
Enhanced Code Compression for Embedded RISC Processors

Keith D. Cooper∗ Nathaniel McIntosh∗

Rice University Hewlett-Packard Corporation
cooper@rice.edu mcintosh@cup.hp.com

Abstract

This paper explores compiler techniques for reducing
the memory needed to load and run program executa-
bles. In embedded systems, where economic incentives
to reduce both ram and rom are strong, the size of
compiled code is increasingly important. Similarly, in
mobile and network computing, the need to transmit
an executable before running it places a premium on
code size. Our work focuses on reducing the size of a
program’s code segment, using pattern-matching tech-
niques to identify and coalesce together repeated in-
struction sequences. In contrast to other methods, our
framework preserves the ability to run program exe-
cutables directly, without an intervening decompression
stage. Our compression framework is integrated into an
industrial-strength optimizing compiler, which allows
us to explore the interaction between code compression
and classical code optimization techniques, and requires
that we contend with the difficulties of compressing pre-
viously optimized code. The specific contributions in
this paper include a comprehensive experimental evalu-
ation of code compression for a Risc-like architecture,
a more powerful pattern-matching scheme for improved
identification of repeated code fragments, and a new
form of profile-driven code compression that reduces the
speed penalty arising from compression.

1 Introduction

Increasingly, the size of compiled code has an impact
on the performance and economics of computer sys-
tems. From embedded systems like cellular telephones
through applets shipped over the World Wide Web, the
∗This work was supported by Darpa through through USAFRL

Contract F30602-97-2-298.

impact of compile-time decisions that expand code size
is being felt. In a cellular telephone, code size has a
direct effect on cost and power consumption. In a web-
based application, the user waits on both transmission
time and execution time. In between lie many other
examples where code size has a direct impact on either
the economics or the performance of an application.

Many factors determine the size of compiled code.
The instruction set architecture of the target machine
has a strong effect; for example, stack machines pro-
duce compact code, while three-address Risc machines
produce larger code (in part because each operand is
explicitly named). Specific code sequences selected by
the compiler have an effect, as do the specific transfor-
mations applied during optimization.

This paper explores one technique for reducing code
size—code compression during the late stages of com-
pilation. The approach is conceptually simple; it builds
on early work by Fraser et al. for Vax assembly code [9].
Pattern-matching techniques identify identical code se-
quences (a “repeat”). The compiler then uses either
procedural abstraction or cross-jumping to channel exe-
cution of the repeat through a single copy of the code.
We extend this basic algorithm by relaxing the notion
of “identical” to abstract away register names – a key
enhancement when compressing code compiled with a
graph-coloring register allocator.

This paper makes several distinct contributions to
the literature. First, we present a comprehensive exper-
imental evaluation of code compression on a Risc-like
architecture. Our work shows space savings of up to
15% on the benchmark programs tested, with an aver-
age of approximately 5%. Second, we evaluate the ef-
fects of classic scalar optimization on code space and ex-
plore the interactions between these optimizations and
code compression. Our work shows that the two ap-
proaches have complementary, rather than competitive,
effects on space. Third, we describe and evaluate a
series of techniques that extend the basic compression
framework to handle differences in register assignment.
Our work indicates that these techniques make a crucial

NA A BANANAS

S NAS S NA

S NAS

S

Figure 1: Suffix tree for the string “bananas”

contribution to the performance of this form of compres-
sion. Finally, we describe a profile-based technique that
provides a mechanism for controlling tradeoffs between
code size and overall execution time.

The remainder of this paper is as follows. Sections
2 and 3 describe how our compression framework first
identifies “repeats”, then replaces the fragments within
a repeat with references to a single shared instance.
Section 4 describes the specific enhancements that al-
low our framework to abstract away minor differences
in register naming. Section 5 presents the results of a
series of experiments that test our techniques on a set
of benchmark programs. Section 6 compares this work
with related research in code compression and code-
space optimization. Section 7 outlines some of our ideas
for future research on code compression. Finally, Sec-
tion 8 summarizes this paper’s contributions and offers
our conclusions.

2 Identifying Repeats

The first task in our compression framework is to find
all the repeats in the program and to select a set of in-
stances to be compressed. To identify repeats, it builds
a suffix tree, as in the work of Fraser et al. [9].

2.1 Suffix Tree Construction

A suffix tree is a data structure that encodes informa-
tion about repetition within a textual string. Suffix
trees are used for a variety of pattern-matching appli-
cations [18, 20, 22]. Given a text string S, edges within
the suffix tree for S are labeled with substrings within S.
For each path P from the tree’s root node to some leaf
node, the edge labels along P describe a specific suffix
within S. Figure 1 shows an example suffix tree for the
text string “bananas”. Each interior node in the tree,
other than the root, identifies a repeated substring in
the input; these nodes represent opportunities for com-
pression. A suffix tree for a string of length N can be
constructed in O(N) time; this makes it an attractive

· · · Fragment F1 · · · · · · Fragment F2 · · ·
L1: MUL r3, r4 → r5 MUL r3, r4 → r5

ADD r2, r5 → r9 ADD r2, r5 → r9
LOAD [r9] → r1 LOAD [r9] → r1
ADDI r1, 10 → r8 ADDI r1, 10 → r8
STORE r8 → [r9] STORE r8 → [r9]
LOADI 4 → r7 LOADI 4 → r7
ADD r7, r9 → r9 L9: ADD r7, r9 → r9
LOAD [r9] → r1 LOAD [r9] → r1
ADDI r1, 10 → r8 ADDI r1, 10 → r8
· · · · · ·

Figure 2: Two program fragments with different control
conditions

tool for code compression.
As a prelude to constructing the suffix tree, we hash

each instruction and enter it into a global table. Each
instruction with a unique combination of opcode, regis-
ters, and constants receives its own table entry, after ac-
counting for semantically identical instructions. For ex-
ample, the instruction “iADD r9, r10 → r10” is con-
sidered equivalent to the instruction “iADD r10, r9 →
r10”, since integer addition is commutative. Thus each
entry in the global table corresponds to an equivalence
class of instructions.

Next, we create a linear, string-like representation
of the program called the text, where each character in
the string corresponds to a particular instruction in the
program. Location K in the text is computed by hash-
ing the Kth instruction in the program to obtain the
index of its entry in the global instruction table. Once
the text for the program is available, we use Ukkonen’s
algorithm to construct the actual suffix tree [20].

2.2 Building the Repeat Table

We store information gleaned from the suffix tree in a
data structure called the repeat table. Each entry in
the table (a repeat) is composed of a set of fragments,
or specific identical substrings within the program text.
Figure 2 gives an example of a repeat consisting of two
identical fragments. Internally, a fragment is repre-
sented by a pair of integers storing the offset and length
of a region within the text. Repeats form the raw mate-
rial for the compression process; given a repeat with K
fragments, the goal is to replace K−1 of the fragments
with references (calls or jumps) to the last remaining
fragment.

After a set of fragments has been collected into a
repeat, the compiler must analyze them to identify any
conditions that would inhibit the transformations. We
refer to these conditions as control hazards; they corre-
spond to jumps into or out of the fragment that interfere
with procedural abstraction or cross-jumping.

In Figure 2, neither fragment contains any control

transfer instructions. Since fragment F2 spans more
than one block, however, an instruction internal to F2

may be the target of a jump from outside F2. A hazard
of this sort might make it unsafe to compress this frag-
ment (see Section 3 for the specifics on safety criteria).

2.3 Repeat Splitting

When the repeat manager identifies a hazard that pre-
vents some or all transformations within a repeat, it
typically handles the situation by splitting the repeat.
Given a repeat with N fragments, splitting partitions
each fragment at a specific offset, creating two new re-
peats, each with N (smaller) fragments. For example,
in Figure 2, the compressor could eliminate the control
hazard in the second fragment by splitting the entire
repeat at offset 5, producing two new repeats each with
two fragments.

The repeat manager uses a detailed cost model to de-
cide where and when to split a given repeat, taking into
account the fragment length, the offset and type of the
hazard, and the number of fragments that exhibit the
hazard. In most cases, the repeat manager handles con-
trol hazards by splitting repeats at the offending jump
point, unless the split fragments become too small, in
which case it evicts hazard-containing fragment(s) from
the repeat.

3 Replacing Repeats

Once the compiler has identified a collection of repeat
instances for compression, it must transform the code.
Our framework uses two distinct transformations to ach-
ieve this: procedural abstraction and cross-jumping.

Original code:

· · · Region 1 · · · · · · Region 2 · · ·
NEG r10 → r1 SUB r9, r8 → r1
ADD r2, r3 → r4 ADD r2, r3 → r4
LOAD [r4] → r7 LOAD [r4] → r7
SUB r7, r8 → r9 SUB r7, r8 → r9
MUL r9, r7 → [r4] MUL r9, r7 → [r4]
· · · · · ·

After procedural abstraction:

· · · Region 1 · · · · · · Region 2 · · ·
NEG r10 → r1 SUB r9, r8 → r1

CALL ts1 CALL ts1

· · · · · ·

· · · Abstract procedure · · ·
ts1: ADD r2, r3 → r4

LOAD [r4] → r7
SUB r7, r8 → r9
MUL r9, r7 → [r4]
RTN

Figure 3: Procedural abstraction example

Original code:

· · · Region 1 · · · · · · Region 2 · · ·
ADD r2, r3 → r4 MOV r9 → r3
LOAD [r3] → r7 LOAD [r3] → r7
SUB r7, r8 → r9 SUB r7, r8 → r9
STORE r9 → [r4] STORE r9 → [r4]
JMP L3 JMP L3
· · · · · ·

After cross-jumping:

· · · Region 1 · · · · · · Region 2 · · ·
ADD r2, r3 → r4 MOV r9 → r3
JMP L5 L5: LOAD [r3] → r7
· · · SUB r7, r8 → r9

STORE r9 → [r4]
JMP L3
· · ·

Figure 4: Cross-jumping example

Figure 3 shows an example of procedural abstrac-
tion. In this transformation, a given code region is made
into a procedure, and other regions identical to it are
replaced with calls to the new procedure [16, 9]. Proce-
dural abstraction requires that the candidate regions be
single-entry, single-exit: internal jumps must be within
the body of the region.

Figure 4 shows an example of cross-jumping (some-
times known as tail merging), in which identical regions
that end with a jump to the same target are merged to-
gether [24]. In this transformation, we replace a region
with a direct jump to another identical region. All of
the out-branches in each region must match in order for
cross-jumping to be applied.

Both these transformations have certain costs, both
in terms of code space and execution time. For exam-
ple, when forming an abstract procedure, the compiler
must add a return instruction at the end of the body,
and must insert a call instruction at each place where
the abstract procedure is referenced.1 In the case of
cross-jumping, a jump instruction must be added. As
a result, these transformations should only be invoked
if the benefit outweighs the instruction overhead.

3.1 Repeat Selection

The default strategy for deciding which repeats to com-
press is very simple: the compiler calculates expected
savings for each repeat, sorts the repeat table by ex-
pected savings, and applies transformations in sorted
order.

Since repeats can overlap, the compiler must take
care to avoid compressing a given code fragment more
than once. To accomplish this, it tracks the portions

1Abstract procedures do not save or restore registers, thus they do
not require the usual procedure prolog or epilog code.

of the program that have already been transformed and
skips over a fragment that has already been compressed.

We have experimented with several alternative tech-
niques for repeat selection; Section 4.3 describes an en-
hanced strategy that uses profiling information to avoid
applying transformations in heavily executed portions
of the program.

4 Extensions

The use of textual identity limits the applicability of the
suffix-tree approach. Requiring an exact, instruction-
by-instruction match unnecessarily restricts the set of
repeats that the framework can discover. Frequently,
two code fragments are similar, differing only in the
use of labels or register names. To increase the set of
repeats that the framework discovers, we experimented
with techniques to abstract both branch targets and
register names.

Since the notions underlying the suffix-tree mecha-
nism are textual, these transformations correspond to
replacing certain instruction operands with “wildcard”
characters. If we can modify our framework to operate
on these “abstracted” fragments while still preserving
the original meaning of the program, then this may im-
prove the overall results from code compression.

4.1 Abstracting Branches

The first step in relaxing our notion of identity is to
rewrite branches into a pc-relative form, whenever pos-
sible, as in the work of Fraser et al. [9]. Branches to
hard-coded labels usually end a repeat, because the
otherwise identical code sequences branch to different
labels. Recoding these branches into a pc-relative form
allows the suffix-tree construction algorithm to discover
repeats that span multiple blocks. Before we abstract
the branches, the algorithm finds almost no cross-block
repeats, in practice. After rewriting, it finds many
cross-block repeats.

4.2 Abstracting Registers

Often, two code fragments are identical except for mi-
nor differences in register use. Consider the example in
Figure 5. These two fragments have identical opcodes,
but they employ different registers: wherever the first
fragment uses r7, the second fragment uses r6, and vice
versa.

We now describe a new code compression strategy
that allows these two fragments to be compressed to-
gether. Section 4.2.1 describes the first component of
this strategy, a rewriting phase used prior to suffix tree
construction that abstracts away specific register names.
The second component is a renaming phase, described
in Section 4.2.2, that seeks to change the registers used

· · · Fragment 1 · · · · · · Fragment 2 · · ·
ADD r2, r3 → r4 ADD r2, r3 → r4

LOAD [r4] → r7 LOAD [r4] → r6

SUB r7 , r3→ r9 SUB r6 , r3→ r9

STORE r9 → [r4] STORE r9 → [r4]
ADDI r4, 16 → r5 ADDI r4, 16 → r5

LOAD [r5] → r6 LOAD [r5] → r7

SUB r6 , r4→ r9 SUB r7 , r4→ r9

STORE r9 → [r5] STORE r9 → [r5]
· · · · · ·

Figure 5: Similar but not lexically identical

in one fragment in order to render it lexically identical
to another fragment. For this work, we assume that
register allocation has already been performed for the
input program.

4.2.1 Relative-register pattern matching

With relative-register instruction comparison, we per-
form the following preprocessing phase before building
the suffix tree. Given an instruction I with register
references r1, r2, . . . rn, we rewrite each register refer-
ence in terms of previous uses and definitions within the
basic block containing I. When an instruction I reads
register rk, we look for a previous reference to rk or defi-
nition of rk within the current basic block. If a previous
reference to rk exists in instruction Q, then we rewrite
the reference to rk within I as a tuple 〈O, T, R〉, where
O is the relative offset between Q and I, T selects the
type of the reference within Q (defined or used), and
R is the index of the defined or used register within
Q. If no previous reference to a register exists, then we
rewrite the reference as “*”, a placeholder or wildcard
token. All definitions within the block are rewritten as
“*”. Figure 6 shows one of the code fragments from
Figure 5, along with the same fragment after register
references are rewritten as relative offsets.

By rewriting instructions in relative terms, we seek
to allow the suffix tree to identify sequences that are
not textually identical, but are isomorphic within a re-
naming. Although the two fragments shown in Figure 5
are not textually identical, they have the same repre-
sentation after being rewritten.

4.2.2 Register renaming

When the suffix tree is built based on the rewritten
representation of the input program, two fragments may
be placed into the same repeat even though they use
different registers. Thus, to compress the fragments
together, we may need to apply register renaming to
make one fragment identical to the other.

Original block
L1: ADD r2, r3 → r4

LOAD [r4] → r7
SUB r7, r3 → r9
STORE r9 → [r4]
ADDI r4, 16 → r5
LOAD [r5] → r6
SUB r6, r4 → r9
STORE r9 → [r5]

References rewritten
L1: ADD *, * → *

LOAD 〈-1, d,0〉 → *
SUB 〈-1, d,0〉, 〈-2, u, 1〉 → *
STORE 〈-1, d,0〉 → *
ADDI 〈-1, d,0〉, 16 → *
LOAD 〈-1, d,0〉 → *
SUB 〈-1, d,0〉, 〈-3, d, 1〉 → *
STORE 〈-1, d,0〉 → *

Figure 6: Expressing register references as offsets

More formally, given a fragment F1 located in pro-
cedure P1 and a fragment F2 located in P2, register
renaming seeks to change the register use within P2

to render F2 identical to F1, without changing the se-
mantics of the program. Renaming can sometimes fail
to make two fragments equivalent, since the compiler
must work within the constraints imposed by the exist-
ing register allocation. The renaming strategy we use
in this paper is called live–range recoloring.

notation interpretation
Fj code fragment j

ig
P

interference graph for procedure P
containing fragment of interest

lr
Q

live range Q within some interfer-
ence graph

color(lr
Q) physical register holding lr

Q

Figure 7: Notation related to live–range recoloring

Live–range recoloring Live–range recoloring is a form
of register renaming that relies on some of the same
tools used in graph-coloring register allocators. It car-
ries out renaming operations at the granularity of in-
dividual live ranges, by constructing and manipulat-
ing a Chaitin-style interference graph for each proce-
dure [3]. Since our compression framework performs its
work after the input code has been register-allocated,
all interference graphs will be completely colored, with
a distinct physical register (color) assigned to each live
range. Figure 7 presents the notation that we use in
describing live–range recoloring.

Consider the example in Figure 8. Suppose we want
to rename the registers in fragment F2 in order to ren-
der it identical to F1. In this example, we focus on the
instances of register rj in F2, which do not match the
corresponding instances of rk in F1. In Figure 8, frag-
ment lr

Q is the live range within ig
X containing the

references to rk, and lr
S is the live range within ig

Y

containing the references to rj.2

NEG rj -> r5

. . .

Live RangeLive Range
SQ

. . .

.

. . .

. . .

Fragment F2Fragment F1

LR LR

SUB rk r3 -> r7

LOAD [r7] -> r8

ADD rk r4 -> r7

SUB rj r3 -> r7

LOAD [r7] -> r8

ADD rj r4 -> r7

ADD r1, r2 -> rk SUB r2, r8 -> rj

(procedure X) (procedure Y)

LSL rk r2 -> r5

ADD r3, rj -> r4

Figure 8: Live–range renaming example

Given a live range lr
S that we want to recolor to

color rk, we use a recursive algorithm. For the base
case of the recursion, we first use the interference graph
to test whether it is legal to simply change the color
of lr

S to rk; we refer to this process as simple recol-
oring. If simple recoloring succeeds, then the process
terminates. If it fails, we then try to change all the rk-
colored neighbors of lr

S to new colors, which makes
simple recoloring of lr

S legal. We refer to this pro-
cess as neighbor eviction. If neighbor eviction fails, we
then speculatively change the color of lr

S to rk, and
make recursive calls to change rk-colored neighbors to
some new color (either rj or some other freely available
color). An overall algorithm for recoloring is shown in
Figure 9.

Simple recoloring works as follows. To test the legal-
ity of changing lr

S from rj to rk, we consult the inter-
ference graph for the procedure containing F2, check-
ing to see if there exists any live range lr

T such that
color(lr

T) = rk and lr
T interferes with lr

S . If no
such lr

T exists, then lr
S can be safely recolored from

rj to rk.
If simple recoloring fails, we attempt neighbor evic-

tion using the algorithm shown on the right side of Fig-
2Note that if the two fragments are contained within the same

procedure, ig
X will be the same as ig

Y .

Function RecolorLiveRange
inputs: lr

Q: live range whose color needs changing
ig
P : interference graph containing lr

Q

k: original color of lr
Q

j: desired (target) color of lr
Q

V : set of live ranges already visited
output: TRUE if color change was successful

FALSE otherwise

{
if (lr

Q ∈ V)
return (BOOLEAN(color(lr

Qi) == j))
V = V ∪ lr

Q

/* simple recoloring */
Let S be the set of live ranges lr

i in ig
P such that

color(lr
i) = j and lr

i interferes with lr
Q ;

If (S is empty) {
change color(lr

Q) from k to j
return TRUE;

}
/* neighbor eviction */
if (EvictNeighbors(lr

Q, ig
P , j)

return TRUE;
/* recursive recoloring */
change color of lr

Q to j
for each live range lr

i such that
(lr

i interferes with lr
i) and

(color(lr
i) == j) {

if (RecolorLiveRange(lr
i, ig

P , j, k) == FALSE)
return FALSE;

}
return TRUE;

}

Function EvictNeighbors
inputs: lr

Q: live range whose neighbors
we will try to evict

ig
P : interference graph containing lr

Q

k: color to avoid when selecting
new color of neighbors

output: TRUE if color change was successful
FALSE otherwise

{
for each live range lr

i in ig
P such that

lr
i interferes with lr

Q and lr
i has color k {

if (ChangeToFreeColor(lr
i, ig

P , k) == FALSE)
return FALSE;

}
return TRUE;

}

Function ChangeToFreeColor
inputs: lr

Q: live range whose color needs changing
ig
P : interference graph containing lr

Q

k: color to avoid when selecting new color of lr
Q

output: TRUE if color change was successful,
FALSE otherwise

{
C = ∅
for each live range lr

i in ig
P such that

lr
i interferes with lr

Q

C = C ∪ color(lr
i) ;

if ∃ color m such that m /∈ C and m 6= k {
change color(lr

Q) to m
return TRUE;

}
return FALSE;

}

Figure 9: Live–range recoloring algorithm

ure 9. Here we iterate through each live range lr
T

such that color(lr
T) = rk and lr

T interferes with
lr

S . For each lr
T , we try to recolor it to some free

color rq chosen such that no other live range with color
rq interferes with lr

T . If every such lr
T can be safely

recolored, then lr
S can be recolored to rk.

We invoke the recursive step if simple recoloring and
neighbor eviction are not successful. The target live
range, lr

S , is changed from color rj to color rk, and re-
cursive calls are made to change rk-colored neighbors to
some new color (either rj or some other freely available
color). In the worst case, recursive recoloring may result
in a complete swapping of colors between rk-colored live
ranges and rj-colored live ranges.

When a series of live–range recoloring operations is
performed within a procedure, care must be taken that
subsequent color changes do not undo their effects. As
a result, each time a live range changes color, we record
the operation in a table known as the “wired color”
table. On subsequent invocations of live–range recolor-
ing, we check the wired color table before attempting

any changes – if a given live range is already “wired”,
then the recoloring operation is aborted.

4.3 Profile-based Selection

The compression methodology we have described up un-
til now applies transformations indiscriminately, with-
out any knowledge of execution frequency. If the com-
pressor selects a fragment that resides in an important
inner loop, this can cause a disproportionate increase in
program running time.

To deal with this problem, we augmented our com-
pression framework to use profiling information (if avail-
able) to guide the compression process. The compiler
accepts profile information in the form of dynamic in-
struction counts for each function in the program. For
each function F , the compiler computes the ratio of
F ’s dynamic instruction count to F ’s static instruction
count; we call this ratio RF . Given a total of N func-
tions, the compiler then selects the Qth order statistic
[6] from among all the N ratios (the default value for

Q is 0.85); we call this selection the cutoff ratio. In
other words, the compiler selects a function J whose
ratio Rj is larger than 85% of all the other function’s
ratios. The cutoff ratio is then used to guide compres-
sion; if a function has a ratio greater than the cutoff,
we suppress all compression of fragments within that
function. In spite of the crude nature of the profiling
information (functions as opposed to basic blocks), our
experiments show that this scheme is is quite effective
in practice (see Section 5.4 for the results).

5 Experiments

We have implemented the code compression framework
described in this paper in our research compiler and
tested it on a set of benchmark programs. We now
present the results of these experiments.

5.1 Benchmark Programs

The benchmarks used in this study are a set of C pro-
grams for signal processing and for voice/data/video
coding and compression. Figure 10 gives brief descrip-
tions of the function of each program, and Figure 11
shows some of the pertinent program characteristics,
including number of functions, static instruction count,
and approximate dynamic instruction count (in mil-
lions). Data-set sizes were reduced in order to shorten
simulation time for some of the programs.

Program Description

adpcm adaptive differential PCM

fftn split-radix FFT (10x10, 10 iters)

shorten waveform compression

gsm GSM speech encoding

gzip data compression

mpeg2dec MPEG-2 video decoding

mpeg2enc MPEG-2 video encoding

jpeg video compression [SPEC95]

gs postscript interpreter

Figure 10: Program descriptions

Our compiler includes a C front end that generates
Iloc, a linear, low-level, register-transfer intermediate
language similar to Risc assembly language [1]. The
remainder of the compiler operates at the intermediate-
code level, and all results (code space, dynamic instruc-
tion count, etc) are given in terms of intermediate-
code instructions. The compiler’s optimizer includes
the following passes: global value-driven code motion
[4], operator strength reduction [5], conditional con-
stant propagation [21], copy propagation, local value
numbering, global dead code elimination [10], useless
control-flow removal, and global register allocation [3].
For this study we deliberately avoided using optimiza-
tion passes that would increase code size, such as in-

instructions
Program Funcs static dynamic

adpcm 6 356 12.4M

fftn 8 3,689 1.1M

shorten 56 7,274 2.0M

gsm 95 12,081 85.6M

gzip 98 11,511 1.8M

mpeg2dec 114 11,218 10.2M

mpeg2enc 210 16,884 205.9M

jpeg 380 36,959 681.2M

gs 1,142 68,590 48.2M

Figure 11: Program characteristics

lining and loop unrolling. The register allocator is a
Chaitin-style graph-coloring allocator with round-robin
register selection and support for rematerialization [2].
We assume an architecture with 32 integer registers and
32 floating-point registers. Code compression is per-
formed as the final stage, following register allocation.
Full optimization is enabled by default when compiling
input programs. When we need to emulate a compiler
that performs little or no optimization, we use only local
value numbering followed by register allocation.

5.2 Results

Figure 12 shows the results of an experiment comparing
three different strategies for code compression. The first
strategy, “lexical”, uses a purely lexical instruction pat-
tern matching scheme (taking into account commutativ-
ity, etc). The second strategy, “relative branch” treats
branches as relative offsets. The third strategy, “rela-
tive register”, adds in relative-register pattern match-
ing and live–range recoloring as described in Section 4.2.
The first three columns show percent reduction in static
instruction count (code space), and the second three
show percent increase in dynamic instruction count for
each method. All values are relative to a baseline run
with full optimization but no code compression.

percent decrease percent increase
in static in dynamic

instruction count instruction count
rel. rel. rel. rel.

Program lexical bran. reg. lexical bran. reg.
adpcm 0.00 0.00 3.16 0.00 0.00 7.01
fftn 0.11 0.11 0.10 0.09 0.09 0.01
shorten 0.40 0.40 1.57 0.00 0.00 1.81
gzip 0.28 0.43 3.39 0.00 0.00 0.80
gsm 2.23 2.23 14.84 9.31 9.31 13.00
mpeg2dec 0.35 0.36 4.29 0.02 0.02 5.81
mpeg2enc 0.69 1.02 4.08 0.02 0.02 5.81
jpeg 1.09 1.08 6.23 0.00 12.99 19.47
gs 0.88 0.89 5.32 0.10 0.19 4.85

<mean> 0.67 0.72 4.88 1.07 2.53 6.47

Figure 12: Base results

The data shows that relative-register compression
substantially reduces code space, with an average of 5%

code space reduction and a high of 14.8% for the pro-
gram gsm. In comparison, the purely lexical scheme and
the relative-branch compression scheme average around
1%. The space savings produced by code compression
is accompanied by (in most cases) a roughly equivalent
increase in dynamic instruction count, suggesting that
this form of optimization may not be desirable in situ-
ations where code speed is the primary concern. Sec-
tion 5.4 presents results demonstrating that profiling
information can help reduce these penalties.

Overall, our results show that this class of compres-
sion techniques continues to be effective for modern in-
struction set architectures, provided that differences in
register usage are taken into account.

5.3 Interactions Between Code Compression and
Classical Optimization

Figure 13 compares the space-saving effects of code com-
pression with the savings produced by classical opti-
mization. All three columns show code-space reduction
with respect to the unoptimized version of the input
programs.3 The first column shows code-space reduc-
tion due solely to optimization. The second column
shows the code-space reduction produced by running
only code compression, and the third column shows the
results of code compression run on optimized input (as
in Figure 12).

static instruction
count decrease (percent)

optim. compr. optim. +
Program only only compr.
adpcm 20.00% 3.45% 22.53%
fftn 5.33% 8.34% 6.27%
shorten 16.37% 2.76% 17.69%
gzip 21.75% 8.23% 24.40%
gsm 16.14% 14.29% 28.58%
mpeg2dec 15.89% 7.98% 19.50%
mpeg2enc 17.11% 6.96% 20.49%
jpeg 26.65% 9.70% 31.22%
gs 27.76% 9.47% 31.61%

<mean> 18.56% 7.91% 22.48%

Figure 13: Compression vs. classical optimization

The second column in Figure 13 shows that code
compression produces a higher compression ratio when
run on unoptimized code. In all but one case, how-
ever, the combination of compression and optimization
was equal to or better than either compression alone
or optimization alone, indicating that each technique is
able to exploit opportunities not available to the other.
This suggests that for applications in which code space
is a critical resource, the compiler should employ both
robust classical optimization and code compression.

3Recall that for this experiment, “unoptimized” implies only local
value numbering and register allocation.

As would be expected, the effectiveness of code com-
pression is very dependent on the “shape” of the code
produced by the optimization passes that precede it.
In particular, we found that minor differences in the
register allocator sometimes resulted in significant dif-
ferences in the compression rate.

Overall, we would expect code compression to result
in significantly higher savings if applied to the output of
a more naive compiler. Simple code generation followed
by local register allocation would probably tend to yield
more repeats and longer fragments.

5.4 Exploiting Profiling Data

Figure 14 shows the results of incorporating profiling
data into the repeat selection process, as described in
Section 4.3. The numbers shown are for relative-register
compression.

static dynamic
instr. instr.
count count

Program decrease increase
adpcm 3.16% 7.01%
fftn 1.00% 0.01%
shorten 0.85% 0.00%
gzip 2.11% 0.00%
gsm 12.30% 0.35%
mpeg2dec 2.96% 0.08%
mpeg2enc 3.24% 0.30%
jpeg 5.03% 0.00%
gs 4.33% 0.02%

<mean> 3.89% 0.86%

Figure 14: Profile-driven code compression

For the programs made up of only a few functions
(adpcm and fftn), we see little change in behavior:
the code-space savings is comparable to that achieved
without profiling, but so is the dynamic instruction
count penalty. We attribute this to the fact that these
programs only have a handful of functions to begin
with, making fine distinctions difficult to manage. For
the larger programs, however, the results are excellent:
dynamic instruction count increase is at most 0.4%,
whereas code-space reduction is about 80% of that pro-
vided by normal compression (an average of 3.9%, com-
pared to an average of 4.8% without profiling). These
results suggest that by varying the profile cutoff ratio,
a compiler or user can exercise greater control over the
tradeoff between code speed and code size.

5.5 Compression Time

In this section we look at the running time of the com-
pression framework itself. Figure 15 shows the time
taken by the various forms of code compression for each
program. Times shown are number of instructions com-
pressed per second. The system hosting the compiler

and the compression framework is a PC with a 150Mhz
Intel Pentium Pro processor and 128 megabytes of
memory, running FreeBSD Unix (Version 2.2.2). The
times given do not include I/O, parsing, or time needed
to build the CFG, but they do include time required to
place the input program into SSA form [7].

relative relative
Program branch register
adpcm 8,215 3,232
fftn 11,101 397
shorten 10,603 699
gzip 11,669 1,620
gsm 12,724 265
mpeg2dec 11,984 1,077
mpeg2enc 10,652 511
jpeg 10,730 786
gs 8,769 1,822

<mean> 10,716 1,156

Figure 15: Code compression running time (instructions
per second)

The data show that the relative-branch code com-
pression is extremely fast, at around 11K instructions
per second.4 Relative-register code compression takes
more time than the base case, since it must construct
and manipulate interference graphs for each function
in the program; it averages about 1K instructions per
second. The overall compression times are still very rea-
sonable, and represent only a small fraction of the time
required to compile and optimize the complete program.

6 Related Work

Previous researchers have developed many schemes for
reducing the storage space needed by a given program.
One strategy is to apply data compression to executa-
bles on disk, then use decompression when the exe-
cutable is loaded into ram to run [8]. In addition to sav-
ing secondary storage, this approach can also cut down
on program loading time for mobile and networked ap-
plications. It is advantageous in that it requires little
or no compiler support, and is very widely applicable.

Techniques to reduce ram use (as opposed to sec-
ondary storage) have focused primarily on the code seg-
ments of executables, rather than data or stack storage.
A variety of compiler optimization techniques have been
developed that seek to produce compact code [24, 19,
17, 15]. These methods are designed to reduce code
size without requiring hardware support and without
imposing significant run-time penalties.

A number of researchers have experimented with
schemes in which the program executable itself is stored
in compressed form in ram or rom, requiring some sort

4Frasier, Myers, and Wendt reported compression rates of 80-100
instructions per second for their implementation on a Vax.

of intervening decompression step during program exe-
cution. One approach is to compress data in cache-line
sized chunks, then apply decompression on each instruc-
tion cache miss [23, 12]. Another strategy is to compress
each procedure separately, then decompress a routines
as it is called, loading it into a new memory region for
execution [11]. A third approach operates on the gran-
ularity of instruction sequences, constructing a dictio-
nary for the program, then performing decompression
during instruction fetch, essentially creating a tailored
instruction encoding for a given executable [13].

Our framework can be considered a derivative of
the software-only school of code compression, which ap-
plies optimizations such as tail merging and procedural
abstraction to achieve code space savings [16, 9, 14].
Our approach is an extension of the scheme developed
by Fraser, Myers, and Wendt [9]. As in the work of
Fraser et al., we use a suffix tree to identify repeated
code fragments, and we apply cross-jumping and pro-
cedural abstraction to implement the actual code com-
pression. Our work differs from previous efforts in a
number of respects, however. First, we evaluate the
effectiveness of code compression for a Risc instruc-
tion set. Fraser et al. tested their code compressor
on a set of Unix utility programs running on a VAX
11/780, but reported fairly limited experimental results
(an average compression factor of 7%). Computer ar-
chitectures and compiler optimization techniques have
changed radically since the era of the VAX, creating a
need to re-examine the overall effectiveness of this form
of code space optimization. Second, we explore the in-
teraction between code compression and classical op-
timization, and we demonstrate that optimization can
significantly influence the savings one achieves through
code compression. Third, our compression framework
incorporates a key enhancement that allows it to handle
differences in register naming when performing com-
pression. Finally, we show how the careful use of an
execution profiler can decrease the speed penalty some-
times incurred during code compression.

7 Future Extensions

Although the compression framework described in this
paper is effective, there are a number of ways in which
it could be extended. In this section we outline some
of the limitations of our techniques, and discuss several
avenues for future research.

Constant abstraction

In our current implementation, we apply renaming to
abstract away physical registers when preparing build
the suffix tree for the input program. An analogous
technique can be used to abstract away differences in

the use of constants prior to building the suffix tree,
then resolve differences by passing constant values in
registers when calling abstract procedures. Consider
the example shown in Figure 16.

· · · Fragment F1 · · · · · · Fragment F2 · · ·
ADD r1, r2 → r3 ADD r1, r2 → r3
LOAD [r3] → r4 LOAD [r3] → r4

ADDI 4 , r4→ r4 ADDI 8 , r4→ r4

ADD r5, r2 → r3 ADD r5, r2 → r3
STORE r4 → [r3] STORE r4 → [r3]
· · · · · ·

Figure 16: Two program fragments with different con-
stant usage

Our current framework would not be able to opti-
mize these fragments together, due to the different con-
stant values used by the ADDI instruction. A solution
to this problem is to change the ADDI to an ADD, then
load the site-specific constant value prior to calling the
abstract procedure. In order to exploit these opportu-
nities automatically, a number of conditions have to be
met; in particular, each of the fragments must have a
free register available in which the constant value can
be passed to the abstract procedure.

Instruction ordering

The underlying pattern-matching mechanisms that sup-
port this form of compression are very sensitive to in-
struction ordering. If two fragments contain the same
operations, but one fragment executes them in a slightly
different (but semantically equivalent) order, then they
will not be identified by the suffix tree as identical.

· · · Fragment F1 · · · · · · Fragment F2 · · ·
ADDI r1, 99 → r2 SUB r3, r4 → r5
SUB r3, r4 → r5 ADDI r1, 99 → r2
STORE r5 → [r2] STORE r5 → [r2]
· · · · · ·

Figure 17: Two program fragments with different in-
struction order

The example in Figure 17 illustrates the problem.
The two fragments in question both perform the same
operations, but the order of the operations is slightly
different (the first two instructions are swapped). The
compression framework should be able to overcome mi-
nor ordering differences when locating repeated frag-
ments to optimize.

One way to attack this problem is to reorder instruc-
tions within basic blocks in a “canonical” fashion prior
to constructing the suffix tree (subject to dependence
constraints, of course), in the hopes that this will elim-
inate unimportant ordering variations. A second ap-

proach is to build a suffix tree that in some sense encap-
sulates multiple instruction orderings within particular
basic blocks.

Compression prior to register allocation

Since register allocation artifacts (spill code, physical
register number differences, etc) complicate the process
discovering identical code fragments, an alternative ap-
proach would be to compress repeated fragments prior
to register allocation, when intermediate code contains
references to virtual registers, not physical registers.
Performing procedural abstraction prior to register allo-
cation introduces a number of problems, however, since
subsequent register assignment must support the im-
plicit parameter-passing that takes place when an ab-
stract procedure is called.

8 Summary and Conclusions

In this paper we have described and evaluated new ex-
tensions to suffix-tree based code compression, show-
ing how a compiler can use them to produce smaller,
more compact code while still retaining a directly ex-
ecutable program. While this type of code space op-
timization may be relatively unimportant when com-
piling for a general-purpose processor, it can be vital
when compiling programs to run on embedded proces-
sors, where code size contributes very directly to overall
system cost.

The experimental results demonstrate that this form
of code compression works well with modern-day com-
pilers and instruction set architectures, in spite of the
fact that it was originally developed for machines with
complex instructions sets. We find that code compres-
sion is complementary to classical optimization, and
that neither technique appears to be a replacement for
the other. Our data show that relaxed pattern match-
ing in combination with live–range recoloring improves
the effectiveness of code compression substantially, in-
creasing the average code space reduction from around
1% to just under 5%, for the benchmarks we studied.
Finally, we find that the use of profiling data to drive
the compression process can greatly reduce the dynamic
instruction count penalties that normally must be paid
when using these techniques, making them more attrac-
tive for applications where space and speed are equally
important.

Acknowledgments

This work was done as part of the Massively Scalar
Compiler Project at Rice University. We used software
built by the entire group over many years; we are in-
debted to the many people who have contributed to

this code base. Tim Harvey assisted in this work in
many ways. Alan Wendt was both quick and gracious in
answering our myriad questions about the earlier Vax

work.

References

[1] P. Briggs. The Massively Scalar Compiler Project.
Technical report, Rice University, July 1994.

[2] P. Briggs, K. Cooper, and L. Torczon. Remate-
rialization. In Proceedings of the SIGPLAN ’92
Conference on Programming Language Design and
Implementation, San Francisco, CA, June 1992.

[3] G.J. Chaitin, M.A. Auslander, A.K. Chandra,
J. Cocke, M.E. Hopkins, and P.W. Markstein. Reg-
ister allocation via coloring. Computer Languages,
6:45–57, January 1981.

[4] K. Cooper and T. Simpson. Value-driven code mo-
tion. Technical Report CRPC-TR95637-S, Center
for Research on Parallel Computation, Rice Uni-
versity, October 1995.

[5] K. Cooper, T. Simpson, and C. Vick. Opera-
tor strength reduction. Technical Report CRPC-
TR95637-S, Center for Research on Parallel Com-
putation, Rice University, October 1995.

[6] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. In-
troduction to Algorithms. The MIT Press, Cam-
bridge, MA, 1990.

[7] R. Cytron, J. Ferrante, B. Rosen, M. Wegman,
and K. Zadeck. Efficiently computing static sin-
gle assignment form and the control dependence
graph. ACM Transactions on Programming Lan-
guages and Systems, 13(4):451–490, October 1991.

[8] J. Ernst, W. Evans, C. W. Fraser, S. Lucco, and
T. A. Proebsting. Code compression. In Proceed-
ings of the SIGPLAN ’97 Conference on Program-
ming Language Design and Implementation, pages
358–365, Las Vegas, NV, June 1997.

[9] C. W. Fraser, E. W. Myers, and A. L. Wendt. Ana-
lyzing and compressing assembly code. SIGPLAN
Notices, 19(6):117–121, June 1984.

[10] K. Kennedy. Global dead computation elimina-
tion. SETL Newsletter 111, Courant Institute of
Mathematical Sciences, New York University, Au-
gust 1973.

[11] D. Kirovski, J. Kin, and W. H. Mangione-Smith.
Procedure based program compression. In Proceed-
ings of the 30th Annual International Symposium
on Microarchitecture, pages 204–213, Research Tri-
angle Park, North Carolina, December 1–3, 1997.

[12] M. Kozuch and A. Wolfe. Compression of em-
bedded system programs. In Proceedings of the
IEEE International Conference on Computer De-
sign: VLSI in Computers and Processors, pages
270–277, 1994.

[13] C. Lefurgy, P. Bird, I-C. Chen, and T. Mudge. Im-
proving code density using compression techniques.
In Proceedings of the 30th Annual International
Symposium on Microarchitecture, pages 194–203,
December 1997.

[14] S. Liao, S. Devadas, and K Keutzer. Code density
optimizations for embedded DSP processors using
data compression techniques. In Proceedings of the
15th Conference on Advanced Research in VLSI,
March 1995.

[15] S. Liao, S. Devadas, K. Keutzer, S. Tjiang, and
A. Wang. Storage assignment to decrease code
size. ACM Transactions on Programming Lan-
guages and Systems, 18(3):235–253, May 1996.

[16] B. Marks. Compilation to compact code. IBM
Journal of Research and Development, 24(6):684–
691, November 1980.

[17] H. Massalin. Superoptimizer – A Look at the
Smallest Program. In Proceedings of the Second
International Conference on Architectural Support
for Programming Languages and Operating Sys-
tems, pages 122–126, Palo Alto, California, 1987.

[18] E. M. McCreight. A space-economical suffix tree
construction algorithm. Journal of the ACM,
23(2):262–272, April 1976.

[19] T. G. Szymanski. Assembling code for machines
with span-dependent instructions. Communica-
tions of the ACM, 21(4):300–308, April 1978.

[20] E. Ukkonen. On-line construction of suffix trees.
Algorithmica, 14:249–260, September 1995.

[21] M. Wegman and K. Zadeck. Constant propagation
with conditional branches. ACM Transactions on
Programming Languages and Systems, 13(2):181–
210, April 1991.

[22] P. Weiner. Linear pattern matching algorithms. In
Conference Record, IEEE 14th Annual Symposium
on Switching and Automata Theory, pages 1–11,
1973.

[23] A. Wolfe and A. Chanin. Executing compressed
programs on an embedded RISC architecture. In
Proceedings of the 25th Annual International Sym-
posium on Microarchitecture, pages 81–91, Port-
land, OR, December 1992.

[24] W. Wulf, R. Johnson, C. Weinstock, S. Hobbs, and
C. Geschke. The Design of an Optimizing Com-
piler. American Elsevier, New York, 1975.

