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1. Introduction

One of the primary goals of the program-
ming environment project is to mount a concerted
attack on the problems of performing interproce-
dural analysis and optimization in a compiler.
Few commercial optimizing compilers employ
interprocedural techniques because the cost of
gathering the requisite information in a traditional
compiler is too great. Computing the side effects
of a procedure call requires detailed knowledge of
the internals of both the called procedure and any
procedures invoked either directly or indirectly
from it. Thus, the compiler potentially needs
information about the internals of every procedure
to determine the side effects of procedure calls,
ev en separately compiled procedures. Gathering
this information would require examining the
source of every procedure in the program - an
expensive process, particularly unfortunate since
the primary goal of separate compilation is to
reduce the amount of recompilation required in
response to changes in an individual procedure.

The existence of a software development
environment like the programming environment
[HoKe 84] changes the compilation process
enough to make computing such information
palatable. Since all modules are developed and all
programs are defined using tools of the
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environment, these tools can cooperate to record
the information necessary to do a good job of
interprocedural analysis and optimization. When-
ev er the compiler needs information about possi-
ble side effects of a particular procedure, it can
simply extract this information from the environ-
ment’s central database. Because the only mecha-
nism for changing modules or programs is through
the tools provided by the environment, the com-
piler is assured that it will be notified of any
changes. Thus, it can use information derived
from previous analysis with certain knowledge
that the information reflects the current state of the
program and its procedures.

One of the unique features of the program-
ming environment is that it automatically collects
and uses interprocedural data flow information.
Recent results [Coop 83] allow the environment to
efficiently collect such information. The compiler
uses this interprocedural information as an aid to
global program optimization. It also performs
interprocedural optimizations such as linkage tai-
loring and constant folding across procedure
boundaries.

This paper examines the effect of perform-
ing interprocedural analysis and optimization on
each of the major components of the environment.
It should become clear from the discussion that the
decision to employ interprocedural techniques has
profoundly influenced almost every aspect of the
design of the environment.

2. The Programming Environment
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The programming environment is an inte-
grated collection of tools to assist programmers in
building numerical software in Fortran. Although,
sophisticated systems exist to support program-
mers who write in high level languages that are
popular among computer scientists, like Lisp
[Teit 77], C [HaNo 82], Mesa [MiMS 79], PL/I
[TeRe 80], and Smalltalk 80 [GoRo 83], little
effort has been expended to provide similar sup-
port for Fortran, the language used by most
numerical programmers. The programming envi-
ronment is intended to fill this void.

The environment consists of a collection of
command processors, which run cooperatively
under amonitor. The monitor controls interac-
tions between these command processors and pro-
vides primitives for handling the mouse, bit-
mapped screen, keyboard, menus, and windows.

The command processors record and use
information in thedatabase. The database is used
as a repository for information about programs
and procedures in the environment. In particular,
it provides a convenient mechanism for communi-
cation between tools.

The principal components of the current
environment are the module editor, the program

editor, and an execution manager.1 An interactive
debugger and an optimizing compiler are under
development. The optimizing compiler is struc-
tured as a pair of separate compilers, a program
compiler and a module compiler [Torc 85]. We
will discuss each of these components in turn.

2.1. Module Editor

The module editor, or intelligent Fortran
editor, combines a knowledge of Fortran together
with access to the data base in order to simplify
the programming process. A module is the small-
est editable unit of source text in the environment,
consisting of one or more entry points and their
implementations. The editor helps the program-
mer enter syntactically correct programs by pro-
viding commands that generate templates for the
major language constructs. For example, to insert
a DO-loop, the programmer need only invoke the
DO-loop command and the cursor is replaced by a
DO-loop template with place markers in the

1The execution manager usesstandard toolsto compile
and execute a program. We do not discuss it in this paper.

positions where further text should be entered.
The editor obviates the need for a parser by
directly constructing an abstract representation of
the program. All components of the environment
use this abstract syntax tree as the standard pro-
gram representation.

The editor makes use of information stored
in the project data base to help the programmer
construct subprograms that are consistent with the
program being developed. For example, when a
programmer wishes to insert a call to an external
subroutine, the editor queries the data base to
retrieve the parameter specifications for the called
routine and uses these to prompt the user for
parameters. From the user’s viewpoint, the editor
automatically inserts a template for each actual
parameter that explicitly identifies its name and
type.

2.2. Program Editor

The program editor, or composition editor,
assists the user in defining a consistent and com-
plete version of a program. It helps the user spec-
ify the collection of module-versions that make up
a version of the program and ensures that a defini-
tion of each entry point used in the program-
version is included in this collection. When the
desired specification differs only slightly from an
existing one, the composition editor simplifies the
specification process by providing the ability to
edit an existing program-version. Additionally, it
has a library search mechanism to allow an auto-
matic search to complete the composition.

2.3. Module Compiler

In addition to tools designed to help the
numerical programmer develop, test, and maintain
programs, any serious programming environment
for Fortran must pay careful attention to the effi-
ciency of compiled code if it is to satisfy the
numerical community’s strict requirements for
efficient execution. Therefore, the programming
environment will include an ambitious optimizing
module compiler. Because much of the work per-
formed in the front end of a traditional compiler is
performed in the environment’s module and pro-
gram editors, the module compiler consists pri-
marily of an optimizer and a code generator. In
addition to the standard techniques from global
optimization, the module compiler will use inter-
procedural information and attempt interprocedu-
ral optimizations.



2.4. Program Compiler

The program compiler is responsible for
directing the construction of an executable image
of a program-version. It automates the process of
reconstructing an executable in the tradition of
make[Feld 79] and its successors [TiBa 85], call-
ing on the module compiler as needed. In addition
to this function, it performs the interprocedural
analysis needed by the module compiler, deter-
mines which modules must be recompiled in
response to editing changes, and provides the
module compiler with directives about interproce-
dural optimizations like constant folding and link-
age tailoring.

The program compiler embodies the essence
of interprocedural analysis and optimization in the
programming environment. It uses the informa-
tion that other command processors, like the mod-
ule editor and the program editor, hav e computed
and stored in the database to produce flow insensi-
tive interprocedural summary information
[CoKe 84], flow insensitive interprocedural alias-
ing information [Coop 85], and interprocedural
constant propagation information [Torc 85].

2.5. Interpretive Debugger

The interpretive debuggerwill enable the
programmer to step through parts of a given pro-
gram, allowing him to monitor and interrupt
execution. By cooperating with the compiler, the
interpreter will be able to handle hybrid execution
of a program consisting of both compiled and
interpreted modules. Thus, during debugging, the
programmer can execute stable module-versions in
a compiled form while interpreting modules under
development. This makes interpretive debugging
a practical tool for large programs, by allowing
control to pass quickly through those parts of the
program which are uninteresting to the debugging
process and bringing the full power of the inter-
preter to bear on those parts of the program where
it is needed. We would like the interpretive debug-
ger to support reversible execution.

3. Interprocedural Analysis

As an introduction to the subject of interpro-
cedural data flow analysis, consider the problem of
computing the interproceduralMOD side effect for
a statement s. For any statement s,MOD(s) is the
set of all variables that might be changed as a
result of executing s. Usually,MOD(s) is easy to
determine. However, if s contains a procedure

call, the problem is more complex. Any variable
that is passed as a parameter to the called proce-
dure or any variable that is global to the called
procedure is a candidate forMOD(s). Conventional
optimizing compilers assume thatMOD(s) consists
of all variables that are either actual parameters at
the call site or global variables of the called proce-
dure. This is the safest assumption possible in the
absence of information about the called procedure.

To compute a more preciseMOD(s), we need
to look at the variables that might be changed,
directly or indirectly, by the called procedure. Let
GMOD(q) be the set of such variables associated
with the procedure, q. Notice thatGMOD(q) con-
sists of two components:

• the setIMOD(q) of variables that might be
modified by statements in q other than pro-
cedure calls;

• the set of variables that might be modified
as a side effect of a procedure call from
within q.

The setsIMOD(q) for each entry q in a module are
independent of any other procedures in any pro-
gram in which the module is incorporated. They
are, however, a function of the specific implemen-
tation, or version, of the module. Hence, the sets
can be computed by the editor and stored with the
version of the module which generated them.
From these sets,GMOD(q) can be computed for a
specific version of a program by solving a data
flow problem on the call multi-graph [Coop 83]
[CoKe 84]. Since the setsGMOD(q) depend on the
specific call multi-graph, they must be stored as
with the version of the program for which they are
computed.

This observation illustrates an important
aspect of the division of labor which occurs in the
programming environment. The traditional com-
piler is split into multiple parts implemented in
different tools of the environment. In addition to
parsing and type checking, the editor can perform
most of the information gathering needed to sup-
port flow insensitive interprocedural analysis. An
independent process can then compute the inter-
procedural side effects for the whole program.
This makes interprocedural data flow information
available to the code generator when it needs it.
Because interprocedural informationdoes not
depend on output from the compiler, the environ-
ment can compute interprocedural information for
each entry in the program before a single module



is compiled.

As a part of our preliminary research, we
have discovered extremely fast algorithms for
computing flow insensitive interprocedural side
effects. In particular, we can compute these for
call graphs with recursion in timeO(E α(E,N) )
where E is the number of edges in the call graph,
N is the number of vertices, andα is a function
related to an inverse of Ackermann’s function
[CoKe 84]. This function grows extremely slowly.
The algorithm can be adapted to efficiently per-
form incremental updates to the interprocedural
information when a module is edited. In most
cases, these updates can be performed in time lin-
ear or nearly linear in the size of the affected
region of the call graph [CoKe 84].

Few commercial systems have employed
interprocedural information, primarily because of
the costs and the conflict it presents with separate
compilation. Two notable exceptions are IBM’s
PL/I Optimizing Compiler and Xerox’s Interlisp
system. The former system computesMOD-like
information for the entire set of procedures com-
piled together [Spil 71]. The latter system pro-
vides an interactive query system which computes
interprocedural information as an aid to under-
standing and debugging programs [Masi 80].

4. Impact on Environment Components

Having described each of the individual
components in a cursory manner, we will now
examine the impact of the decision to collect inter-
procedural information and use interprocedural
optimizations on each of them.

4.1. The Database

Central to the entire programming environ-
ment is its database. The database is a repository
for all of the component parts of programs man-
aged by the environment. It is the common struc-
ture for storing information and knowledge. This
includes objects used by programmers, like the
source text of a procedure or its documentation, as
well as information used to manage the compila-
tion of programs, like data flow annotations.

4.1.1. Structure of the Database

There are five major entity types in the
database:projects, programs, program-versions,
modules, andmodule-versions.

• A project is an administrative, managerial,
or technical grouping, intended to incorpo-
rate a set of related programs.

• A program is a set of specifications for a
computation. A program may have different
versions which implement the specified
computation.

• A program-versionimplements a specific
program. An implementation consists of the
set of module-versions of which the imple-
mentation is composed. All versions of the
same program obey the same specifications
and hence serve the same underlying pur-
pose.

• A module is a set of specifications for a
group of entry points.

• A module-versionimplements the entry
points of a specific module. The various
versions of a module must all meet the same
entry point specifications, although they can
differ considerably in internal implementa-
tion detail.

Most of the information manipulated by the end
users of the environment is stored as attributes of
program-versions and module-versions. For
example, a program-version has, among others, a
composition (list of module-versions incorpo-
rated), acall graph, an executable image, and an
entry table (mapping from entry points to the
module-versions that provide them). A module-
version hassource, a list of entries called, and
annotations(information provided by the editor
about side effects of the module implementation).

4.1.2. Call Graph Dependence

One of the most obvious implications of the
environment’s emphasis on interprocedural opti-
mization is thatobject codefor a module-version
must be an attribute of theprogram-version in
which the module-version is compiled. When the
system confines its attention to intraprocedural
analysis and optimization, the object code for a
module-version is independent of any other mod-
ule-version and can be stored as an attribute of the
module-version to prevent duplication. But when
compilations depend on interprocedural informa-
tion, the code generated is specific to the program-
version in which the compilation is performed. As
a result, a single module-version incorporated into
six program-versions could have six different
object modules, each stored as an attribute of the



appropriate program-version.

In general, there are two types of informa-
tion that the environment must deal with:module-
version specificandprogram-version specific. The
division must be carefully drawn in the design of
the environment. For example, consider the anno-
tations to the call graph which describe the inter-
proceduralMOD side effect, discussed in section 3.
While both theIMOD and GMOD sets are entry
point specific, theIMOD sets can be stored as
attributes of the module-versions since they are
independent of the rest of the call graph. How-
ev er, theGMOD sets are program-version specific
and must therefore be stored as attributes of the
program-versions which generated them.

4.1.3. Version Control

The decision to perform interprocedural
analysis and optimization has a subtle impact on
the attitude which the environment takes towards
version control. Because the interprocedural
information must be updated for every program
containing modulem wheneverm is changed, it is
not attractive to hav e many versions of a program
containing a single module. As it happens, this
also implies that differentiating between ‘‘minor
versions’’ [Mull 83] of a module is unattractive.
Systems that track minor versions create new
minor versions of a module for every editing ses-
sion [Roch 75].

In the environment, if we wish to test a new
version of a module, we make a completely new
version of the program containing it, so that the
testing does not invalidate an existing working ver-
sion. However, doing this increases the number of
programs in which each of the unchanged modules
is incorporated. It complicates the task of building
and maintaining call graphs and has the potential
to drastically increase the number of interesting
call graphs containing a single module. Thus we
encourage the programmer to create a new version
only when a logically complete set of modifica-
tions has been made, irrespective of the number of
editing sessions involved. This approach
decreases the number of minor versions which
must be tracked, at the expense of losing historical
data about the sequence of operations leading to
the current version.

4.2. The Module Editor

The module editor is the primary mecha-
nism for modifying the source code associated

with module-versions under the environment’s
control. In this role, the editor is the first tool to
examine the contents of any module.

4.2.1. Responsibilities

The module editor detects and records mod-
ifications to the source of a module-version which
alter its semantic meaning. In addition to changes
to the module itself, the editor detects and records
semantic changes to a module which result from
modifications made to declarations, type defini-
tions, and defined constants it uses, even when that
information is stored externally to the module.
This type of change is one of the motivating fac-
tors behind Tichy and Baker’s work [TiBa 85].
The editor’s ability to detect these semantic
changes is a natural consequence of its need to
understand the declarations, type definitions, and
defined constants used in a module in order to pro-
vide syntactic checking of the module’s source at
edit time. Declarations, definitions, and constants
that are defined within a module can easily be han-
dled by the editor because the necessary informa-
tion is local to the module. Definitions shared by
multiple modules pose a harder problem for the
editor; techniques for dealing with such definitions
are discussed in Caplinger’s dissertation [Capl 85].

If the environment is to produce and use
interprocedural information, the editor is the
appropriate place to perform certain analytical
tasks, including constructing initial information
for use in later analytical passes. The editorcan-
not by itself compute interprocedural side effects,
because interprocedural analysis requires a call
multi-graph of the program-version being ana-
lyzed, the existence of a source code implementa-
tion of each procedure in the call graph, and initial
information about each procedure. For a program
under development, there may be procedures
which do not yet exist or are incomplete. Other
users may be working on module-versions incor-
porated into a given program-version, forcing the
interprocedural analyzer to wait until such time as
all procedures are available. On the other hand,
the editor must cooperate if interprocedural analy-
sis is to be possible. In particular, it must con-
tribute the initial information needed to compute
basic interprocedural data flow information.
Specifically, the module editor must compute four
types of information:

Aliasing Information: Cooper presents an
algorithm for annotating a program with aliasing



information [Coop 85]. The algorithm divides the
work to be done intointroduction analysisand
propagation analysis. The introduction analysis is
completely independent of specific program-
versions and should be performed in the editor.
This work includes computing the set of aliases
introduced at each call site and a mapping from
actual parameters of the call site to the formal
parameters of thecalling procedure. During this
analysis the editor can also differentiate between
call sites which impact the analysis and those
which are irrelevant to it.

Summary Information: The computation of
flow insensitive interprocedural summary informa-
tion is described by Cooper and Kennedy
[CoKe 84]. Their algorithm requires as input a
substantial amount of information about each pro-
cedure and each call site. This includes name
scoping information, descriptions of formal and
actual parameters, and mappings of parameter
bindings at the call sites. Additionally, sets like
IMOD from section 3 are needed for each entry
point provided by the module. All of these can be
efficiently computed in the editor.

Constant Propagation Information: A num-
ber of algorithms which compute interprocedural
constant propagation information are presented by
Torczon [Torc 85]. Each of the methods relies on
initial information which can be computed by the
editor whenever a module-version is edited.
Depending on the specific interprocedural constant
propagation algorithm used, computing the initial
information may involve an operation as simple as
scanning the call site to detect literal constants
used as actual parameters or as complex as per-
forming a global constant propagation on a proce-
dure to detect both local constants passed as actual
parameters and constant valued global variables.

Recompilation Information: The recompila-
tion algorithms used in the program compiler rely
on the editor to mark module-versions which have
been semantically changed [Torc 85]. This infor-
mation is used to construct a list of all module-
versions that have been semantically altered since
the last compilation of the program-version.
Depending on the specific algorithm used to make
recompilation decisions, additional information
may be needed to determine which unmarked
module-versions must be recompiled due to
changes in the interprocedural information
assumed at the time that they were compiled. The
REFERENCED set, which contains all formal

parameters and global variables which are either
loaded or stored in the procedure body, is one type
of initial information used in these algorithms.

4.2.2. Applications

Interprocedural information can be useful in
a number of ways in the editor. For example,
when the user enters a constant as an actual
parameter passed to an external procedure, the edi-
tor could warn the user that the constant might be
modified, if that particular parameter is a member
of theMOD set.

Simply providing a facility to display inter-
procedural information can be useful. The ability
to display the interprocedural summary informa-
tion that results from using the same module-
version in two different program-versions might
prove to be ahelpful debugging tool. An exami-
nation of the interproceduralMOD information for
each instance of a call site contained in several
program-versions might help the user understand
why the called procedure behaves differently in
one specific program-version.

Following the philosophy of theDAVE sys-
tem [OsFo 75], Zadeck has proposed using global
data flow information in the editor to point out
data flow anomaliesto the programmer. In his
dissertation [Zade 83], he suggests that this infor-
mation should capitalize on the presence of inter-
procedural knowledge to improve the precision of
the global data flow information. In considering
this application, we must be careful to remember
the sensitivity of interprocedural information to
specific call graphs.

Interprocedural summary information
describes possible data flow events along the set of
paths through a call graph. Because the side
effects of a single procedure call are a function of
the entire body of the called procedure, including
procedure calls imbedded in it, the resulting infor-
mation depends on specific details of the called
procedure and any other procedure which can be
invoked indirectly by the call. Because the bind-
ing of procedure entry point names to implementa-
tions in module-versions is wholly controlled by
the composition of the program-version, the
results of an interprocedural summary information
computation are wholly a property of a specific
composition and its call multi-graph.

If interprocedural information is used in the
editor to augment or refine the results of global



analysis, the resulting global information will be
correct only for the specific program-version for
which the interprocedural analysis was performed.
When a module-version is included in multiple
program-versions, conflicting diagnostic informa-
tion may be reported when different program-
versions are considered. This is a fundamental
problem with using interprocedural information in
the editor; editing a module-version is an intrapro-
cedural task. If the editor uses interprocedural
information, it must take pains to ensure that the
user knows which program-version is being con-
sidered.

4.3. The Program Editor

To specify a program’s configuration, a pro-
gram composition editor is provided in the envi-
ronment. It is the primary vehicle for program-
ming in the large in the environment. The pro-
gram editor allows a user to specify a collection of
entry points and the module-versions which imple-
ment them. The program editor provides facilities
for checking the consistency of a program-version.
For example, it ensures that the actual parameters
of a procedure call match the formal parameters of
the called procedure in number and type. If the
composition iscomplete, that is, it includes a main
procedure and an implementation for every needed
entry point, then the composition can be used to
generate an executable image.

The composition processor creates program-
versions. In this role, it has several responsibilities
for interprocedural analysis. As it builds the com-
position, it constructs a call multi-graph for use in
the interprocedural analyzer. It also generates
annotations describing the graph’s structure.
When a composition is modified, the editor must
update the call multi-graph to reflect the new com-
position and construct a list of all additions and
deletions since the last compilation. This list is
used by the program compiler in making its
recompilation decisions.

Because the composition editor has intimate
knowledge of each program-version’s structure, it
marks each composition as either eligible for com-
pilation or not. In constructing the composition,
the editor must determine which module-versions
actually exist; therefore it knows when a program-
version can not be compiled because of unimple-
mented entry points. This simple marking process
keeps the optimizing compiler from spending
large amounts of time analyzing incomplete

programs.

The concerns of interprocedural analysis
also impact the design of a command set for
manipulating compositions. A case in point is the
library search mechanism. Because the editor
treats a composition as a mapping from entry
points to their implementations, the editor can use
existing program-versions as libraries. The editor
provides a mechanism for specifying individual
program-versions as libraries and searching them,
in a given order, to resolve unmapped entry points.

The presence of a library search mechanism
makes it tempting to use the following paradigm
for creating new program-versions. (In fact, early
versions of the program editor relied on this
notion.) The user simply creates a new composi-
tion containing the modules which differ from the
old program-version, along with the main proce-
dure. Next, the old program-version is specified as
the sole search library. Finally, the search mecha-
nism is invoked to resolve unmapped entry points.
It finds implementations of all these entry points in
the old program-version’s composition.

Using library search to implement a copy
operation in this manner increases the amount of
work required to compute interprocedural infor-
mation about the new program-version. In a real
copy operation, the editor would understand that
the call multi-graph is preserved, allowing it to
copy the interprocedural information associated
with the old composition. Under the library
search paradigm, each module is copied individu-
ally, with the result that most interprocedural
information is lost and a complete re-analysis of
the program-version is required. In a real copy
implementation, the small collection of new mod-
ules can be treated as incremental updates to an
existing program-version, with potentially large
savings in work.

The program composition editor also pro-
vides a mechanism for defining a new module
from a collection of modules. In this process, a
collection of modules are marked to be treated as a
single module. This presents special problems for
interprocedural analysis. First, the fundamental
quantities used by the program compiler in the
interprocedural computations must be determined
for the new module group. In the case of theMOD

problem of section 3, this means computing
IMOD(q) for every entry q provided externally by
the group. Computing this set requires solving a
small interprocedural data flow analysis problem



on the call graph of the module group. Second,
there must be a mechanism for updating the inter-
procedural information on edges of the call graph
internal to the module group, given a change exter-
nally. This requires extending the incremental
updating algorithms of Cooper [Coop 83] to a
hierarchical form. We are currently working on
this problem.

4.4. The Module Compiler

The module compiler produces object code
for an individual module. It capitalizes on the
interprocedural information and optimization
directives created by the program compiler to
improve the efficiency of the code generated for
individual modules.

4.4.1. Uses for Interprocedural Information

In the module compiler, interprocedural
summary information is used to improve the preci-
sion of the computed intraprocedural information.
For example, in the absence ofMOD information
about a call site, the module compiler must
assume that the call results in modifications to
ev ery variable which is accessible to the called
procedure and to every actual parameter used at
the call site. With interproceduralMOD informa-
tion, the number of variables believed to be modi-
fied can be greatly reduced.

Similarly, the module compiler uses infor-
mation about interprocedural constants as input to
its own constant propagation analysis. This allows
the intraprocedural analyzer to recognize constants
which are inherited from the calling environment.
In practice, important information like array
dimensions and loop strides are likely to be
detected by the program compiler; this informa-
tion can play an important role in purely intrapro-
cedural optimizations.

Finally, information about interprocedural
side effects not only helps produce better opti-
mized code, it can also reduce the amount of anal-
ysis required in the module compiler. Our experi-
ence with an advanced vectorizer [AlKe 82] shows
that the number of use-definition chains con-
structed by the compiler can be drastically reduced
through the use of interprocedural analysis.

Because the module compiler uses interpro-
cedural information as a basis for optimization
decisions, the correctness of the compile-time
decision making process is a function of the state

of the entire program-version at the time of the
compilation. Thus, changes to one module-
version can invalidate the correctness of the opti-
mized code previously generated for other mod-
ule-versions. This introduces the recompilation
problem addressed in section 4.5.

4.4.2. Optimizations

The desire to perform linkage tailoring has a
direct impact on the choice of intermediate repre-
sentations used for the program. If the compiler
considers only strictly open and strictly closed
linkages, then it may be possible to perform link-
age tailoring on a high-level representation like an
abstract syntax tree. In generating either semi-
open or semi-closed linkages, however, the com-
piler will almost certainly introduce constructs
which have no reasonable representation in a high-
level intermediate form. This will likely necessi-
tate use of a relatively low-level representation to
accommodate optimizations like moving loop
invariant procedure prologue code out of a semi-
open call inside a loop.

Additionally, it is possible to perform a
number of optimizations in the
compiler that are difficult in a more traditional
batch compiler. These optimizations are available
to the compiler for little or no additional cost sim-
ply because the database provides a mechanism
for coordination and cooperation between separate
compilations. One such optimization is interpro-
cedural constant folding, particularly as applied to
actual parameters. Ball suggests that recognizing
places where constants are passed is important to
understanding the improvement to be gained by
inline substitution [Ball 79]. This opens up the
opportunities for optimizations like automatically
unrolling loops when the loop stride is passed as
an actual parameter. In a study of the BLAS rou-
tines, Dongarra demonstrated that this is a consis-
tently profitable optimization [Dong 80]. Because
these constants are available to the compiler as a
natural consequence of the database’s existence,
this optimization is easy to perform.

4.5. The Program Compiler

The program compiler examines the entire
set of procedures which constitute a program-
version and computes information which directs
the construction of an executable image of the pro-
gram. This information ranges from a list of mod-
ules which need recompilation to directives about



which procedures are good targets for customized
procedure linkages.

In the simplest sense, a program compiler
analyzes a program and determines what action, if
any, must be taken to make the executable image
of the program consistent with the source after
editing changes have been made to individual pro-
cedures in a program. The program compiler
directs the compilation of the individual modules
which constitute the program. Thus, Feldman’s
makeutility [Feld 79] is an ancestor of the pro-
gram compiler.

The program compiler addresses a more
complex problem than previous program compil-
ers. Performing interprocedural analysis and
using the resulting information to do ambitious
optimization introduces complex compilation
dependences between the procedures of a pro-
gram-version. Because the correctness of the
executable code produced by the module compiler
is a function of the state of the entire programat
compile time, changes to one module-version in a
program may invalidate previous compilations of
other module-versions in the program. For a sys-
tem using interprocedural information and sepa-
rate compilation to be of practical interest requires
the use of a program compiler which is far more
complex than eithermake or the recompilation
system discussed in [TiBa 85]. The ability to han-
dle interprocedural information and dependences
make the
program compiler unique.

Since the dependences caused by using
interprocedural information are induced by the
compiler rather than the programmer, they are best
dealt with by tracking them during the compilation
process. The task of the program compiler is to
detect the interprocedural compilation depen-
dences in a program and determine what action
must be taken to return the executable image of
the program to a consistent state after changes
have been made to the program. Doing this
requires several distinct passes over the program’s
call graph.

The first pass determines which modules
must be recompiled because of direct editing
changes to the program’s composition or to the
module itself. The second pass updates the inter-
procedural data flow information to a state consis-
tent with the program’s source text. The third pass
performs interprocedural constant propagation.
The fourth pass detects modules which need

recompilation because changes in interprocedural
data flow or constant information have inv alidated
assumptions made in their most recent compila-
tion. Finally, the last pass examines the prospects
for generating customized procedure linkages in
the modules already being recompiled.

Each pass acts in some way to limit the
number of modules which must be considered by
later passes. Once the program compiler deter-
mines that a module must be recompiled, the later
passes can ignore any analysis intended to deter-
mine recompilation information for that module.
For example, if a module must be recompiled
because the programmer added three statements to
it, it is unnecessary to consider whether a change
in the interprocedural summary information for
that procedure also requires its recompilation. The
summary information must be computed in pass
two, but pass four can ignore the question of
recompiling it. Similarly, after passes two and
three, a module whose interprocedural and con-
stant information has not changed need not be
considered by the recompilation analysis algo-
rithms in pass four.

Since compilations consume substantial
resources, we would like to limit recompilation to
as great an extent as possible. In her dissertation
[Torc 85], Torczon presents a number of ways that
the module compiler can generate information that
helps reduce the number of required compilations.
However, even without the assistance of the mod-
ule compiler, there are a number of simple tests
the program compiler can apply in its fourth pass.

In considering recompilation, the program
compiler must first remember the underlying
nature of the data flow information being used by
the module compiler. For example, theMOD infor-
mation is flow insensitive, so it describes variables
which may be modified by executing a procedure
call. Any optimization made on the basis ofMOD

information must already account for the fact that
the variablemight not be modified by the call.
Thus, any change which removes a variable from
MOD(s) cannot invalidate optimizations based on
MOD(s). Only changes which add information to
MOD(s) can invalidate optimizations based on
MOD(s).

Torczon describes a series of recompilation
tests based on interprocedural summary and con-
stant information. These range from simple tests
like the one just described to more complex tests
which account for specific optimizations



performed in the module compiler.

4.6. The Interpretive Debugger

A major goal of the debugger design is to
support hybrid execution of interpreted and com-
piled modules. Interprocedural information can
simplify the interface between compiled code and
the interpretive debugger. Similarly, the design of
the debugger may preclude the application of
some interprocedural optimizations.

Consider a session in the debugging inter-
preter. The programmer might ask the interpreter
to report, after each statement executes, which
variables have had their values changed. For state-
ments which do not include procedure calls, this is
a simple task. If, however, the statement involves
a call to a compiled procedure, the interpreter must
compare the values of each variable in memory
against its value before the call in order to com-
pute the debugging information. For any non-
trivial program, this is a prohibitively expensive
proposition.

If, however, the interpreter has access to
interprocedural summary information, it can use
the summary information to determine which vari-
ablesmight change as a result of the call, and the
search for changed variables can be restricted to a
much smaller set. This same technique can be
used to improve the support forre versible execu-
tion, since implementation of this feature requires
dynamic checkpointing of variables thatmight
change as a result of a call to a compiled proce-
dure.

The requirement for hybrid interpreted and
compiled execution seems likely to rule out the
application of certain optimizations. For example,
the preceding discussion assumes that the com-
piler understands the mapping from variable
names to storage locations for compiled code.
This simple assumption may prohibit the compiler
from applying sophisticated storage optimizations
like those proposed by Fabri [Fabr 79].

Finally, hybrid execution of interpreted and
optimized code has implications for the design of
the interpreter. It is easy to imagine a programmer
changing the value of a variable inside the inter-
preter during a debugging session. In a separate
compilation environment without interprocedural
information, this is a relatively safe action. Once
the compiler has used interprocedural information
as a basis for optimization decisions, though, the

possibility arises that changing the value of a vari-
able inside one procedure has implications for the
correctness of the code already compiled for other
procedures in the currently executing program-
version. Thus, the interpreter may need to under-
stand the manner in which the compiler uses inter-
procedural information in order to allow safe and
correct responses to user requests during execu-
tion. Comer is investigating these and similar
issues in the design of a debugger for the pro-
gramming environment [Come 85].

5. Summary and Conclusions

Although a sophisticated software develop-
ment environment is the only practical setting for
performing optimizations based on interprocedural
analysis, the discussion in this paper should con-
vince you that the required analysis has a substan-
tial impact on the design of every component of
the environment. We hav e presented the design of
the environment as an illustration of the issues that
arise.

A preliminary implementation of the pro-
gramming environment already exists. It includes
stable versions of the monitor, the module editor,
the program editor, and the execution manager. A
single-user database has been in use for over a
year; the multi-user version of the database is
under construction. Implementations of the inter-
active debugger, the module compiler, and the pro-
gram compiler are underway. Finally, a number of
ancillary command processors, like a calculator, a
terminal emulator, aHELP processor, and a docu-
mentation editor are also included in the current
system.
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