
Interprocedural Optimization:
Eliminating Unnecessary Recompilation

Keith D. Cooper
Ken Kennedy
Linda Torczon

Department of Computer Science†

Rice University
Houston, Texas

Abstract

While efficient new algorithms for interprocedural data flow analysis have made these techniques
practical for use in production compilation systems, a new problem has arisen: collecting and using
interprocedural information in a compiler introduces subtle dependences among the procedures of a
program. If the compiler depends on interprocedural information to optimize a given module, a
subsequent editing change toanothermodule in the program may change the interprocedural infor-
mation and necessitate recompilation. To avoid having to recompile every module in a program in
response to a single editing change to one module, we must develop techniques to more precisely
determine which compilations have actually been invalidated by a change to the program’s source.
This paper presents a generalrecompilation testto determine which procedures must be compiled
in response to a series of editing changes. Three different implementation strategies, which demon-
strate the fundamental tradeoff between the cost of analysis and the precision of the resulting test,
are also discussed.

1. Introduction

Traditional optimizing compilers have
advanced to the point where they do an excellent
job of optimizing code within a single procedure
or compilation unit. Substantially improving the
efficiency of code generated for a whole program
will require a compiler that looks across proce-
dure boundaries during the optimization process.
Conradi has estimated that aggressively pursuing
such interprocedural analysis and optimization
can achieve a twenty percent improvement in run-
time speed [Conr 83].

To achieve this goal, a compiler must have
information about the inherited naming environ-
ment in which a procedure will execute. It must

understand the side effects of procedure calls
made from within the procedure. It must be free
to perform optimizations that span procedure
boundaries, like inline substitution, procedure
cloning, and interprocedural constant folding
[CoKT 86]. In short, it must optimize the whole
program. Unfortunately, this ambitious style of
interprocedural optimization directly conflicts
with separate compilation.

As soon as the compiler uses information
about other procedures to make compile-time
decisions, the resulting object code becomes a
function of the state of the source code for the
entire program. Later changes to the source text
for one procedure can invalidate the correctness of
previous compilations ofother procedures. This
happens when an editing session changes the
interprocedural characteristics of a procedure and
the interprocedural analysis propagates the
changed information across the program’s call
graph. If the previous compilation relied on the
old information, some of the compile-time deci-
sions may be invalid in the context of the new
interprocedural information. To produce code that
is consistent with the new information will require

recompiling.

After a change to a program’s interprocedu-
ral information, we would like to recompile only
procedures with previous compilations that have
been invalidated by the change. The goal of
recompilation analysisis to find the compilation
dependences in a program, compare them with
changes in the program’s interprocedural informa-
tion, and produce a list of procedures requiring
recompilation. The naive approach to solving this
problem is to require recompilation of the entire
program in response to any change in its interpro-
cedural information. Because this results in
recomputing interprocedural information for the
whole program at each compilation, it leads to the
creation of executables that are both fully opti-
mized and fully consistent with the source code.
Although this approach is safe, it is impractical
for any production compiler, since it completely
discards the economies of separate compilation.

This paper presents a general approach to
recompilation analysis and three specific tech-
niques for implementing it. The general frame-
work is based on observing the nature of the inter-
procedural sets themselves and the manner in
which they can be used in an optimizer. The three
implementation techniques produce recompilation
tests of successively increasing precision, with a
concomitant increase in the expense of the test.
Any of these three techniques represents a signifi-
cant improvement over the naive approach.

This problem has not received much atten-
tion in the literature, primarily because few com-
pilers have actually computed and used interpro-
cedural information. For example, the PL/I Opti-
mizing Compiler trivializes the problem by limit-
ing its analysis to a single compilation unit
[Spil 71]. Other systems, like the ECS project at
IBM Research appear to recompile the entire pro-
gram in response to a single editing change
[AlCa 80]. Burke, Cooper, and Kennedy exam-
ined this problem briefly. Their collaboration pro-
duced an approach similar to the precise analysis
for global common subexpression elimination
described in Section 3.3.1. They recognized the
necessity of expanding the theAVAIL information
to track call sites that occur between the definition

†This research has been supported by the National Sci-
ence Foundation through grants MCS 81-21844 and MCS
83-03638 and by IBM Corporation.

of an expression and a later recomputation of it
[Burk 83].

Tw o systems are closely related to this
work. Feldman’smakesystem is an ancestor of
our system, since it pioneered the idea of auto-
matic reconstruction based on an analysis of the
internal dependences of a system [Feld 79]. How-
ev er, make requires that the dependences be
explicitly specified by the programmer, while our
method automatically determines them. The sys-
tem proposed by Tichy and Baker [TiBa 85] limits
the recompilation required after a change to an
include file by recording, for each module that
uses it, which definitions are actually referenced.
To determine which modules must be recompiled,
it compares the stored information against the list
of changed definitions. Although it is similar in
flavor to our approach, the Tichy-Baker method
cannot be used to limit recompilations that are
forced by changes to interprocedural data flow
information. Furthermore, the most advanced of
our methods employs a more sophisticated
approach to reasoning about what the compilation
of a module actually uses.

The recompilation system reported here has
been designed for implementation in the pro-
gramming environment. A fundamental goal of
the project is to experiment with interprocedural
analysis and optimization. The environment
assists in recompilation analysis in two ways: its
database stores information for the compiler
between compilations, and its source editor auto-
matically records the information about individual
procedures needed to make recompilation deci-
sions.

Although the environment is designed to
support Fortran, none of the techniques discussed
in this paper are Fortran specific. They work with
the data flow information produced by a compiler
and are applicable across a wide variety of lan-
guages. The interprocedural techniques devel-
oped as part of all assume a language with recur-
sion and all deal with block structured naming,
making them applicable to most Algol-like lan-
guages.

2. Interprocedural Information

Familiarity with the interprocedural data
flow information collected and used in the envi-
ronment is a prerequisite to understanding the
recompilation tests, so we begin with some back-
ground. Interprocedural information provides the

compiler with knowledge about the run-time con-
ditions under which a procedure will actually be
invoked and about the impact of executing other
procedures on the run-time values of variables in
the procedure being compiled. The environment
collects information on three distinct interproce-
dural phenomena: aliasing, side effects, and con-
stant propagation.

Whenever two names can refer to a single
storage location, they are potentialaliases.
Because an assignment actually modifies both the
name and all of its aliases, the compiler needs rea-
sonably precise information about potential

aliases.1 In the absence of such information, it
must assume that all formal parameters and global
variables are potentially aliased, in order to pre-
serve the relative ordering of loads and stores. In
practice, this eliminates opportunities for opti-
mizations involving those variables. For example,
the compiler cannot retain the values of global
variables or formal parameters in registers. To
provide the compiler with knowledge of aliasing
patterns, the environment annotates each proce-
dure p with a setALIAS(p) containing those pairs
of names that are aliased along some path leading
to p [Coop 85].

Side effect summary informationdescribes
the side effects of a procedure call on the values
of variables visible from the point of call. At a
call site, executing the body of the called proce-
dure can both reference and change the values of
variables visible in the calling procedure. Since
the compiler relies on derived knowledge about
the values of variables to determine the safety and
profitability of optimizations, it must understand
the impact of a procedure call on the values of
variables in the calling procedure. In the absence
of precise information, it must assume that the
call both modifies and uses every variable avail-
able to it. Because global analysis uses this infor-
mation to summarize the effects of the call, this
worst case assumption decreases the accuracy of
the global data flow information computed for the

1Strictly speaking, the Fortran standard permits the
compiler to ignore aliasing. The standard contains a restriction
that neither of the two aliases may be modified in a standard-
conforming program [ANSI 78]. Nevertheless, the compiler
attempts to trace aliases because information about potential
aliases can be useful as a diagnostic aid to the programmer and
because we want our system to achieve a higher level of pre-
dictability than the standard requires.

procedurea;
begin;

declare(x,y,z) fixed bin external;
...

local2 = 17;
α: call c(x, local2);

...
β: call b(local1, local2);

...
end;

procedureb(parm1, parm2);
begin;

declare(parm1, parm2) fixed bin;
...

γ: call c(parm1, parm2);
parm2 = parm1 * 3;
...

end;

procedurec(parm3, parm4);
begin;

declare(x,y,z) fixed bin external;
declare(parm3, parm4) fixed bin;
...

parm3 = parm4 * 2;
...

end;

Figure 1. Example program fragment.

calling procedure, inhibiting optimization. For
example, in available expression analysis, a proce-
dure call must be assumed to kill every expression
involving either a global variable or an actual
parameter. The programming environment pro-
vides the compiler with flow insensitive summary
information by annotating each call sitee in a pro-
gram with two sets,MOD(e) andUSE(e). The for-
mer contains all variables that can be modified as
the result of executinge, while the latter contains
all those variables whose values can be used as
the result of executinge. It computes this infor-
mation by solving abackwarddata flow analysis
problem on the program’s call graph [CoKe 84].

In large programs, information is often
passed between procedures in the form of con-
stant-valued actual parameters. This is

particularly common in numerical programs that
incorporate modules from standard libraries like
LINPACK [DBMS 79], and in programs where the
dimensions of major data structures are stored in
variables to simplify later modification. Interpro-
cedural constant propagation attempts to identify
formal parameters that always receive the same
constant value. Finding a precise solution to the
general constant propagation problem is undecid-
able [KaUl 77] and the usual approximate con-
stant propagation problem is intractable in an
interprocedural setting [Myer 81]. Therefore the
environment relies on algorithms that efficiently
compute approximations to the sets of constant
parameters. The programming environment com-
putes, for each procedurep in the program, a set
CONSTANTS(p) of constants known to hold on
entry to p. Elements ofCONSTANTS(p) are tuples
of the form <x,v>, wherex is the name of a for-
mal parameter or global variable andv is its
known constant value. A companion paper
describes a family of algorithms for solving this
problem [CCKT 86, Torc 85].

As an example, consider the program frag-
ment shown in Figure 1. Assuming that all of the
relevant statements are shown, the aliasing and
constants sets for its procedures would be:

procedure ALIAS CONSTANTS

a ∅ ∅
b ∅ { < parm2, 17> }
c { < x, parm3> } { < parm4, 17> }

The potential alias for procedurec arises when
call siteβ passes the global variablex as an actual
parameter. The constants come about from pass-
ing the constant valued variablelocal2 as an actual
at α and β; γ simply passes the value through to
procedurec. The summary sets for the program
fragment would be:

call site MOD USE

α { x } { local2 }
β { local1, local2 } { local1, local2 }
γ { parm1 } { parm2 }

The only statements that either modify or use the
value of a variable are the three assignments. The
MOD andUSE information arises from the assign-
ments in proceduresb andc, along with parameter
bindings at the various call sites.

3. The General Framework

All of our techniques for recompilation
analysis apply the same test to determine when a
procedure must be recompiled. The test compares
the actual interprocedural information against
annotation sets. These sets contain those inter-
procedural facts that can be true without invalidat-
ing the procedure’s previous compilation. The
three methods differ in the precision with which
they assign values to these annotation sets. We
attach the following sets to the program’s call

graph:2

(1) MayBeAlias(p), for each procedurep —
the set of alias pairs that are allowed with-
out forcing a recompilation. If a change
adds a pair toALIAS(p) that is not inMay-
BeAlias(p), recompilation is required.

(2) MayMod(e), for each graph call edgee —
the set of variables that may be modified
as a side effect of the call without forcing
a recompilation. If a change adds a vari-
able toMOD(e) that is not inMayMod(e),
recompilation is required.

(3) MayUse(e), for each call graph edgee —
the set of variables that may be used as a
side effect of the call without forcing a
recompilation. If a change adds a variable
to USE(e) that is not inMayUse(e), recom-
pilation is required.

(4) MustBeConstant(p), for each procedurep
— the set of constant pairs that must hold
on entry to procedurep if recompilation is
to be avoided. If there exists a pair <x,v>
in MustBeConstant(p) that is not inCON-

STANTS(p), recompilation is required.

Given these sets, the recompilation test can be
expressed quite simply. A procedurep must be
recompiled if any of the following are true:

(a) ALIAS(p) - MayBeAlias(p) ≠ ∅
(b) MOD(e) - MayMod(e) ≠ ∅, for any call site

e in p

(c) USE(e) - MayUse(e) ≠ ∅, for any call sitee
in p

2The call graph is actually a multi-graph, with an edge
for every call site. For the sake of consistency with the litera-
ture and readability, we refer to it as a graph.

(d) MustBeConstant(p) - CONSTANTS(p) ≠ ∅
Set subtraction is defined so thata ∈ (X-Y) if and
only if a is a member of X and not Y.

To construct a list of procedures needing
recompilation, the analyzer first initializes the list
to include every procedure where editing has pro-
duced a semantic change since its last compila-
tion. Next, it applies incremental techniques to
update the program’sALIAS, MOD, USE, andCON-

STANTS sets. Whenever this update changes the
value of one of these sets, the compiler applies the
appropriate test. If the test indicates that recompi-
lation is necessary, the corresponding procedure is
added to the recompilation list. Because the ana-
lyzer only tests sets that change during the incre-
mental update, the test requires a number of set
operations proportional to the size of the region of
changed data flow information.

As an example, consider the following
assignment of values to the annotation sets: for
each procedurep let

MayBeAlias(p) = ∅ and

MustBeConstant(p) = { < x,Ω>, for all x∈p },

where x ranges over the parameters and global
variables of p and Ω is a constant value that
appears nowhere in the program, and for each call
sitee let

MayMod(e) = ∅ and

MayUse(e) = ∅.

With these annotation sets, the compiler will
recompile every procedure where either the source
text or some associated interprocedural set has
changed. It will not recompile procedures for
which the information is unchanged because the
test is not applied at those procedures. Hence,
this test is a slight improvement over the naive test
which recompiled every procedure.

Consider the impact of deleting the assign-
ment statement from procedureb in the example
program. To determine which procedures must be
recompiled, the analyzer begins withb, the
changed procedure. After updating the interpro-
cedural information, it discovers that only two
sets have changed:MOD(β) = { local1} and USE(β)
= { local2}. Because sets associated with proce-
dure a have changed, it applies the test toa and
slates it for recompilation. Since none of the sets
associated withc have changed, the analyzer
ignoresc. Thus, it determines that onlya and b
must be recompiled.

The effectiveness of the testing procedure
depends entirely on the values assigned toMay-
BeAlias, MayMod, MayUse, andMustBeConstant.
To improve the precision of the test involves
expandingMayBeAlias, MayMod, andMayUseto
include more allowed facts, or shrinkingMustBe-
Constantto exclude more facts. The next three
subsections present different methods of comput-
ing values for these sets. The methods are pre-
sented in increasing order of complexity; each
successive method gives rise to a recompilation
analysis of improved precision.

3.1. Most Recent Compilation

Our first approach to computing the annota-
tion sets simply remembers the values ofALIAS,
MOD, USE andCONSTANTSused in the most recent
compilation of the procedure. In other words,
whenever we compile a procedurep, we set

(1) MayBeAlias(p) = ALIAS(p),

(2) MayMod(e) = MOD(e), for each call sitee
in p,

(3) MayUse(e) = USE(e), for each call sitee in
p, and

(4) MustBeConstant(p) = CONSTANTS(p).

This set of assignments reveals the principles
underlying the recompilation tests. The summary
and aliasing sets are calledflow insensitive
because they identify events whose occurrence
cannot be ruled outby the analysis. In other
word, in considering theALIAS, MOD, and USE

sets, the compiler can only depend on what isnot
in the sets. For example, if a variable is in the
MOD set for a given call site, the compiler must
assume that it may be modified, but if a variable is
absent from the same set, the compiler may safely
assume that the value of that variable will be
unchanged upon return from the call. If an opti-
mization is safe when a variable is present in one
of these sets, that optimization will still be safe if
the variable is removed because the compiler must
have already considered the possibility that the
associated event may not occur. Hence, changes
in flow insensitive information necessitate recom-
pilation only when they inv olveadditionsto those
sets. Although a deletion might create a new
opportunity for optimization, it cannot invalidate
the correctness of previous compilations. This
principle motivates tests (a), (b), and (c).

On the other hand, theCONSTANTS(p) set
approximates a flow sensitive set, so changes to it

must be handled differently. Flow sensitive sets
are used to assert that a fact holds along every
path leading to some point in the program. For
example, if a pair <x,v> is in CONSTANTS(p), the
compiler can rely onx having valuev on entry to
p and can replace references tox on paths where
x is unmodified with the constant valuev. If a
change in the program later causes <x,v> to be
removed fromCONSTANTS(p), such optimizations
are invalidated. Thus, recompilations due to
changes in flow sensitive sets are required only in
response todeletions. Additions can provide new
opportunities for optimization, but will not invali-
date previously applied transformations. This
provides the rationale for test (d).

Consider once again the impact of deleting
the assignment statement from procedureb in our
example, assuming that annotation sets have been
generated using information from the most recent
compilation. The analyzer repeats the steps
described earlier, placingb on the recompilation
list because of the editing change and applying the
test to procedurea because of changes toMOD(β)
and USE(β). The test indicates that procedurea
need not be recompiled, since both of the changes
are deletions from flow insensitive summary sets.
Thus, with these annotation sets, the same testing
procedure limits the recompilation list to proce-
dureb.

3.2. Reference Information

Although the direct use of information from
the most recent compilation yields a recompila-
tion test that is significantly better than the naive
approach, it fails to take advantage of the avail-
ability of the source text for the procedure under
consideration. In particular, it recompiles a proce-
dure whenever a variable is added to one of its
flow insensitive annotation sets, even if that vari-
able is not actually referenced anywhere in the
procedure. Determining which variables are actu-
ally referenced leads immediately to an improved
test. If the recompilation analysis is performed in
a programming environment, the editor can easily
produce such information.

To describe the annotation sets for this
improved test, we define three additional sets. For
a procedurep, REF(p) is the set of variables either
used or modified insidep. REF+(p) is defined to
be the set of all variables referenced inp or some
procedure invoked as a result of executingp.
Both REF(p) and REF+(p) can be computed

trivially from information produced in the sum-
mary computation. Finally, the setAliasREF(p)
describes pairs of variables, one of which is refer-
enced locally inp and the other referenced inp or
one of the procedures that can be executed as a
result of invokingp. This set is defined as

AliasREF(p) = { < x, y > | x ∈ REF(p) andy ∈ REF+(p)}

Given these sets, the annotation sets at compile
time can be computed as follows:

(1) MayBeAlias(p) = ALIAS(p) ∪ AliasREF(p),

(2) MayMod(e) = MOD(e) ∪ REF(p),

(3) MayUse(e) = USE(e) ∪ REF(p), and

(4) MustBeConstant(p) =

CONSTANTS(p) ∩ REF(p). 3

Computing the annotation sets from these defini-
tions eliminates spurious recompilations that arise
from information about irrelevant variables. In
practice, this is important because procedures
often contain declarations for global variables
they nev er reference. In Fortran, this happens
with COMMON statements; in other languages,
widespread use of include files achieves the same
result.

To see this more graphically, consider
adding the statement

x = parm4 * 17;

to procedure c in the ongoing example. This
changesMOD(γ) to { parm1, x} and MOD(β) to
{ local1, x}. Under the most recent compilation
test, this would have required recompilation of
both a and b. Using reference information, the
test determines thata requires recompilation, but
b does not, sinceb doesn’t referencex.

The equations are presented in this form to
convey the underlying ideas; an actual implemen-
tation should avoid instantiating sets like REF(p)
andAliasREF(p). A careful refactoring of the equa-
tions leads directly to a much more efficient
implementation.

3The intersection in definition (4) is not intended to be
taken literally; CONSTANTS(p) contains <name,value> pairs
while REF(p) contains only names. Our intent is to compute
the set of pairs inCONSTANTS(p) where the name is also a
member ofREF(p). This operation is ajoin over REF(p) in re-
lational algebra.

3.3. Compiler Cooperation

While the use of reference information
eliminates many spurious recompilations, some
can still occur because the compiler cannot use
ev ery interprocedural fact. Thus, a fact judged to
mandate recompilation by the reference test may
actually be irrelevant, simply because the com-
piler was unable to capitalize on it to justify an
optimization during the most recent compilation.
This section explores a technique for computing
exact annotation sets in which the compiler
records which interprocedural facts it depends
upon so that the recompilation analyzer can more
precisely determine whether a recompilation is
actually needed.

We begin by considering two sample opti-
mizations and the global data flow information
required to support them, in an attempt to discern
how to compute the contribution to annotation

sets for these optimizations.4 Throughout this dis-
cussion, a procedurep will be represented by its
data flow graph,G = (N,E,n

0
). The nodes of this

graph representbasic blocks, sequences of state-
ments with no control flow branches. The edges
e = (m,n) ∈ E representcontrol flowbetween two
basic blocks. Control enters the procedure
through its entry noden

0
.

3.3.1. Common Subexpression Elimination

When the compiler discovers two or more
instances of a single expression separated by code
that does not redefine any of the variables used in
the expression, it can save the result of the first
evaluation and replace the subsequent evaluations
with a simple reference to the saved value. To
locate opportunities for this optimization, known
as global common subexpression elimination, the
compiler must know which expressions areavail-
able at various points in the procedure. An
expression is available on entry to a basic blockb
if, along every path leading tob, the expression
has been evaluated since the most recent redefini-
tion of its constituent variables. To represent this
information, we associate a setAVAIL (b) with each
block b. AVAIL (b) contains all expressions avail-
able on entry tob. These sets can be derived by
solving a forward data flow analysis problem.

4The equations are taken from Kennedy’s survey paper
[Kenn 81].

The following system of equations describes the
problem:

AVAIL (b) =
a∈P(b)
∩ (DEF(a) ∪ (AVAIL (a) ∩ NKILL (a)))

whereP(b) is the set of predecessors ofb. DEF(a)
contains those expressions computed ina and not
subsequently redefined ina. NKILL (a) is the set of
expressionsnot redefined ina. This system of
data flow equations israpid in the sense of Kam
and Ullman [KaUl 76], so it can be solved effi-
ciently using iterative techniques.

Expressions remain available as long as
they are included inNKILL (b). For a blockb,
NKILL (b) excludes any expression containing a
variable killed locally inb. In the absence of
summary information about call sites inb, the
AVAIL analysis must assume that a procedure call
kills every variable it can access. Thus, ifb con-
tains a call site,NKILL (b) mustexcludeall expres-
sions containing actual parameters and global
variables that can be modified as a side effect of
the call. If summary information is available, this
exclusion can be reduced to the set of expressions
involving variables contained inMOD(e) for the
call sitee. USE(e) plays no role in theAVAIL com-
putation.

When a variablev ∈ MOD(e), no expression
containingv can be inNKILL (b) for the blockb
containing call sitee, becausev may be modified
by execution of the procedure call. Thus, if an
expressionα ∈ AVAIL (b) for some blockb, its con-
stituent variables cannot be in theMOD set of any
call site betweenα’s most recent evaluation andb,
on each path leading tob. If the compiler elimi-
nates a re-evaluation ofα, the correctness of that
decision relies on the values of theMOD sets for
the appropriate call sites. The procedure will
need to be recompiled if any of the variables used
in α are added to one of theseMOD sets.

To capture this information in the annota-
tion sets, the compiler must determine the set of
call sites,CALLS_BETWEEN(α,b), between the last
computation of an expressionα and the blockb
where the re-evaluation is replaced, along each
path leading tob. Giv en CALLS_BETWEEN(α,b),
MayMod(e) can be constructed as follows:

(1) MayMod(e) = ALLVARS, the set
of all actual parameters and
global variables, for each call
sitee in p.

(2) Whenever an evaluation of an
available expressionα is re-
placed in blockb, the compiler
removes all constituent vari-
ables ofα, from MayMod(e), for
each call site e in
CALLS_BETWEEN(α,b) and each
call sitee insideb occurring be-

fore the optimization.5

The resultingMayModsets precisely describe the
recompilation dependences introduced by apply-
ing this optimization.

Now we turn to the question of how to com-
puteCALLS_BETWEEN(α,b). This requires solving
an auxiliary data flow problem. Replace the ele-
ments of AVAIL (b), DEF(b), and NKILL (b) with
tuples of the form <name,calls> where name is
the literal name associated with the available
expression andcalls is defined as follows:

• For α ∈ DEF(b), α.calls is the set of call
sites inb after the last definition ofα.

• For α ∈ NKILL (b), α.calls is the set of all
call sites inb.

• For α ∈ AVAIL (b), α.calls is
CALLS_BETWEEN(α,b).

The necessarycalls sets can be accumulated dur-
ing theAVAIL computation by carefully redefining
the operators and local sets as follows.

X∩Y: To compute X∩Y, for each elementx from
X such that there exists ay∈Y with
x. name= y. name, add
<x. name, x. calls∪y. calls> to the result.

X∪Y: To compute X∪Y, partition all the elements
of X and Y into four sets:Xonly, containing
ev ery element whose name appears only in
X, Yonly, containing every element whose
name appears only in Y,Xboth, containing
ev ery element of X for which there is an
element of Y with the same name, and
Yboth, containing every element of Y for

5The optimizer has assumed these variables are not in
MOD(e) at each of these call sites.

which there is an element of X with the
same name. LetXY be computed by taking
Xboth∩Yboth using the procedure above.
Then the desired result is the natural union
of Xonly, YonlyandXY.

Using these definitions, for eachα ∈ AVAIL (b),
α.calls corresponds to the set
CALLS_BETWEEN(α,b). Even with the changes in
the operators and local sets in theAVAIL computa-
tion, calculation of the new AVAIL and
CALLS_BETWEEN(α,b) information is stillrapid in
the sense of Kam and Ullman [KaUl 76].

3.3.2. Eliminating Register Stores

If the compiler discovers a point where the
value of a local variable of a procedure exists in a
register and that value cannot be used later in the
procedure, it need not store the value back into
memory. To perform this optimization, called
eliminating unnecessary stores, the compiler must
recognize the last use of a variable in a procedure.

A variable islive at a point in a procedure if
there exists a control flow path from that point to
some use of the variable and that path contains no
assignments to the variable. Live analysis associ-
ates a setLIVE(b) with each blockb. LIVE(b) con-
tains all the variables that are live on entry tob.
LIVE sets can be computed by solving the follow-
ing backward data flow problem:

LIVE(b) = IN(b) ∪
a∈S(b)
∪ (THRU(b) ∩ LIVE(a))

In this equation,S(b) is the successor set ofb.
IN(b) is the set of variables used inb before being
redefined. Variables inIN(b) are live on entry to
b. THRU(b) is the set of variables not redefined in
b.

Without summary information about proce-
dure calls, the compiler must assume that a proce-
dure call uses any variables visible to it. This
assumption can extend the live ranges of vari-
ables, inhibiting the application of register store
elimination. InterproceduralUSE sets can reduce
the set of variables assumedLIVE because of a call
site. BecauseMOD(e) says nothing about the
ordering of uses and definitions,MOD information
is not pertinent to the computation ofLIVE infor-
mation.

Register store optimizations are invalidated
when the life of a variable is extended by addition
of a variable use after the current last use. Thus,
any call sites between the eliminated store and the

end of the procedure can potentially invalidate a
register store optimization. Adding a variable to
the USE set of such a call site would make the
eliminated store necessary for correct execution of
the program. Assume the existence of a set
CALLS_AFTER(b) for each blockb, containing the
set of call sites in the procedure containingb that
can be executed after execution ofb.

To construct a recompilation test that pre-
cisely characterizes the use of interprocedural
information in the register store optimization, we
must compute a largerMayUse(e) set. Given this
set,MayUse(e) can be computed as follows:

(1) MayUse(e) = ALLVARS, for all
call sitese;

(2) Whenever a store of a variablev
is eliminated, the optimizer re-
moves v from MayUse(e) for
each call site e in
CALLS_AFTER(b) and each call
site insideb occurring after the
optimization.

This results inMayUsesets that precisely capture
the recompilation dependences for this optimiza-
tion.

There is an important special case of step
(2) above for languages like Fortran or C that do
not have nested name scopes. The optimizer need
only remove a local variablev (e.g., not inCOM-

MON) from MayUse(e) if e passesv as an actual
parameter. This observation should decrease the
number of set operations required to construct
preciseMayUsesets.

To computeCALLS_AFTER(b), the following
system of data flow equations must be solved:

CALLS_AFTER(b) =
a∈S(b)
∪ (L_CALLS(a) ∪ CALLS_AFTER(a))

whereL_CALLS(a) is the set of call sites in basic
block a. CALLS_AFTER(b) is the set of call sites
that occur after basic blockb. This calculation is
rapid in the sense of Kam and Ullman [KaUl 76].

3.3.3. Generalization

Examination of the two sample optimiza-
tions leads to the following general algorithm for
constructing precise annotation sets. The com-
piler assigns the annotation sets values that would
nevermandate recompilation and then adjusts the
sets to reflect each transformation, as applied.

The sets get the following initial values:

(1) MayBeAlias(p) = ALLVARS×ALLVARS

(2) MayMod(e) = ALLVARS, for each call sitee
in p

(3) MayUse(e) = ALLVARS, for each call sitee
in p

(4) MustBeConstant(p) = ∅
Whenever an interprocedural fact is used to justify
the safety of an optimization, the appropriate set
is adjusted, subtracting fromMayBeAlias, May-
Mod, or MayUse, or adding toMustBeConstant.

The discussion of the two optimizations
should demonstrate the difficulties of determining,
for each call site, which assumptions can invali-
date an optimization. It depends upon the particu-
lar optimization and usually requires the solution
of an auxiliary data flow problem. Computing
precise annotation sets will likely increase the
compile times for individual modules. We hope
that effective interprocedural optimization will
mitigate the increased compile time, by making
individual procedures smaller and localizing
recompilation more precisely.

This section showed an approach for com-
puting exact recompilation information for
changes in flow insensitive summary sets. Deter-
mining which procedures need recompilation due
to changes inCONSTANTS sets is easier. Under-
standing how the compiler actually usesCON-

STANTS information is crucial. For a procedurep,
CONSTANTS(p) describes facts known to hold on
entry to a procedure. The compiler capitalizes on
this information by using it to initialize the global
constant propagation phase. Information from
CONSTANTS(p) then percolates into other opti-
mizations from folded constants. During global
constant folding, the compiler can easily construct
a preciseMustBeConstantset by adding a pair
<x,v> to MustBeConstantwhenever it foldsv into
a use ofx.

The interprocedural constant analysis can
also produce sets describing constant values
returned by procedures through global variables,
and call-by-reference formal parameters
[CCKT 86]. Producing exactMustBeConstant
sets for each call site under such a scheme is more
difficult. The optimizer must know which call
sites contributed returned values to each folded
constant. Obtaining this information requires
solving an auxiliary problem similar to that

required forAVAIL .

For aliasing information, it appears that
there is no reason to construct a precise test. This
is true, in large part, because of the manner in
which aliasing information is used. When two
variables are potential aliases, the compiler must
preserve the relative ordering of their loads and
stores. Doing this requires either that the com-
piler track, pairwise, all uses and definitions of
each alias pair, or that it simply treat potential
aliases extremely conservatively. Because of the
expense and complication involved in the former
approach, all compilers with which we are famil-
iar adopt the latter strategy. Thus, for aliasing, the
test based upon references is as good as we can do
in a reasonably efficient compiler.

4. Larger Compilation Units

The treatment presented in Section 3
implicitly assumes that each compilation unit con-
tains only one procedure. Many compilers allow
multiple procedures to be treated as an indivisible
compilation unit; in , we call such a unit amodule.
The presence of multiple procedures in a single
module slightly complicates the recompilation
analysis. When analyzing a module that contains
multiple procedures, the compiler must recognize
that the procedures are related. Once it marks a
single procedure for recompilation, it can ignore
all the other procedures in the module, since they
will be recompiled, too.

To maintain these relationships, the com-
piler must build a simple look-aside table that
maps a procedure into a module and a module
into a set of procedures. Using the table, the
recompilation analyzer then marks all of the pro-
cedures in a module for recompilation whenever
any of its constituent procedures needs recompila-
tion. This has the potential to decrease the total
amount of work required for the analysis. As a
module is marked for recompilation, it eliminates
multiple procedures from consideration, possibly
decreasing the total number of procedures ana-
lyzed.

It is important to recognize the difference
between this approach and a hierarchical approach
like that found in structural data flow algorithms.
This approach maintains separate data flow infor-
mation for each of the procedures, but accounts
for the textual relationships between them. Merg-
ing the nodes for the procedure would simplify
the graph, but would result in merging the

information used in the test and losing the path
sensitivity of the information. A fact allowed on
entry to one procedure might be disallowed on
entry to another; if the procedures are both repre-
sented by a single node and a single annotation
set, the test must indicate recompilation when the
fact is added to either path.

This technique for handling multiple proce-
dures in a single module leads to a natural mecha-
nism for handling the impact of interprocedural
optimizations on the recompilation analysis.
Optimizations like linkage tailoring or common
subexpression elimination across procedure
boundaries clearly introduce new compilation
dependences between the involved procedures.
The discussion of Section 3 completely ignores
them. Whenever the compiler applies an interpro-
cedural optimization, it can simply mark the
involved procedures to be treated as members of a
single module. This requires adding entries to the
two maps just described. Thus, a change to one
procedure results in recompiling both and recon-
sidering the optimization.

5. Improved Optimization

We hav e seen that changes in interprocedu-
ral information can invalidate the safety of opti-
mizations applied in previous compilation. For
flow sensitive summary and aliasing sets, adding
facts to a set associated with a procedure man-
dated recompiling it, while deleting facts did not.
Deletions do, however, open up new possibilities
for applying optimizations. Recall that optimiza-
tions based onMOD, USE, or ALIAS information
rely on the absence of a fact from the data flow set
rather than its presence. Similarly, adding a
<name, value> pair to a procedure’sCONSTANTSset
can open up opportunities for new optimizations
based on knowledge of the constant value.

The recompilation tests presented in Sec-
tion 3 detect when a procedure must be recom-
piled to ensure consistency with the program in
which it will execute. They do not address the
issue of detecting potential improvements,
although analogous tests can be constructed.
Unfortunately, the decision to recompile to obtain
improved optimization is not as straightforward as
the decision for correctness. The improved inter-
procedural environment may not lead to better
optimization for any number of reasons. Further,
the expense of recompiling must be weighed
against any improvement. A method of

estimating improvement based on specific inter-
procedural facts is needed, similar to that pro-
posed by Ball for constant information [Ball 79].

6. Summary and Conclusions

Compiling a program in the presence of
interprocedural information introduces depen-
dences between its procedures that complicate the
question of what to recompile when a change is
made in the program. In the absence of informa-
tion about these dependences, all procedures in
the program must be recompiled whenever a
change is made to any one of them. This paper
describes a general framework, based uponanno-
tation sets, for reducing the number of unneces-
sary recompilations required after a change.
Within this framework, several methods for com-
puting the annotation sets have been presented.
These methods differ in the amount of work
required and the precision of the resulting recom-
pilation analysis. The fundamental tradeoff to be
evaluated is module compilation time versus num-
ber of spurious recompilations.

These methods are being implemented as a
part of the programming environment project at
Rice University.

7. Acknowledgements

The original work on this problem was
inspired by a question posed by Michael Burke of
IBM Research, who actively participated in early
discussions of the problem. Frances Allen of
IBM also contributed to these discussions. The
implementation team has provided a marvelous
research vehicle for experimenting with new ideas
about interprocedural analysis and optimization.
To all of these people go our heartfelt thanks.

8. References

[AlCa 80] F.E. Allen et al. The experimental
compiling system.IBM Journal of
Research and Development, 24(6),
1980.

[ANSI 78] American National Standards Insti-
tute. American National Standard
Programming Language Fortran,
X3.9-1978.

[Ball 79] J.E. Ball. Predicting the effects of
optimization on a procedure body.
Proceedings of the SIGPLAN 79

Symposium on Compiler Construc-
tion, SIGPLAN Notices, 14(8).
1979.

[Burk 83] M. Burke. Private Communication.
November, 1983.

[CCKT 86] D. Callahan, K.D. Cooper, K.
Kennedy, and L. Torczon. Interpro-
cedural constant propagation.Pro-
ceedings of the SIGPLAN 86 Sym-
posium on Compiler Construction.
SIGPLAN Notices, 21. 1986.

[Coop 85] K.D. Cooper. Analyzing aliases of
reference formal parameters.Pro-
ceedings of the Twelfth POPL. Jan-
uary 1985.

[CoKe 84] K.D. Cooper and K. Kennedy. Effi-
cient computation of flow insensi-
tive interprocedural summary infor-
mation. Proceedings of the SIG-
PLAN 84 Symposium on Compiler
Construction. SIGPLAN Notices,
19(6). 1984.

[CoKT 86] K.D. Cooper, K. Kennedy and L.
Torczon. Optimization of compiled
code in the programming environ-
ment. Proceedings of the Nine-
teenth Annual Hawaii International
Conference on Systems Sciences,
1986.

[Conr 83] R. Conradi. Inter-procedural opti-
mization of object code. TR 25/83,
Division of Computer Science, Uni-
versity of Trondheim, Trondheim-
NTH, Norway. 1983.

[DBMS 79] J.J. Dongarra, J.R. Bunch, C.B.
Moler, and G.W. Stewart.LINPACK
Users’ Guide. SIAM, Philadelphia.
1979.

[Feld 79] S. Feldman. Make - a computer
program for maintaining computer
programs. Software Practice and
Experience 9, 1979.

[KaUl 76] J. Kam and J.D. Ullman. Global
data flow analysis and iterative algo-
rithms. Journal of the ACM, 23(1).
January 1976.

[KaUl 77] J. Kam and J.D. Ullman. Monotone
data flow analysis frameworks.Acta
Informatica, 7. 1977.

[Kenn 81] K. Kennedy. A survey of data flow
analysis techniques. InProgram
Flow Analysis: Theory and Applica-
tions, New Jersey: Prentice-Hall.
1981.

[Myer 81] E.W. Myers. A precise inter-
procedural data flow algorithm.
Proceedings of the Eighth POPL.
January 1981.

[Spil 71] T.C. Spillman. Exposing side-effects
in a PL/I optimizing compiler.
IFIPS Proceedings, 1971.

[TiBa 85] Tichy W. F. and M. C. Baker,
‘‘Smart Recompilation’’, Proceed-
ings of the Twelfth POPL, 1985.

[Torc 85] L. Torczon. Compilation depen-
dences in an ambitious optimizing
compiler. Ph.D. Dissertation,
Department of Computer Science,
Rice University, Houston, TX. May
1985.

