan and the Convex C240. They both have
stable restructuring compilers — compilers that attempt to automatically discover opportunities for vector
and parallel execution. Both compilers use techniques based on data-dependence analysis. Thus, they pro-
vide us with the opportunity to examine the issue of inlining as an aid in automatic parallelization.

IBM 3081d MIPS M120/5 Sequent S81

uopt opt opt uopt opt opt uopt opt opt
+ inl + inl + inl + inl + inl + inl

vortex 100 65 66 102 68 69 99 82 76

shal64 100 19 19 100 33 33 100 38 44

efie304 97 46 45 88 50 48 100 92 90

wanal1 100 16 16 100 34 * 100 46 45

wave 101 37 36 100 41 40 100 67 69

euler 100 34 34 103 30 30 100 79 78

cedeta 96 61 51 115 43 48 108 85 85

linpackd 193 39 34 171 44 49 137 67 *

Av erage 110.9 39.6 37.6 111.3 44.1 45.3 101.0 69.9 69.6

Convex C240 Stardent Titan

uopt vect vect para para uopt vect vect para para
+ inl + inl + inl + inl + inl + inl

vortex 93 26 27 21 26 63 60 66 28 29

shal64 100 18 19 6 6 * 32 32 12 11

efie304 94 64 60 40 40 87 79 75 96 76

wanal1 117 19 19 7 7 101 * 13 * *

wave 101 32 30 26 25 98 63 62 60 59

euler 99 51 50 69 71 93 84 85 200 190

cedeta 92 89 71 160 143 101 101 119 168 179

linpackd 109 21 18 27 14 92 20 20 21 14

Av erage 100.6 40.0 36.8 44.5 41.5 89.0 67.8 71.2 97.5 91.2

Figure 10 — Changes in Execution Time

12



In general, the compilers were able to generate better code for the transformed source text. For both com-
pilers the difference was just under seven percent. Looking at specific programs, each compiler had two
cases where the transformed code ran slower than the original. On the Convex, vortex ran twenty-four per-
cent slower; on the Stardent cedeta slowed down by seven percent. The remaining cases range from mini-
mal differences to major improvements — forty-eight percent for linpackd on the Convex and thirty-three
percent for linpackd on the Stardent.

This suggests that seven of the programs could be improved by inlining. (Both compilers failed to improve
vortex.) Unfortunately, both compilers failed to generate parallel loops in situations where inlining appears
to expose the parallelism in a loop. After looking at the diagnostic information provided by each compiler,
we became interested in the question: what would be required to enable these compilers to capitalize on the
opportunities presented by inlining? To shed some light on this question, we applied, by hand, several
transformations to the transformed sources. In particular, applying constant propagation and loop invariant
code motion, and removing unreachable code, between the inliner and the manufacturer’s compiler,

increased the number of parallel loops discovered.10

Both compilers had problems deciding when parallel execution was profitable. Compare the execution
times of the original code in uniprocessor vector mode against the results for multiprocessor vector mode.
On the Convex, three of the programs ran slower as parallel programs than as uniprocessor programs. On
the Stardent, four programs exhibited this behavior. This was particularly bad for both euler and cedeta. It
appears that both compilers assume that parallel execution is profitable unless it can discover a tight bound
on loop iterations that conclusively proves otherwise.

Implications

Overall, the five compilers were unable to consistently capitalize on the opportunities provided by inlining.
Recall, from figure 2, that our inlining strategy eliminated nearly all procedure calls — on average, eighty-
nine percent of the procedure calls executed in the original source were eliminated in the transformed
source. The expected run-time savings do not appear during execution, as shown in figure 10. We did not
find a consistent and appreciable improvement in run-time speed. Several factors appear to account for this
phenomenon.

First, inlining often increases register pressure. Both vortex and euler contain call sites that pass global
variables from several COMMON blocks as actual parameters. In the original code, the actual parameters in
the callee have one-register names. After inlining, they hav e two-register names, a base address plus an off-
set. On the MIPS machine, the transformed version of euler executed two percent more loads and stores —
that is, one million, nine hundred thousand more loads and stores — than the original version. Those
cycles mask other improvements. On those compilers where the application of global register allocation is
controlled by a user-supplied switch, the results of global allocation were mixed.

Second, the inlined code may have fundamentally different properties. For example, in linpackd on the
MIPS, inlining resulted in a six percent degradation in run-time speed. Closer investigation showed that the
number of floating point interlocks per floating point operation rose from 0.62 to 1.1 after inlining. Since
the program executes almost twenty million floating point operations, that factor is significant.

Closer investigation revealed that the call from dgefa to daxpy passes two regions inside a single array in
two distinct parameter positions. Unfortunately, complicated range analysis would be required to show that
the regions do not overlap. Thus, when the call is inlined, the body of the key loop in daxpy is a single
statement that both reads two locations and writes one location inside the array. Without complex analysis,
the compiler must assume that the references can overlap. This introduces the data interlocks that we
observed.

Finally, design decisions that are justifiable for code written by a programmer may have unforeseen conse-
quences when applied to code generated by the inliner. For example, many compilers place a hard upper
limit on the number of variables subject to data-flow analysis; typically, they summarize all remaining vari-

13



ables with a single bit position.* With inlined code, the growth in name space as a function of procedure
length is probably much greater than in human-generated code. This may exacerbate the deleterious effects
of summarization in data-flow analysis.

On the two parallel machines, we observed several cases where the decision to run a loop nest in parallel
resulted in a disastrous slowdown. This happened with both euler and cedeta. It appears that both compil-
ers assume that the parallel loop is profitable in those cases where the number of iterations is unknown. A
simple strategy would allow the compilers to avoid these major slowdowns: in those cases where the num-
ber of iterations is unknown, generate both the uniprocessor and multiprocessor versions of the loop and
insert a simple run-time test. Our results suggest that the growth in object code may be small. If doing so
eliminated these slowdowns while allowing the compilers to aggressively generate parallel code, it would
almost certainly make up for the minor object-code growth.

CONCLUSIONS
We studied the effects of inlining on object-code size, compile time, and execution time using five commer-
cial FORTRAN compilers. We found that

(1) Object code grew more slowly than source code. The compilers were able to eliminate a larger per-
centage of the object code from the inlined program than from the original program.

(2) The Convex, Stardent, and SVS compilers exhibited fairly stable compile times. Their compile
times, in general, grew more slowly than source-text size. The VS FORTRAN compiler had mixed
results, and the MIPS compiler showed consistent superlinear growth in compile time.

(3) None of the compilers exhibited a consistent improvement in execution time as a result of inlining,
ev en on the five programs where virtually all of the procedure calls were eliminated. Secondary
effects of inlining often overcome the savings from eliminating call overhead.

The first two conclusions are positive. In general, the compilers performed well. Unfortunately, the five
commercial compilers we tested are unable to consistently capitalize on the opportunities presented by
inlining.

Inlining should be profitable. The weaknesses that the inlined programs exposed should be corrected.
Other researchers, like the IMPACT-I group, are working to build compilers that take consistent advantage

of inline substitution.15 A major thrust of our own research program is to address these problems. We are
investigating techniques to improve the predictability and robustness of register allocators based on the

graph coloring paradigm.3 We are also working on a goal-directed approach to inlining – one that only

applies the transformation to enable another high-payoff optimization.4

ACKNOWLEDGEMENTS
Control Data Corporation, IBM Corporation, and the National Science Foundation have all supported this
work. Many people have encouraged this work, helped us obtain access to the machines used in the study,
and helped us understand the results. Our thanks go to Steve Wallach, Ron Gray and Randy Mercer at Con-
vex; Randy Scarborough at IBM; and Alex Wu and Fred Chow at MIPS; Gary Graunke and Joe Bonasero
at Sequent; and Randy Allen at Stardent. Our colleagues at Rice have provided us with valuable feedback.
Rick Stevens and his staff at Argonne provided us with time and access to several machines that belong the
ACRF. Sunil Bhargava, Preston Briggs, Horace Flatt, Kevin Harris, Ken Kennedy, Peter Markstein, and
Tom Spillman all encouraged this work. Finally, the referees made a number of insightful suggestions that
improved the final paper.

REFERENCES

* This strategy makes all bit-vector operations have a known, uniform length. It allows the compiler writer to hard code the bit-
vector operations, and eliminate the loop based on bit-vector length on each operation.

14



(1) F.E. Allen and J. Cocke. ‘‘A catalogue of optimizing transformations’’, inDesign and optimization
of a compiler(J. Rustin,ed.), Prentice-Hall, 1972.

(2) J.E. Ball. ‘‘Predicting the effects of optimization on a procedure body’’,Proceedings of the SIG-

PLAN79 Symposium on Compiler Construction, SIGPLANNotices14(8), August 1979.

(3) P. Briggs, K.D. Cooper, and L. Torczon. ‘‘Aggressive liv e range splitting’’, Department of Com-
puter Science Technical Report 90-146, Rice University, Houston, TX, November, 1990.

(4) P. Briggs, K.D. Cooper, M.W. Hall, and L. Torczon. ‘‘Goal-directed interprocedural optimization’’,
Department of Computer Science Technical Report 90-147, Rice University, Houston, TX, Novem-
ber, 1990.

(5) A. Carle, K.D. Cooper, R.T. Hood, Ken Kennedy, Linda Torczon, and S.K. Warren. ‘‘A practical
environment for scientific programming’’,IEEE Computer20(11), November 1987.

(6) F.C. Chow. ‘‘Minimizing register usage penalty at procedure calls’’,Proceedings of the SIGPLAN 88
Conference on Programming Language Design and Implementation, SIGPLAN Notices23(7), July
1988.

(7) R. Conradi, D. Svanaes. ‘‘FORTVER — a tool for documentation and error diagnosis of FOR-

TRAN-77 programs’’, University of Trondheim, Division of Computer Science Technical Report,
January 1985. (presented at IFIP WG2.4 meeting, Bonn, January 1985)

(8) J.W. Davidson and A.M. Holler. ‘‘A study of a C function inliner’’,Software—Practice and Experi-
ence18(8), August 1988.

(9) A. Ershov. ‘‘ALPHA — an automatic programming system of high efficiency’’,Journal of the
ACM13(1), January 1966.

(10) M.W. Hall. ‘‘Improving parallelism after inline substitution’’, Department of Computer Science
Technical Report 90-127, Rice University, Houston, TX, August, 1990.

(11) M. Hecht,Flow analysis of computer programs, Elsevier North Holland, New York, 1977.

(12) A.M. Holler. ‘‘A study of the effects of subprogram inlining’’, Ph.D. dissertation, Department of
Computer Science, University of Virginia, August, 1990.

(13) C.A. Huson. ‘‘An in-line subroutine expander for Parafrase’’, M.S. Thesis, University of Illinois at
Champaign-Urbana, Technical Report UIUCDCS-R-82-1118, December 1982.

(14) W.W. Hwu and P.P. Chang. ‘‘Achieving high instruction cache performance with an optimizing
compiler’’, Proceedings of the 16th Annual Symposium on Computer Architecture, May, 1989.

(15) W.W. Hwu and P.P. Chang. ‘‘Inline function expansion for inlining C programs’’,Proceedings of
the SIGPLAN 89 Conference on Programming Language Design and Implementation, SIGPLAN

Notices24(7), July 1989.

(16) T.P. Murtaugh. ‘‘An improved storage management scheme for block structured languages’’, Com-
puter Science Technical Report, Williams College, Williamstown, MA, April 1989.

(17) S. Richardson and M. Ganapathi. ‘‘Interprocedural optimization: experimental results’’Software—
Practice and Experience19(2), February 1989.

(18) S. Richardson and M. Ganapathi. ‘‘Interprocedural analysis versus procedure integration’’,Infor-
mation Processing Letters32(3), August 1989.

(19) V. Santhanam and D. Odnert. ‘‘Register allocation across procedure and module boundaries’’,Pro-
ceedings of the SIGPLAN 90 Conference on Programming Language Design and Implementation,
SIGPLANNotices25(6), June 1990.

(20) R. Scheifler. ‘‘An analysis of inline substitution for a structured programming language’’,CACM
20(9), September, 1977.

(21) P.A. Steenkiste and J.L. Hennessy. ‘‘A simple interprocedural register allocation algorithm and its
effectiveness for LISP’’,ACM TOPLAS11(1), January 1989.

15



(22) D. Wall. ‘‘Global register allocation at link-time’’,Proceedings of the SIGPLAN 86 Symposium on
Compiler Construction, SIGPLANNotices21(7), July 1986.

(23) D. Wall. ‘‘Register windows vs. register allocation’’,Proceedings of the SIGPLAN 88 Conference on
Programming Language Design and Implementation, SIGPLANNotices23(7), July 1988.

(24) M. We gman and F.K. Zadeck. ‘‘Constant propagation with conditional branches’’Conference
Record of the 12th Annual ACM Symposium on Principles of Programming Languages, January
1985.

16



Appendix A

IMPLEMENTATION ISSUES

Although our principal goal in performing this experiment was to increase our understanding of the interac-
tions between inline substitution and global optimization, a subtask of the experiment was to construct the
tools required to produce the transformed sources. Building the tools was a learning experience. In this
section, we describe some of our lessons.

Implementation Overview

As discussed earlier, we built the inliner as part of the program compiler in the programming environment.
Inline substitution is implemented as a source-to-source transformation. It is performed on an abstract syn-
tax tree (AST) representation of the program. The first step in inlining is a check to ensure that inlining is
possible; this test checks for five separate conditions that might make the transformation illegal in our sys-
tem.

After the compiler has proven that a particular substitution is legal, the actual transformation takes place in
two phases. The first phase iterates over all of the symbols appearing in the called procedure, assigning
unique names to its local variables and labels and building a symbol table of the new names hashed on their
original names. The second phase walks the AST, updates the names of all variables and labels, and moves
the actual statements from the body of the callee to their new locations in the caller.

During the first phase, all global variables retain their original names. Common block definitions are added
to the caller as needed. In the absence of name conflicts, local variables and labels retain their original
names. If a conflict arises, local variable names are textually altered, and new labels are generated by incre-
menting the label number until a unique label is generated.

Formal parameters are renamed to their corresponding actual parameters from the call site. Tw o cases of
interest arise: expression-valued parameters and array parameters. If the actual is an expression rather than
a variable, the inliner generates a temporary and inserts an assignment before the procedure body to evalu-
ate the expression and save its value. Constant-valued expressions are a special case. Unless the formal
parameter appears on the left-hand-side of an assignment, no temporary is generated. (Although the FOR-

TRAN standard forbids assignments to constant-valued formals, it happens often enough in real programs to
warrant handling it.)

The most complicated mapping of formals to actuals occurs with array-valued actuals. The mapping relies
on the fact that Fortran uses column-major storage. For an n-dimensional formal f, the inliner currently
requires that the actual must match the formal in each of its first n-1 dimensions. The actual may contain
more dimensions than the formal. Alternatively, the actual parameter may specify a location other than the
first element of the array. This results in passing a subsection of the actual array.

The second phase of the inliner renames all references to variables and labels based on the translation table
built in the first phase. Next, it moves the statements that comprise the callee’s body into an appropriate
position in the caller. The executable statements are moved together.

• For a subroutine call, these statements simply replace the CALL statement.

• For a function call, they are moved immediately above the statement containing the call site. A tempo-
rary is created to hold the function’s return value.

If the statement containing the call site has a label, the label is moved to the beginning of the inserted code.

Declarations for the variables from the callee are inserted with those of the caller. COMMENT, IMPLICIT,

17



and ENTRY statements are removed.*

A number of minor issues arise in translating CALL and RETURN statements.

• RETURN statements are converted to GOT O statements that refer to a label immediately following the
inlined procedure body.

• If the callee is a FUNCTION, then an assignment to the temporary designated for the return value is gen-
erated at each RETURN statement.

• If the procedure uses FORTRAN’s alternate return mechanism to change the return address, then the
RETURN statement is translated to a GOT O that targets the appropriate label-valued parameter.

• If the call site specifies an entry point rather than a procedure, the inliner must inline the entire proce-
dure and add a jump to the location of the ENTRY statement. (That part of the callee’s body preceding
the ENTRY statement must remain intact in case the subsequent code jumps back to it.)

The inliner handles each of these appropriately.

Figure 11 shows an example which may clarify some of the issues. The placement of declarations and data
statements ensures that meaning is preserved. Rather than attempt to resolve implicit typing conflicts
between procedures, the inliner creates declarations for all implicitly typed variables from the callee. The
declarations and data statements originating fromb are sandwiched betweena’s declarations and data state-
ments so that they remain in their original order. Any new declarations forb precedeb’s declarations to
ensure that dependences between declarations are satisfied. An example of this might be a PARAMETER

statement that is used to dimension an array.

Failure to inline

Five situations can prevent the inliner from constructing a valid FORTRAN program. Some of these are fun-
damental problems that any inlining tool will encounter; others are idiosyncratic to our implementation.

(1) Inlining replaces the formal parameters of the callee with the actuals from the call site. For this to
be meaningful, the formal and its corresponding actual must agree in type. If the formal and actual
have different types, the transformation cannot be performed. A program that contains such a call

subroutine a subroutine a
a’s declarations a’s declarations
a’s data statements new declarations for b
... b’s declarations

10 if (b(x)) then b’s data statements
... a’s data statments

...
10 begin body of b

ret = return value for b
goto 1

1 if ret then
...

Figure 11 — An Example of Inlining a Call Site

* Comments are removed to limit the growth of the inlined program. The implicit statements are removed because they may
conflict with implicit typing in the caller. Instead, type declarations are added when they do not already exist for every variable in the
called procedure including those temporaries generated by the inliner. Finally, entry statements are removed so as to not have multiply
defined subroutines.

18



site does not conform to the FORTRAN standard.

Nonetheless, few FORTRAN compilers enforce this restriction. We found such call sites in our study;

others have reported similar results.7 Some, quite obviously, had been carefully crafted to achieve
specific behavior. For example, in euler, one call site passes an array of reals to a formal that is a
complex array, relying on the standard’s requirement that complex numbers must be implemented as
pairs of reals.

(2) Another class of problems arises when an actual parameter and its corresponding formal parameter
are declared with different dimension information. These problems manifest themselves in two dif-
ferent ways: the number of elements in each dimension and the number of dimensions.

The inliner requires that the sizes of the firstn − 1 dimensions specified in the callee be identical to
the corresponding dimensions in the caller. While more complex mappings can conform to the stor-
age, such remapping can introduce a level of complexity into all the subscript expressions.

If the actual parameter has more dimensions than its corresponding formal, the inliner translates ref-
erences to the formal into references to the actual in a straightforward manner. (This case is the clas-
sical FORTRAN dimension reduction at a call site.) If the actual parameter has fewer dimensions than
the formal parameter, the references can still be translated. However, the resulting references can be
substantially more complex than their original forms.

In both cases that remap storage, changes to the size of an inner dimension or an increase in the num-
ber of dimensions, we decided to disallow inlining.

(3) To allow for safe application of anchor pointing, the transformer does not inline any call site that
appears in the second term or subsequent terms of a boolean expression. This optimization, also
called ashort circuitoptimization, cuts short the evaluation of an expression as soon as its value has
been fully determined. In the expression (a.and.b), the compiler can avoid evaluating b if evaluat-
ing a yields false.

Strictly speaking, any program whose behavior changes under this transformation does not conform
to the FORTRAN standard. Nevertheless, we felt that the inliner should preserve the original pro-
gram’s behavior in this case. To transform the source in a way that preserves its original behavior
under inlining and anchor pointing requires the introduction of additional control flow operations. To
simplify this situation, we elected to disallow inlining of any call except the leftmost in a boolean
expression.

(4) A call site that invokes a procedure-valued parameter cannot be inlined unless the compiler can,
through interprocedural analysis, determine that the procedure variable has a single value across all
invocations of the caller. If the variable has multiple values, the transformer cannot replace the call
site with the body of any single procedure.

Even with this restriction, the transformer handles the most common use of procedure-valued param-
eters in scientific FORTRAN programs. Programmers often pass into a procedure the name of another
procedure that implements the mathematical function being manipulated. This simplifies applying
the overall algorithm to different functions, but retains the property that, within a single compilation,
the procedure-valued parameter has a single consistent value. In our experience, this is, by far, the
most common use for procedure-valued parameters.

(5) FORTRAN provides a mechanism to declare a variable static, the SAVE statement. The value of such
a variable is preserved across invocations of the procedure in which it is declared. To preserve the
correct behavior of these variables requires the introduction of a generated COMMON block in every
instance of the procedure body. To date, we have not implemented this transformation. Therefore,
the tool will not inline a procedure that contains a SAVE statement.

As shown in figure 2, even with these restrictions, we were able to eliminate most of the dynamically
executed procedure calls.

19


