
Interprocedural Constant Propagation

David Callahan
Keith D. Cooper

Ken Kennedy
Linda Torczon

Department of Computer Science†

Rice University
Houston, Texas

Abstract

In a compiling system that attempts to improve code for a whole program by optimizing across pro-
cedures, the compiler can generate better code for a specific procedure if it knows which variables
will have constant values, and what those values will be, when the procedure is invoked. This
paper presents a general algorithm for determining for each procedure in a given program the set of
inputs that will have known constant values at run time. The precision of the answers provided by
this method are dependent on the precision of the local analysis of individual procedures in the pro-
gram. Since the algorithm is intended for use in a sophisticated software development environment
in which local analysis would be provided by the source editor, the quality of the answers will
depend on the amount of work the editor performs. Several reasonable strategies for local analysis
with different levels of complexity and precision are suggested and the results of a prototype imple-
mentation in a vectorizing Fortran compiler are presented.

1. Introduction

Fortran programmers have learned to expect
optimizing compilers that generate excellent code
for a single procedure. Twenty-five years of
development has led to a well-understood collec-
tion of principles for building optimizing compil-
ers and almost every commercially available com-
puter system now offers one. One problem
remains, however. The quality of the code pro-
duced by a good Fortran compiler declines con-
siderably in the presence of calls to independently
compiled procedures. The main reason for this is
that the compiler must make worst case assump-
tions about what happens on the side of the inter-
face that it cannot see. For example, when com-
piling the called procedure, the standard linkage
convention requires that all the registers be saved
and restored, even though many of them may not
be in use at the point of call.

Interprocedural data flow analysisattempts
to overcome this problem by propagating infor-
mation about data usage and creation among the
procedures that form a single program, so that the
compiler can take advantage of contextual infor-
mation to generate better code for any single pro-
cedure. An important interprocedural data flow
analysis problem is the determination of which

parameters1 to a given procedure will be constant
at run time. Based on this information, a compiler
could perform a number of useful optimizations
that are unavailable to it in current compilation
schemes. For example, many subroutines in the
LINPACK library [DBMS 79] have a parameter to
indicate the stride of indexing for some array. In
the typical program constructed fromLINPACK,
this stride is passed the integer constant ‘‘1’’. In
the absence of better information, the compiler
must assume that the parameter could take on any
value, precluding the application of many

† This research has been supported by the National Sci-
ence Foundation through grants MCS 81-21844 and MCS
83-03638 and by IBM Corporation.

1 Here we extend the termparameterto cover global or
imported variables.



optimizations. In particular, the value ‘‘0’’ would
preclude vectorization of array operations within
the procedure and a non-constant value would
preclude loop unrolling, both of which have
proven effective in improving performance of pro-
grams constructed fromLINPACK [Dong 80].

Constant propagation is a code
improvement technique in which the compiler
reasons about the values that variables may
assume at run time. If the compiler is able to
establish that a variable will always have a known
constant value at a particular use point it may
replace an occurrence of that variable by an occur-
rence of the constant itself. Whenever all the
inputs to an operation are replaced by known con-
stant values, the operation may be performed at
compile time and the constant result further prop-
agated to other uses. When performed in a sys-
tematic way, constant propagation can lead to the
evaluation at compile time of many operations
that might be repeatedly performed at run time.
This can significantly improve the performance of
the compiled program.

Techniques for constant propagation within
a single procedure have been widely discussed in
the literature [Kild 73, Kenn 78, Kenn 81,
WeZa 85]. However, these techniques have not
been extended to propagate constants across pro-

cedure calls2 for reasons of practicality. In order
to compute which variables are constant at every
invocation of a given procedure, the system must
have knowledge of the behavior of every proce-
dure in the program. In a traditional separate
compilation system, the compiler doesn’t even
know which procedures the program includes
until the link editing step immediately prior to
execution. Even if the compiler had this knowl-
edge, without a database similar to those found in
a programming environment, it would need to
examine every procedure in the program in order
to compile just one of them. This appears to be
prohibitively expensive.

2 A notable exception is the paper by Wegman and
Zadeck [WeZa 85], which describes a single-procedure algo-
rithm that can be used to evaluate the effectiveness of inline
expansion of a called procedure. The technique propagates the
known constants at a single call site into the called procedure
to determine the size of the code that would result after inline
expansion and useless code elimination. This approach does
not extend naturally to handle procedures that are not expand-
ed inline and may be called from more than one site.

In an attempt to address these problems, the
project at Rice University has been developing a
programming environment for Fortran that sup-
ports the development, compilation and optimiza-
tion of whole programs [HoKe 85, CoKT 85,
CoKT 86]. A central goal of this project is to
experiment with the systematic development of
interprocedural data flow information. In , the
source editorprovides local information about the
behavior of individual subroutines and aprogram
composition editor records which subroutines
comprise the program. Once local information is
available and the program composition is known,
the computation of interprocedural data flow
information is the responsibility of theprogram
compiler. Most of the required interprocedural
information is developed by solving data flow
analysis problems on the program’s call graph.
Since the call graph of a program is likely to be
large, it is important for the program compiler to
employ efficient algorithms for solving these data
flow problems. Previously, Cooper and Kennedy
have reported nearly-linear algorithms for the
determination of side effects [CoKe 84] and
potential aliases [Coop 85].

In this paper, we present a scheme for effi-
ciently determining which variables have known
constant values on invocation of the various pro-
cedures in a given program. Of necessity, our
method is approximate. Kam and Ullman have
shown that a precise solution to the simpler prob-
lem of intraprocedural constant propagation is not
computable [KaUl 77]. Even the approximate
problem commonly solved by compilers within a
single procedure is intractable in an interprocedu-
ral setting because it has the property offlow sen-
sitivity [Myer 81]. Therefore, we present a collec-
tion of methods that all use the same algorithm for
propagating constants across the call graph but
differ in the precision of the information used to
model the behavior of individual procedures. This
collection of algorithms clearly exhibits the trade-
off between complexity of local analysis by the
source editor and the precision of the approximate
sets of constants — more effort by the editor leads
to finding a larger set of variables with known
constant values.

The discussion begins in Section 2 with a
presentation of a very precise method based on
inline substitution and a discussion of the draw-
backs of this approach. The algorithm we pro-
pose to use in the environment is presented in



Section 3. It is based on an efficient algorithm for
constant propagation in a single procedure due to
Reif and Lewis [ReLe 82] as adapted by Wegman
and Zadeck [WeZa 85]. Our algorithm models the
body of a procedure with functions that describe
the values of variables at a call site in terms of the
values of variables on entry to the procedure con-
taining the call. Section 4 describes several meth-
ods for defining these functions and contrasts the
completeness of the resulting constant sets. Sec-
tion 5 describes our experience with an actual
implementation of interprocedural constant propa-
gation in a Fortran vectorizer. Finally, conclu-
sions and future research are discussed in Section
6.

2. Inline Substitution

Perhaps the most obvious way to solve the
problem is to convert the program into one large
procedure using systematic inline substitution and
employ an efficient single-procedure method such
as the Reif-Lewis algorithm [ReLe 82] or the
We gman-Zadeck algorithm [WeZa 85]. Recursive
procedures can be handled in this scheme by
introducing an explicit stack, combined with
unrolling. This approach is very effective at prop-
agating constants because, in effect, each call site
has its own private copy of the called procedure.
Hence, constant propagation is not inhibited by
having to merge constant sets from several call
sites to produce information for a procedure that
is invoked from more than one location. Further-
more, inline substitution makes parameter aliasing
explicit in the program, permitting the analysis to
be even more precise. When applied to the exam-
ple in Figure 1, the method based on inline substi-
tution will yield the program in Figure 2.

In spite of its effectiveness, we reject this
technique for practical use on several grounds.
First, the growth in the program’s code size after
substitution is potentially exponential [Sche 77].
Since the performance of the best algorithms for
single-procedure constant propagation is roughly
linear in the size of the procedure, the overall cost
of constant propagation is potentially exponential
in the size of the unexpanded program. Second,
systematic use of inline expansion makes the pro-
gram difficult to maintain. After each change to a
single procedure, the system must either re-
expand the program or attempt to recreate the
change in the expanded, optimized program, a
process that is likely to be very expensive.

proceduremain;

α: call joe(10,100,1000);

end;

procedure joe(i, j, k);

l = 2 * k;
if (j=100)then m = 10*j elsem = i;

β: call ralph(l, m, k);
o = m * 2;
q = 2;

γ: call ralph(o, q, k);
write q, m, o, l;

end;

procedure ralph(a, b, c);

b = a * c/2000;

end;

Figure 1. An example problem

proceduremain;

write 1000, 1000, 2000, 2000;

end;

Figure 2. After inline substitution.

Therefore, we seek a method that performs con-
stant propagation on the whole program while
keeping the individual procedures separate. Fur-
thermore, that method should have an efficiency
that is proportional to the aggregate size of all the
code in the program. In return for achieving these
goals, we are willing to sacrifice some constant
propagation effectiveness.

In spite of its drawbacks, inline substitution
deserves study because it provides us with a stan-
dard by which to measure the effectiveness of
other techniques. Furthermore, it can be
extremely valuable as an optimization technique if
used in a controlled way [Ball 79]. In fact, inter-
procedural constant propagation can provide the
information required to efficiently determine
when inline substitution can be profitably



employed [Coop 83, WeZa 85]. In the next sec-
tion we present the general strategy used in the
programming environment to propagate constants
across procedure boundaries without using inline
expansion.

3. General Approach

The goal of interprocedural constant propa-
gation is to annotate each procedure in the pro-
gram with a setCONSTANTS(p) of <name,value>
pairs. A pair <x,v> ∈ CONSTANTS(p) indicates that
variable x has valuev at every call site that
invokes p. This set approximates reality; every
pair in CONSTANTS(p) denotes a run-time con-
stant, but not all run-time constants can be found.

For the purpose of computingCONSTANTS(p)
we formulate the problem in a lattice theoretic
framework. With each entry pointp we associate
a functionVal that maps formal parameters to ele-
ments of the usualconstant propagation latticeL.
Each element ofL is one of three types:

• a latticetopelement ,

• a latticebottomelement , or

• a constant valuec.

The structure of this lattice is defined by the fol-
lowing list of rules for the latticemeetoperation //\:

1) // \ a = a for any lattice elementa

2) // \ a = for any lattice elementa

3) c // \ c = c for any constantc

4) c1 // \ c2 = if c1 ≠ c2

Figure 3 depicts the constant propagation lattice
graphically. While it is an infinite lattice, it has
bounded depth. In particular, if a variable is mod-
ified by assigning it a new value computed by tak-
ing the meet of its old value and some other lattice
element, its value can be reduced at most twice.

For any formal parameterx, let Val(x) rep-
resent the best current approximation to the value
of x on entry to the procedure. After the analysis
is complete, ifVal(x) = , the parameter is known to
be non-constant; ifVal(x) = c, the parameter has
the constant valuec. The value is used as an ini-
tial approximation for all parameters; a parameter
retains that value only if the procedure containing
it is never called. Once we have computedVal(x)
for every parameterx of procedure p, CON-

STANTS(p) is simply the set of parameters for
whichVal is equal to some constant value.

To compute theVal sets, we associate with
each call sites in a given procedurep a jump

function3 Js that gives the value of each parameter
at s as a function of the formal parameters of the

procedurep4. Js is actually a vector of functions,
one for each formal parameter of the procedure
invoked at the call site. For each formal parame-
ter y of the procedure called ats, the component
function Jy

s computes the best approximation
within the latticeL to the value passed toy at call
site s, giv en the values passed to formal parame-
ters of p. The support of the functionJy

s is the
exact set of formal parameters ofp that are used
in the computation ofJy

s .

Given these definitions, the interprocedural
constant propagation problem can be solved using
an analogue of the Wegman-Zadeck method for
constant propagation in a single procedure
[WeZa 85]. The interprocedural algorithm, shown
in Figure 4, assumes that each parameter used in
the program has a unique name, so the procedure
to which it is a parameter can be uniquely deter-
mined from the parameter name. The algorithm
uses a worklist of parameters to be processed. It
is guaranteed to converge because the lattice is of
finite depth and a parameter is only added to the
worklist when its value has been reduced. Since
the value of any parameter can be reduced at most
twice, each procedure parameter can appear on
the worklist at most two times.

If cost(Jx
s) is the cost of evaluatingJx

s, the
total amount of work done by the computation is
proportional to

s
Σ

x
Σ cost(Jx

s) ⋅ support(Jx
s)

wheres ranges over all call sites in the program
and x ranges over all formal parameters that are
bound by the call ats. This bound is based on the
observation thatJx

s is evaluated each time some
parameter in support(Jx

s) is reduced in value.
Because of the structure of the lattice, a parameter
can be reduced in value at most twice. If the cost
of evaluating eachJx

s is bounded by a constant,
implying that the size of the support is also

3 The term jump functionoriginated with John Cocke
and is used here for historical reasons.

4 For the purposes of this discussion, ignore the issue of
global variables used as parameters. These can be treated as
an extended set of parameters.



... ci−1 ci ci+1 ...

Figure 3. The constant propagation lattice.

procedurePropagateConstant;

var worklist : set;

begin
{ Initialize }
for eachprocedurep in the programdo

for eachparameterx to p do
Val(x) := ;

for eachcall sites in the programdo
for each formal parametery

that receives a value ats do
Val(y) := Val(y)//\Jy

s ;

worklist := ∅;

for eachprocedurep in the programdo
for eachparameterx to p do

worklist := worklist ∪ { x};

{ Iterate }
while worklist ≠ ∅ do begin

let y be an arbitrary parameter inworklist;
worklist := worklist - { y};
let p be the procedure containingy;

{ Update worklist }
for eachcall sites ∈ p and parameterz

such thaty ∈ support(Jz
s) do begin

oldVal := Val(z);
Val(z) := Val(z)//\Jz

s;
if Val(z) < oldVal then

worklist := worklist ∪ { z};
end

end
end

Figure 4. General algorithm

bounded by a constant, the cost is proportional to
the sum over each edge in the call graph of the
number of parameters passed along that edge.

The tricky part of this method is the con-
struction of the jump functionsJs. The next sec-
tion describes three methods for implementing
them.

4. Jump Functions

In developing algorithms for the construc-
tion of jump functions, we should keep the fol-
lowing principles in mind.



• For any parameterx at a call sites that can
be determined to be constant by inspection
of the source of the procedure containings,
set Jx

s = c where c is the known constant
value. This implies thatsupport(Jx

s) = ∅.

• For any parameterx at call sites that cannot
be determined as a function of input param-
eters to the procedure containings, setJx

s to
be . For example,x might be passed a
value that is read in from an external
medium. Again, this implies that
support(Jx

s) = ∅.

• For any parameterx at call sites that is
determinable at compile time but not a con-
stant,Jx

s is a function of parameters to the
calling procedure and local constants of the
calling procedure. In this case,support(Jx

s)
is non-empty.

Taken together, these principles gives rise to a
range of strategies for constant propagation. The
boundary between these three classes of values
depends on the sophistication of the techniques
used in the source editor to determine jump func-
tions. If the complexity of computing a particular
jump function exceeds the capabilities of the

proceduremain;

α: call joe(10,100,1000);

end;

procedure joe(i, j, k);

l = 2000;
m = 1000;

β: call ralph(l, m, k);
o = m * 2;
q = 2;

γ: call ralph(o, q, k);
write q, m, o, l;

end;

procedure ralph(a, b, c);

b = a * c/2000;

end;

Figure 5. After all-or-nothing analysis.

editor, it can simply give up and assignJx
s = . Tor-

czon discusses three strategies of different com-
plexity for developing jump functions [Torc 85]
— one that only finds jump functions that are con-
stant or bottom, one that also discovers jump
functions that pass a parameter through to a call
site without change, and a third that employs a
sophisticated symbolic interpretation algorithm
such as the one proposed by Reif and Lewis
[ReLe 82]. We describe each of these in the fol-
lowing sections.

4.1. All or Nothing

A particularly easy to implement technique
would have the source editor employ a single-
procedure constant propagation technique, such as
the Wegman-Zadeck algorithm to determine
which variables are constant at each call site,
under the assumption that none of the parameters
to the routine containing the call site are constant.
Then each jump functionJx

s is set to a constant
value if the analysis determines thatx must be
constant ats and to otherwise. This approach
would find constants that can be propagated over a
single call. It would miss all constants that must
be propagated completely through an intermediate
procedure.

In the example of Figure 1,this method
would discover thati, j and k are constant on
entry to joe and thatb is constant at call siteγ
although not at call siteβ. Because procedurejoe
is analyzed to produceJk

β before the interprocedu-
ral propagation takes place, it cannot discover that
k is constant at call siteβ, even though it is
directly passed from the entry toβ. The overall
effect of the propagated information after opti-
mization is shown in Figure 5.

4.2. Pass Through

One way to enhance the all-or-nothing tech-
nique is to recognize those situations where a
variable is directly passed through a procedure to
a call site. This case arises in our example
becausek is passed byjoe to call siteβ. In other
words, we would determine that

Jc
β = k.

This is an easy extension to implement because
the determination can be based onDEF-USEchains
[AhUl 77, Kenn 78], which are required by the
single-procedure constant propagation methods.
If we trace back from a call sites to all definition



points for variabley, passed tox at s, and find that
the only such point is the procedure entry, we may
safely setJx

s = y.

This enhancement is only slightly more dif-
ficult to implement than the all-or-nothing
method, yet it finds constants that are passed
through several procedures, a common practice in
code based upon libraries likeLINPACK. In our
example, this method would discover thatk was
constant at call siteβ but would setk to at call
site γ because the single-procedure analysis must
assume thatralph could changek as a side effect
at call site β. We will discuss this problem
shortly.

4.3. Symbolic Interpretation

Suppose we take a much more aggressive
approach and build jump functions by symbolic
interpretation. A simple way to view the con-
struction of a symbolicJx

s is as follows.

1) Make a fresh copy of the procedure contain-
ing s.

2) Replace all input statements by an assign-
ment of to each of the variables read.

3) Replace each call site other thans by an
assignment of to each of the actual parame-
ters.

4) Eliminate all statements that cannot affect
the value of the actual parameter passed to
x at s using a traditional dead code elimina-
tor based onDEF-USEchains such as the one
described by Kennedy [Kenn 81].

In practice, we would use a much more efficient
technique for constructing these jump functions,
such an an adaptation of the Reif and Lewis sym-
bolic interpretation algorithm [ReLe 82].

Using this technique on the example in Fig-
ure 1, we would get the following jump functions.

Ja
β = 2 * k

Jb
β = if j = 100 then 1000elsei fi

Jc
β = k

Ja
γ =

Jb
γ = 2

Jc
γ =

When the algorithm is applied with these jump
function, it will discover thata is passed the con-
stant 2000 andc is passed the constant 1000 at

call site β . Unfortunately, the information atγ is
not as good. BothJa

γ andJc
γ are unknown because

of the possible side effects at call siteβ . The
problem is that we know nothing about the com-
putations performed byralph. The next section
discusses the possibility of using information
from the solution of other interprocedural data
flow problems to sharpen our analysis.

4.4. Side Effect Information

A particularly interesting aspect of the com-
putation of jump functions is their dependence on
the solution of other interprocedural data flow
problems. Suppose the procedurep contains a
call to another procedureq on every path through
p to call site s. How does this affect the jump
function for s? In the absence of better informa-
tion, we must assume that every formal parameter
to q and every global variable is changed upon
return from q. Hence, any jump function that
depends upon one of those variables must be set
to .

However, we can use the results of interpro-
cedural side effect analysis to obtain better infor-
mation. Suppose we can formulate jump func-
tions to conditionally depend on whether certain
variables may be modified by some procedure
invocation. For example, suppose the value
passed to a parameter at call sites depends on
whether or not another variable is modified at call
site t.

Jx
s = if a∈MOD(t) then elsea + b fi

where MOD(t) is the set of variables that may be
modified as a side effect of invoking the proce-
dure called att. In the environment, the program
compiler develops a complete collection ofMOD

sets for the program based on information gath-
ered by the source editor and the program compo-
sition editor [CoKe 84, CoKT 85, CoKT 86].
This information could be very useful for inter-
procedural constant propagation. In our example,
the jump functions fora andb at γ become:

Ja
γ = if m∈MOD(β ) then

else if j = 100 then 2000else2 * i fi

Jc
γ = if k∈MOD(β ) then elsek fi

This would lead to the discovery thatc was con-
stant atγ and hencec = 1000on entry toralph. In
Figure 6, we show the code resulting from these
improvements. The assignment inralph has been
simplified and, since we know that parametersa



proceduremain;

α: call joe(10,100,1000);

end;

procedure joe(i, j, k);

m = 1000;
β: call ralph(2000, m,1000);

o = m * 2;
q = 2;

γ: call ralph(o, q,1000);
write q, m, o,2000;

end;

procedure ralph(a, b, c);

b = a/2;

end;

Figure 6. Using symbolic jump functions.

andc to ralph are not modified, it is safe to propa-
gate constant values into the corresponding actual
parameter positions at call sitesβ and γ . Notice
also that we can eliminate all references tol in joe
by propagating its constant value into the write
statement.

It is important to note that theMOD sets for
the context program are likely to change between
the time the source editor creates the jump func-
tion and the time the constant propagation prob-
lem is solved. Care must be taken to ensure that
the constant propagation phase uses the current
value of MOD rather than the old value. If the
compiling system performs side effect analysis
before constant propagation, up-to-date informa-
tion about side effects will be available when the
jump functions are evaluated. Without the ability
to build jump functions that are conditional on
MOD information in this way, the editor would be
forced to makeJa

γ = Jc
γ = .

4.5. Returned Constants

The inability of the constant propagation
algorithm to determine the value of the parameter
returned by ralph through formal parameterb
illustrates a further problem. This situation could
be improved by creating the analogue of jump
functions for values returned by a procedure call.

Let Rx
p be a function, defined over the same lattice

as the jump functions, that provides a value for
the output parameterx of procedurep in terms of
the input parameters top. We shall call this a
return jump function. A method based on sym-
bolic interpretation would discover that

Rb
ralph = a * c/2000.

If we then permittedJa
γ for example 1 to be rede-

fined as

Ja
γ = if m∈MOD(β ) then Rb

ralph(Ja
β , Jb

β , Jc
β ) * 2

else if j = 100 then 2000else2 * i fi

the technique would discover thata is passed the
constant value 2000 atγ as well asβ . Hence
a = 2000 on entry to ralph and it always sets
b = 1000 on exit. Figure 7 depicts the example
program after each individual routine has been
optimized in the light of interprocedural constants
and return jump functions. Since the values of
q, m, o and l have been substituted in the write
statement, all other statements injoe can be elimi-
nated. This result is pleasingly close to the one
for inline substitution.

It may occur to the reader that return jump
functions might be defined in terms of other return
jump functions. There is no reason that this
should not permitted as long as the system is care-
ful to insure against infinite invocation loops. In
the implementation discussed in the next section,
we permit an arbitrary use of return jump func-
tions, relying on the acyclic call graph to limit the

proceduremain;

α: call joe(10,100,1000);

end;

procedure joe(i, j, k);

write 1000, 1000, 2000, 2000;

end;

procedure ralph(a, b, c);

b = 1000;

end;

Figure 7. Using return jump functions.



number of invocations.

Clearly the return jump functions can also
be very useful in optimizing code for a single
module. They provide a clean representation of
the effect of executing a procedure in the presence
of values specific to the call site. Because of this,
they can be used to provide some of the benefits
of inline expansion. We plan to evaluate their
usefulness in the optimizing module compiler for
the
environment.

5. Implementation

We hav e implemented essentially the full
symbolic constant propagation system using both
side effect and returned constant information in
the Rice vectorizing compiler system, called PFC
[AlKe 84]. In this section we describe some of
the details of that implementation.

PFC is a monolithic system which accepts
all the modules of a program and analyzes them in
two passes. The first pass builds the call graph
and records the local information needed to sup-
port side effect analysis, alias analysis and con-
stant propagation. The next pass computes inter-
procedural information by solving data flow prob-
lems on the program’s call graph. Finally, each
procedure is individually vectorized using the
computed interprocedural information.

In propagating constants, the jump func-
tions are represented by expression trees, in which
interior nodes are labeled with arithmetic opera-
tors and leaves are labeled with constants and
variables. The variables are either scalar formal
parameters or scalarCOMMON variables. These
expressions are initially built after parsing but
before interprocedural side effect analysis infor-
mation or aliasing information is available.

The expressions also contain two types of
‘‘dummy’’ operator nodes. The first type repre-
sents a point where the ‘‘value’’ computed by the
subtree of the dummy node was passed to a sub-
routine call. It consists of the index of an edge in
the call graph representing that call site and an
integer indicating which parameter position it
held. The presence of such an operator indicates
that the interproceduralMOD information must be
interrogated to determine whether that value is
modified as a side effect of the call.

The second type of dummy operator indi-
cates that a parameter orCOMMON variable was
used in constructing the expression tree. Expres-
sions containing this operator can be ‘‘invali-
dated’’ (or made nonconstant) if later passes
reveal that the variable is aliased. Even though
the jump functions are constructed as a part of a
monolithic process that examines the whole pro-
gram at once, it is useful to arrange the evaluation
of the jump function to interrogate the interproce-
duralMOD and alias information because it avoids
an extra pass over the source of the individual
modules. If this were not done, PFC would need
to reread the source after computingMOD and
alias information to construct the jump functions.
Hence, the method designed for use in a program-
ming environment is also suitable for a more tra-
ditional compiling framework.

In addition to jump functions that map from
constants available upon procedure entry to values
available at call sites, return jump functions are
also constructed. In addition to the advantages
already stated, this permits a natural treatment of
BLOCK DAT A subroutines in Fortran. If special
dummy calls to theBLOCK DAT A routines are
inserted at the beginning of each procedure that
uses theCOMMON blocks they initialize, return
jump functions provide a rich source of constants
to be propagated throughout the program. Since
BLOCK DAT A subroutines are the only way to ini-
tialize common blocks in Fortran, this is a particu-
larly useful technique for that language.

Once MOD information is available, all of
the expression trees are traversed and if the first
type of dummy node is encountered, then the call
site and parameter position are checked to see if
the actual parameter could be modified by the call
site. If so, that subtree is replaced by the output
expression of the routine with the variables in the
output expression replaced with appropriate input
values at the call site. A side benefit of this
approach is that if a subroutine initializes some
constants, those constant values will be detected
and propagated to other routines.

In this implementation, strongly-connected
regions in the call graph are identified to support
the algorithm for computing interprocedural side
effects. For most Fortran 77 programs, the call
graph will be acyclic, permitting the procedures to
be processed in reverse topological order, some-
times calledre verse invocation order[Alle 74], to
derive a solution to the side effect problem in



linear time. The use of reverse invocation order
also benefits constant propagation because jump
functions need not be checked any further when a
dummy node is replaced with the output expres-
sion corresponding to a procedure invocation.
Parameters modified inside a recursive region are
assumed to be variant. Any variable involved in
an alias with a variable which is modified is
assumed to be nonconstant.

Once the effects of aliasing and the side
effects of external procedure calls have been
incorporated into the expression trees representing
the jump functions, the actual propagation is
straightforward. The strongly connected regions
are visited in topological order and each proce-
dure in each region is processed. If every incom-
ing edge assigns a variable the same constant
value, then that variable is deemed constant with
that value at procedure invocation. Otherwise the
variable is assigned the special value . Finally,
each edge in the procedure is visited and the
expression trees evaluated to yield values for the
associated parameters.

This implementation differs from the gen-
eral algorithm of Section 3 in that it will not iden-
tify constants that are passed into a recursive
region then passed around a set of recursive calls.
This is because the implementation was under-
taken before we discovered the ‘‘optimistic’’ algo-
rithm of Figure 4. A straightforward revision of
the implementation to use the optimistic algorithm
is underway. In any case, this deficiency is less
important for Fortran, because the current stan-
dard precludes dynamic recursion.

We hav e not yet tried the system on a large
variety of programs, so it would be premature to
report any empirical evidence about the value of
interprocedural constant propagation. We plan to
report these results as a part of a general study of
interprocedural data flow analysis in PFC.

6. Conclusions

We hav e presented an efficient procedure
for computing interprocedural constants in a pro-
gramming environment. The method is based on
an algorithm adapted from the single-procedure
methods of Reif and Lewis [ReLe 82] and
We gman and Zadeck [WeZa 85]. The approach is
linear in the size of the call graph if we assume
that the number of input parameters to each proce-
dure is bounded, that the jump functions all have
bounded support, and that the evaluation time for

each jump function is bounded by a constant.

An experimental implementation in the
Rice vectorization system PFC has established the
practicality of the approach. We are currently
implementing the algorithm in the program com-
piler of the programming environment. We
believe that the technique presented here will
approach the method of inline substitution for
effectiveness. We expect to evaluate this algo-
rithm in two ways: directly in our own compiler
and by using as a preprocessor to generate modi-
fied source for compilation by existing optimizing
compilers like IBM’s VS Fortran and DEC’s VMS
Fortran.

There is one important extension to the
technique presented here. The constant propaga-
tion lattice can be replaced by any lattice of
bounded depth, yielding an algorithm that might
be used for other purposes such as propagating
inequalities. Such information could be used to
improve the performance of vectorization systems
like PFC, in which the knowledge that a parame-
ter is greater than ‘‘0’’ or greater than ‘‘1’’ might
make an otherwise unsafe transformation possible
[AlKe 84].

7. References

[AhUl 77] A. Aho and J. Ullman. Principles of
Compiler Design. Addison-Wesley.
1977.

[Alle 74] F. E. Allen. Interprocedural data
flow analysis. Proceedings IFIP
Congress 74, North-Holland Pub-
lishing Co.: Amsterdam. 1974.

[AlKe 84] J. R. Allen and K. Kennedy. PFC: a
program to convert Fortran to paral-
lel form. Supercomputers: Design
and Applications (K. Hwang, ed.).
IEEE Computer Society Press,
1984.

[Ball 79] J. E. Ball. Predicting the effects of
optimization on a procedure body.
Proceedings of SIGPLAN ’79 Sym-
posium on Compiler Construction,
SIGPLAN Notices, 14(8). 1979.

[Coop 83] K. D. Cooper. Interprocedural
information in a programming envi-
ronment. Ph.D. Dissertation,
Department of Mathematical Sci-
ences, Rice University, Houston,



TX. May 1983.

[Coop 85] K. D. Cooper. Analyzing aliases of
reference formal parameters.Pro-
ceedings of Twelfth POPL. 1985.

[CoKe 84] K. D. Cooper and K. Kennedy. Effi-
cient computation of flow insensi-
tive interprocedural summary infor-
mation. Proceedings of SIGPLAN
’84 Symposium on Compiler Con-
struction, SIGPLAN Notices, 19(6).
1984.

[CoKT 85] K. D. Cooper, K. Kennedy, and L.
Torczon. The impact of interproce-
dural analysis and optimization on
the design of a software develop-
ment environment.Proceedings of
SIGPLAN ’85 Symposium on Lan-
guage Issues in Programming Envi-
ronment, SIGPLAN Notices, 20(7).
July 1985.

[CoKT 86] K. D. Cooper, K. Kennedy and L.
Torczon. Optimization of compiled
code in the programming environ-
ment. Proceedings of the Nine-
teenth Annual Hawaii International
Conference on Systems Sciences.
January, 1986.

[Dong 80] J. Dongarra. LINPACK working
note #3: FORTRAN BLAS timing.
Technical Report ANL-80-24,
Argonne National Laboratory,
February 1980.

[DBMS 79] J. J. Dongarra, J. R. Bunch, C. B.
Moler, and G. W. Stewart.LIN-
PA CK Users’ Guide. SIAM,
Philadelphia. 1979.

[HoKe 85] R. T. Hood and K. Kennedy. A pro-
gramming environment for Fortran.
Proceedings of the Eighteenth
Annual Hawaii International Con-
ference on Systems Sciences, 1985.

[KaUl 77] J. Kam and J. Ullman. Monotone
data flow analysis frameworks.Acta
Informatica, 7. 1977.

[Kenn 78] K. Kennedy. Use-definition chains
with applications.J. Computer Lan-
guages, 3(3). 1978.

[Kenn 81] K. Kennedy. A survey of data flow
analysis techniques.Program Flow

Analysis: Theory and Applications
(S.S. Muchnick and N.D. Jones,
eds.). Prentice-Hall. 1981. pp. 5-54.

[Kild 73] G. Kildall. A unified approach to
global program optimization.Pro-
ceedings of First POPL. 1973.

[Myer 81] E. W. Myers. A precise inter-
procedural data flow algorithm.
Proceedings of Eighth POPL. 1981.

[ReLe 82] J. H. Reif and H. R. Lewis. Sym-
bolic evaluation and the global value
graph. TR 37-82, Aiken Computa-
tion Laboratory, Harvard University.
1982.

[Sche 77] R. W. Scheifler. An analysis of
inline substitution for a structured
programming language.Communi-
cations of the ACM, 20(9). 1977.

[Torc 85] L. Torczon. Compilation depen-
dences in an ambitious optimizing
compiler. Ph.D. Dissertation,
Department of Computer Science,
Rice University, Houston, TX. May
1985.

[WeZa 85] M. Wegman and F. K. Zadeck.
Constant propagation with condi-
tional branches. Proceedings of
Twelfth POPL. 1985.


