
Efficient Computation of Flow Insensitive
Interprocedural Summary Information

Keith D. Cooper
Ken Kennedy

Department of Computer Science
Rice University
Houston, Texas

1. The Problem

To understand when it is safe to apply a
given optimization, a compiler must have explicit
knowledge about the impact of executing individ-
ual statements on the values of variables accessi-
ble to the statements. The impact of a statement
is termed itsside effect. This paper describes a
method for annotating each statement s in a pro-
gram with a set MOD(s) containing those vari-
ables whose values can be changed as a result of
executing s. For statements which contain no pro-
cedure calls, the side effects can be determined by
simple examination of the statement with some
knowledge of the semantics of the source lan-
guage.

The presence of procedure calls compli-
cates the analysis of side effects in two distinct
ways: inherited environmental aliasing patterns
and cumulative side effects of procedure invoca-
tions. This paper focuses on the analysis of the
cumulative side effects of procedure calls. The
problem of analyzing aliasing patterns is complex
but well understood. We show how to incorporate
information about aliasing patterns into our analy-
sis; algorithms for deriving such information may
be found in [Bann] [Myer1] and [Coop].

If a statement s contains no procedure calls,
the impact of procedure calls on its MOD set is

limited to accounting for potential aliases present
at the procedure invocation. If, however, a state-
ment s contains one or more procedure calls,
MOD(s) must account for the side effects of any
statement in the called procedure which can be
executed, including those which call yet other
procedures. Because of this, MOD(s) summarizes
the impact of all procedures directly or indirectly
invoked from s. For this reason, such sets are
calledsummary information. Other summary sets
are discussed in the literature, notably USE and
NOTPRE [Bart] [Bann] [Rose]. The modifica-
tions to our algorithms required to compute these
other sets are straightforward.

Summary information can be divided into
two categories,flow insensitiveinformation and
flow sensitiveinformation. Flow insensitive infor-
mation describes data flow events which occur on
at least onepath through a procedure. Because
these sets contain facts about what may happen,
they are often calledmay summary information.
By contrast, flow sensitive information describes
data flow events which occur onevery path
through a procedure. These sets contain facts
which must be true on every execution of the
statement, so they are also calledmustsummary
information. The algorithms given in this paper
solve the flow insensitive version of the MOD
problem.

Flow insensitive summary sets can be com-
puted efficiently, because they are independent of
the internal control flow structures of individual
procedures. Once the analyzer discovers that an
ev ent occurs on a single control flow path through
a procedure, it can conclude that the event is a
side effect of the entire procedure. In contrast, a
flow sensitive summary analysis can only include
an event as a side effect by showing that the event
occurs on every path through the procedure.

Myers has shown that the flow sensitive summary
problems are co-NP complete in the presence of
aliasing [Myer2]. Thus, these problems have no
efficient solution, unless P=NP.

The computation of flow insensitive sum-
mary information has been discussed in the litera-
ture [Bart] [Bann] [Rose] [Myer2]. Previous
treatments leave the impression that the computa-
tion is expensive relative to most of the analytical
algorithms implemented in compilers. In particu-
lar, direct implementation of Barth’s algorithm
requires O(edges) time [Bart], while directly
solving Banning’s equations requires at least
O(nodes× edges) time [Coop]. This paper pre-
sents a set of algorithms for computing flow
insensitive summary information in time nearly
linear in the size of the program being analyzed.
Where previous techniques have treated the com-
putation as a single monolithic problem, our
approach breaks the problem into a pair of sub-
problems, each of which has an efficient solution.
The subproblem solutions can be combined to
solve the original problem.

The techniques presented in this paper have
been developed for implementation in a FOR-
TRAN optimizing compiler imbedded in a pro-
gramming environment [HoKe]. The program-
ming environment provides the compiler with pre-
cisely the resources needed to compute and use
interprocedural information. By retaining physi-
cal control of all program source, the environment
provides the analyzer with easy access to any
existing procedure. Because changes to the
source must be made through the facilities of the
environment, the compiler is assured of notifica-
tion whenever a procedure is changed. This
allows the compiler to determine which programs
and procedures, if any, are impacted by the
changes.

While the environment provides the ana-
lyzer with the support it needs, it also creates a
need for efficient techniques for updating the
MOD information in response to editing changes.
We hav e developed techniques to update the infor-
mation produced by our algorithms in response to
editing changes.

Although this work is motivated by a pro-
gramming environment for FORTRAN, we have
tried to avoid language dependent assumptions.
Throughout this paper, we discuss the problems in
terms of the two lev el name scoping of FOR-
TRAN; a later section of this paper shows that this

is not a serious restriction. Programs are assumed
to be recursive; this allows construction of concise
programs which have pathological characteristics.

To further motivate the problem, consider

the FORTRAN1 program of figure 1. In compil-
ing the main program, the compiler would like to
know the impact of the call to S1 from MAIN on
the value of the variables I and N. If the compiler
knew that S1 did not modify either variable, it
could replace the computation of RESULT with
an assignment of the constant value 18, saving the
multiplication.

Unfortunately, S1 modifies its first parame-
ter, through a series of recursive calls. In fact, the
MOD set for the statement containing the call to

PROGRAM MAIN
COMMON //,M,N
INTEGER I,J,K,L,M,N,RESULT

I = 6
N = 3
CALL S1(I, J, K, L)
RESULT = N*I

END

SUBROUTINE S1(A, B, C, D)
COMMON //,M,N
INTEGER A,B,C,D,E

M = 0
D = 0
E = 0

CALL S1(E, A, B, C)

END

Figure 1

1This example contains recursion, which is forbidden by
all existing FORTRAN standards. This simply allows us to
demonstrate points about the MOD computation in a concise
manner.

S1 is {I,J,K,L,M}. Using this information, the
compiler could replace the reference to N in the
statement following the call with a constant 3, if
this proved profitable.

2. Notation

We must introduce a moderate amount of
notation to describe the components of programs.
Because we are dealing with interprocedural phe-
nomena, we need to discuss the program’s call
multi-graph, = (,). In , there is a node n∈ repre-
senting each procedure and an edge e∈ repre-
senting each call site. Whenever we refer to an
edge e∈ , it is assumed to be e = <u,v>, repre-
senting a call from a procedure u to a procedure v,
unless otherwise stated.

The set of procedures which constitute a
program is and the set of variables in a program
is . The set of formal parameters of a procedure p
is (p). For an edge e, the set of actual parameters
of the call site is (e). We refer to the formal
parameter in position i as (p), similarly for actual
parameters (s). Finally, the set of variables which
are global to a procedure p is (p).

A single statement can contain zero, one, or
many procedure calls. To simplify equations
dealing with the procedure calls in a single state-
ment, we associate a set°(s) which contains the
edges corresponding to the calls made from state-
ment s. For a statement containing no procedure
calls,°(s) is simply∅.

3. Banning’s framework

To provide a background understanding of
the MOD computation, as well as establish termi-
nology, it is useful to present an abbreviated treat-
ment of Banning’s framework for MOD. Banning
posed the MOD computation as a data flow prob-
lem over the program’s call multi-graph , allowing
MOD information to be computed using any of a
number of techniques developed for global data
flow analysis.

Rather than computing MOD directly, Ban-
ning defines two sets which capture the effects
underlying MOD. With every procedure p, he
associates a set GMOD(p), the generalized modi-
fication side effect of p. Similarly with every
statement s, he associates a set DMOD(s), the
direct modification side effect of s. MOD(s) is
simply DMOD(s) extended to account for inher-
ited aliasing effects.

More formally, GMOD(p) contains any
variables which are visible both inside and outside
p which can be modified in some call to p, ignor-
ing aliasing effects. Thus, GMOD(p) is simply
the subset of {∪

s∈p
DMOD(s)} which intersects

((p)∪(p)). The formal parameters are included in
GMOD(p) because they are visible externally as
their corresponding actual parameters.

DMOD(s) contains those variables whose
values can be modified by execution of s, ignoring
potential aliases. Let IMOD(s) be the set of vari-
ables which can be modified by execution of s,
exclusive of any procedure calls in s. Then, if s
contains no procedure calls, DMOD(s) is just

IMOD(s).2 If, however, s contains a procedure
call, DMOD(s) must also include those variables
visible at s which are modified as a result of
executing the body of the called procedure.

For later use, we will define (p) as
∪

s∈p
IMOD(s). (p) is the set of all variables mod-

ified by p, exclusive of any procedure calls in p.
The name (p) arises from the observation that this
set would be used as an initial approximation to
GMOD(p) in an iterative framework for the prob-
lem. This notation differs from that used by Ban-
ning. His IMOD set is our ; our terminology
makes it easier to discuss the side effects of a
statement which are independent of any procedure
calls it contains.

Banning posed a set of simultaneous equa-
tions over the procedures and statements of the
program to determine the values of these sets.
The following equations are equivalent to Ban-
ning’s, although somewhat different in form:

GMOD(u) = ((u)∪(u)) ∩ (∪
s∈u

DMOD(s))

DMOD(s) = IMOD(s)∪

[∪
e∈° (s)

((GMOD(v)∩(v))

∪ backbind
e
{GMOD(v)∩(v)})]

wherebackbind
e

maps (v) into (e) to model refer-

ence parameter binding. Any of the standard
global data flow analysis methods can be used to
solve these equations.

2Unless we consider asynchronous traps and erroneous
computations. See [Spil] and [Henn] for discussions of these
problems.

Given a set of DMOD sets for the call sites
of a program, the corresponding MOD sets can be
produced by augmenting DMOD(s) with informa-
tion about the aliasing relationships which hold on
entry to procedures. An algorithm for this prob-
lem is given in section 4.3 of this paper.

It is useful to examine the results of apply-
ing these equations to the example of figure 1.
This results in a set GMOD(S1) = {A,B,C,D,M},
a set DMOD(e

1
) = {I,J,K,L,M} for the call in

MAIN, a set DMOD(e
2
) = {E,A,B,C,M} for the

recursive call in S1, and a set GMOD(MAIN) =
{M,N}. The GMOD set for MAIN contains only
global variables because MAIN has no parame-
ters. All other variables modified in MAIN are
purely local in scope.

As an aid in understanding our approach to
the MOD computation, it is helpful to formalize
Banning’s treatment. Because much of the under-
lying theory of data flow analysis has been devel-
oped using the machinery of lattice theory, we
will use a semi-lattice data flow framework in the
style of [KaUl]. Constructing such a framework
yields insight into the properties of the problem.

A semi-lattice frameworkfor a data flow
analysis problem is a tuple (G,L,F,M), where G =
(N,E) is a graph modelling the control flow struc-
ture of the text being analyzed, L=(S,) is a semi-
lattice, F:S→S is a function space representing
transformations on the elements of L, and
M:E→F is a mapping from an edge of G into a
function in F. For convenience, we refer to a
framework by the name of the semi-lattice, rely-
ing on context to resolve any ambiguity. The
framework for the GMOD computation is simply
L = (,L,F,M), where C is the program’s call graph.

L is defined as L = (2,), where 2X denotes
the power set of X, and is set union (∪). In this
framework, is , the set of all variables, and is∅,
the empty set. Finally, the meet operation
imposes a partial ordering on the elements of L,
such that

a ≥ b iff a b = b
a > b iff a b = band a≠ b.

In L, ≥ is equivalent to⊆.

The framework’s function space character-
izes the propagation of information along edges in
the data flow graph. For our framework L, F is
the collection of all functions of the form:

f(X) = (A ∩ X) ∪ g{X ∩ B}

where A and B are constant sets, A≥ , B ≥ , and g

is an arbitrary function mapping→ 2.

Finally, M maps an edge in into a function
in F. Giv en an edge e = <u,v> representing a call
from u to v, the function f

e
∈ F associated with e

is defined by the assignment of edge-specific val-
ues to the constants A and B, and to the function
g. For L and F, M assigns the value (v) to A, (v)
to B, and backbind

e
to g. This yields edge-

specific functions of the form:

f
e
(X) = ((v) ∩ X)

∪ backbind
e
{X ∩ (v)}

This propagation function reflects our intuitions
about the problem. The first term, (v)∩X, selects
those names in X which are global to v. The term
backbind

e
{X ∩ (v)} contains the names of any

actual parameters of the call whose corresponding
formals are contained in X.

When applied to an approximation of the
set GMOD(v), this function will return a set
which contains the appropriate names for inclu-
sion in the corresponding approximation to
DMOD(s) as the contribution of procedure v. In
an iterative framework, our initial approximation
for GMOD(v) would be formed by setting
DMOD(s) to IMOD(s), for all statements s in v,
and unioning those values to obtain (v).

There are two primary motivations for pre-
senting Banning’s formulation of the GMOD
problem in this paper: to provide a clear classical
treatment of the problem, and to show the insights
which lead to the new approach presented in the
next section. In particular, we are interested in
insights about the speed with which the problem,
in this form, can be solved. Kam and Ullman pre-
sent a class of data flow frameworks which can be
solved efficiently using the iterative algorithm
[KaUl]. To qualify for membership in this class, a
framework must meet two sets of conditions, a set
of admissibility criteria and a single rapidity con-
dition. Our framework L is anadmissibleKam-
Ullman framework.

An admissible Kam-Ullman framework is
rapid if:

f(X) ≥ X f() ∀ f ∈ F, ∀ X ∈ L.3

There are functions in F which do not meet this
condition, so our framework for GMOD is not
rapid.

To demonstrate this, we plug our characteri-
zation of f∈ F into the Kam-Ullman condition:

f(X) ≥ X f()
f(X) ≥ X ∪ ((A∩) ∪ g{∩B})
f(X) ≥ X ∪ (A∩∅) ∪ g{∅}
f(X) ≥ X

Expanding the left side yields

(A∩X) ∪ g{X ∩B} ≥ X

Clearly, A ∩ X ≥ X. The question is, are there
functions g for which g{X∩B} /≥ X. If such
functions exist, our framework is not rapid. Since

g is an arbitrary map, g:→2, g can carry x∈X into
the complement of X. Such a function is not
rapid.

We should ask, will actual programs gener-
ate such functions? In practice, B is mapped to
(v), so any procedure which passes a purely local
variable as an actual parameter in a procedure call
generates a function which is not rapid. Such a
call will map the corresponding formal parameter,
(v) into (e), where (e) is guaranteed to be outside
X∩(v), since it is a local variable of u.

The problem with implementing a Banning
style formulation of the GMOD/DMOD problem
is computational speed. The presence of call-by-
reference formal parameters complicates a data
flow framework for the problem sufficiently to
prevent it from being either Kam-Ullman rapid or
Graham-Wegman fast. An algorithm for solving
Banning’s framework inO(×) time is pre-
sented in [Coop]. The next section presents a sig-
nificantly faster technique.

4. Dividing the Problem

The problem of computing MOD informa-
tion divides naturally into two separate subprob-
lems: analyzing modifications to global variables
and analyzing modifications to call-by-reference
formal parameters. If we call the subset of
GMOD(u) dealing with global variables

3[KaUl] See observation six, page 166.

GMOD(u) and the subset dealing with reference
formal parameters GMOD(u), and subdivide
DMOD(s) in a similar manner, then the equations
given in section 3 can be re-written as:

GMOD(u) = GMOD(u)∪ GMOD(u)
DMOD(s) = DMOD(s)∪ DMOD(s)

where

GMOD(u) =∪
s∈u

DMOD(s),

DMOD(s) = (IMOD(s)∩ (u)) ∪
(∪

e∈° (s)
GMOD(v) ∩ (v))

GMOD(u) =∪
s∈u

DMOD(s),

DMOD(s) = (IMOD(s)∩(u)) ∪ (∪
e∈° (s)

backbind
e
{GMOD(v)∩(v)})

This effectively splits the problem into indepen-
dent systems of equations for GMOD/DMOD and
GMOD/DMOD. Our technique is to efficiently
solve each problem and combine this information
to produce MOD(s) for each call site.

This division of the problem appears to
assert that the modification of global variables is
completely divorced from the modification of
actual parameters. In fact, this is not the case.
Fortunately, interaction between the two problems
is limited. In the realm of FORTRAN programs,
all such interactions arise as the result of aliasing
relationships which are accounted for by the algo-
rithm which extends a DMOD set to become a
MOD set. In the more general name scoping of
an Algol-like language, we must worry about a
formal parameter being a global variable of an
internal procedure. This case is discussed in sec-
tion 7.

4.1. Computing GMOD

Computing GMOD is much simpler than
computing GMOD for all variables, because the
renaming effects which arise from call by refer-
ence formal parameters at call sites no longer
need to be modelled. The data flow equations for
GMOD are:

GMOD(u) = {∪
s∈u

DMOD(s)}

DMOD(s) = (IMOD(s)∩ (u)) ∪
(∪

e∈° (s)
GMOD(v) ∩ (v))

It is instructive to examine the solution to these
equations for the program given in figure 1. For
the example, the values assigned are:

GMOD(S1) = {M};
DMOD(e) = {M};
DMOD(e) = {M};
GMOD(MAIN) = {N,M}.

This section presents a data flow framework for
computing GMOD(p) for all p∈ .

To simplify the presentation, we show a
data flow framework for GMOD, in the style of
[KaUl]. The framework for GMOD is L =
(,L,F,M), where
is the call multi-graph of the program, as defined
in section 2.

L is defined as (2,), where is the set of all
global variables, and is set union (∪). In L, is
and is . Since is idempotent, commutative, and
associative, L is a semi-lattice.

F consists of the set of all possible propaga-
tion functions for the GMOD computation. Each
function f ∈ F is of the form:

f(X) = A ∩ X

where A is a constant set, A≥ . F is just the col-
lection of all such functions.

The mapping M:→F consists of a rule for
assigning a value to the constant A. For an edge e
= <u,v>, M assigns the value (v) to A, producing
a function

f
e
(X) = (v) ∩ X.

Formulating the GMOD problem in a semi-
lattice framework allows us to show sev eral useful
properties which hold true for the framework.
The function space F is an admissible Kam-
Ullman function space, and the framework is
rapid in the sense of [KaUl]. Because the frame-
work is rapid, a depth first version of the iterative
algorithm will halt on an instance of this problem

in d()+2 passes.4

A version of the iterative algorithm is pre-
sented in [Coop] which efficiently uses the
resources of the programming environment. That
algorithm annotates the nodes and edges of the
call graph with sufficient information to allow
easy updating of the call graph in response to

4For a directed graph G, d(G) is the loop connectedness
of the graph, defined to be the maximum number of back
edges in any cycle free path in the graph with respect to a
given depth first spanning tree. For a reducible graph, d(G) is
independent of the spanning tree chosen [KaUl].

editing changes. The algorithm also allows
deferred updates to simplify synchronization con-
cerns in the environment’s database and limits its
attention to the affected area of the program’s call
graph. By visiting the procedures in an order
analogous to the order specified in [KaUl], the
algorithm can achieve the d()+2 pass time bound.

It should be noted that this framework is
sufficiently simple to be solved quickly by any of
the global data flow analysis techniques which
achieve near linear time bounds. The propagation
functions for GMOD are surely among the most
simple functions of practical interest proposed in
the literature.

4.2. Computing GMOD

Computing GMOD is conceptually more
complex than computing GMOD. The complica-
tions which arise in a direct application of Ban-
ning’s equations result from the renaming which
occurs with call-by-reference formal parameters.
We first present a conceptual framework for com-
puting GMOD and then consider the problem of
performing the computation efficiently.

4.2.1. A Conceptual Framework

To derive GMOD, we build a mapping
which describes the patterns of parameter passing
and renaming at each call site in the program, and
then use this mapping to compute GMOD. The
mapping provides, for each procedure p, a com-
plete list of the formal parameters which can be
bound to each (p), through any chain of call sites
in the program. Because we are only interested in
binding chains through the program, we can
restrict our attention to actual parameters which
are also formal parameters of thecalling proce-
dure.

To capture the effects of parameter bind-
ings, we define the relationmapon the set of for-
mal parameters of the program. A pair (a,b)∈
mapif and only if a = (e), b = (v), and a∈ (u), for
some edge e=<u,v>.Map contains all such pairs.
We will representmap as an m× m bit matrix,
where m is ∪

u∈ (u) . For each formal parameter

of a procedure in the program, there will be an

index 1≤i≤m such that the ith row and column of
map will contain information about that parame-
ter.

The map information for our example pro-
gram is shown in figure 2. Since MAIN has no

Map for example program

S1.A S1.B S1.C S1.D
S1.A 0 1 0 0
S1.B 0 0 1 0
S1.C 0 0 0 1
S1.D 0 0 0 0

Figure 2

formal parameters, there are only four columns
and rows, each labelled with a formal of S1. The
call site in MAIN adds no entries to themap,
since it passes no formals of MAIN. The recur-
sive call in S1 adds entries indicating that A is
bound to B, B is bound to C, and C is bound to D.
It is important to realize that none of these entries
imply an aliasing relationship between two formal
parameters, since any call resulting in the binding
of one formal to another formal of the same pro-
cedure makes the binding across different incarna-
tions or generations of the procedure.

The reflexive transitive closure ofmap,
denoted , can be used to compute GMOD. For
ev ery formal parameter of every procedure in the
program, specifies those formal parameters to
which it can be bound. Sincemap describes all
binding chains of length one, will include all pos-
sible chains of bindings through the program.
Thus, it completely specifies the passing of the
formals of one procedure through other proce-
dures.

Given , computing GMOD should be sim-

ple. Map*[i,j] is true if the formal corresponding
to i can be bound, along some call chain in the

program, to the formal represented by the jth posi-
tion. Therefore, if any variable corresponding to a

true bit in the ith row of is in the set of the proce-
dure which declares it, the formal corresponding
to i should be in the GMOD set of its declaring
procedure. We need not consider the case where a
formal S1.x is bound to a formal S4.y which is in
turn passed out of S4 as an actual and modified in
some indirect call, since the structure of ensures
us that there will also be an entry in showing S1.x
bound to the formal which is eventually modified.

Given and the (p) set for each procedure p,
a simple algorithm can be derived to compute
GMOD(p). Let m be the total number of formal
parameters in procedures of the program. Then is
an m× m matrix, and G is an m× 1 vector. The
bit vector G will represent the sets ((p)∩ (p)) for
each procedure p. Since each formal parameter of
a procedure in the program is represented in both
and G, they are assumed to have the same layout.
To initialize G, set the bit for a formal true if and
only if the formal is in (p) and in (p). Thus a for-
mal’s position in G is set to true only if the proce-
dure in which it is declared modifies it.

Now, GMOD = G + × G, where× denotes
post-multiplication of a bit-matrix by a bit-vector.
This operation can be performed inO(G) bit-
vector operations of lengthG . The resulting vec-
tor, GMOD, has the same layout as G and . It can
be dissected to produce individual sets
GMODσR(p), for each p∈ .

The simplicity of computing GMOD from
makes this approach appealing. Unfortunately,
computing directly is expensive. Using War-

shall’s algorithm, this would requireO(m3) time,
where m is the dimension of [AhHU]. While
there exist faster methods of directly computing
the reflexive transitive closure of a relation, none
of these methods are sufficiently fast. A version
of the iterative algorithm can be constructed
which directly solves Banning’s equations in
O(×) time, assuming that the maximum num-
ber of formal parameters in any procedure is
bounded by a small constant, [Coop]. To
improve significantly on that time bound will
require a means of computing which takes advan-
tage of the underlying structure of the problem.

4.2.2. A Computational Framework

To arrive at an efficient method for comput-
ing , we reformulate the problem to make it more
readily recognizable as a data flow analysis prob-
lem. Observe that each column vector of repre-
sents a subset of∪

n∈ (n). For a column i, the sub-

set contains precisely those formal parameters
which can eventually be bound to the formal
mapped to i. We will call this set the formal’s
boundset. Theboundsets summarize the chains
of binding which occur on all paths between the
root of the call graph and the procedure declaring
the formal parameter.

With each node of the call graph, we associ-
ate a tuple
<b, b, b, ..., b.if 0>0 . tm Line 718 -- I cannot

skip multiple pages
>

where the individual b’s representboundsets of
formal parameters. To simplify the notation, each
tuple has elements, indexed from 0 to Elements b
through b represent theboundsets of each of the i
formal parameters of the procedure corresponding
to the node, and the remaining sets, b and b

i+1

through b are all set to∅.

The tuples associated with nodes in the call
graph are related by the following equation:

tuple(v) =∪
e=<u,v>

f
e
(tuple(u))

where f
e
(t) = s∪ C. Here, s is a tuple constructed

from the elements of t, and C is an edge specific
constant. The tuple s is constructed as

s = <∅, t
back(1)

, t
back(2)

, ..., t
back()

>

where back is a mapping from the actual parame-
ters of the call site to the formal parameters of the
calling procedure. Back is defined as:

back(i) = j iff there is a j s.t. (e) = (u)
= 0 otherwise.

If (e) is also a formal of u, back(i) is the ordinal
position of that formal among the formals of u.
Since back(i) is 0 for any (e) which is not a formal
of u, the positions in s corresponding to such actu-
als contain t, which is defined as∅.

In our propagation function, the constructed
tuple s contains a subset of theboundsets of for-
mals of the calling procedure. The constant C
contains the names of the formals of the calling
procedure which correspond to the elements of s
which are not∅. Thus, C is constructed as:

<∅,
back(1)

(u),
back(2)

(u), ...,
back()

(u)>

Here, we assume (u) is∅. This term introduces
the formal parameters themselves into thebound
sets.

Tarjan defined the single source path
expression problem as, given a graph G = (N,E)
with distinguished source vertex s, annotating
each n∈ N with a regular expression P(s,n) which
represents all paths from s to n in G [Tarj1]
[Tarj2] [Tarj3]. He has formulated a particularly

efficient method for solving this problem. The
algorithm uses two steps to compute expressions
for the paths of a graph. Because all of the call
chains in a program begin with a single node in
the call graph, the program’s main procedure, our
problem can be posed as a single source path
expression problem.

The first step of Tarjan’s algorithm com-
putes a path sequence, an ordering in which to tra-
verse the edges of the graph. For suitable frame-
works, the algorithm computes this path sequence
in O(α(,)) time, where α is the functional
inverse of Ackerman’s function. The path
sequences it produces are of lengthO(α(,)).

The second step of Tarjan’s algorithm is an
elimination algorithm which uses the path
sequence computed by the first phase to compute,
for each node in the graph, a regular expression
which describes the paths through the graph from
the source to the node. By placing appropriate
interpretations on the regular expression operators

∪, , and *, representing respectively the conflu-
ence of paths, the conjunction of paths, and a
cycle in the graph, the elimination step can be
used to compute ourbound tuples. This step
requiresO(n + r) time, where n is the length of the
path sequence and r is the cumulative time
required for regular expression manipulation. For
the complete algorithm to achieve a time bound of
O(α(,)), the regular expression interpretations
must all be computable in constant time.

Interpreting R1 R2

/* compute the joining edge */
temp_tuple← f

<w,x>
(R1)

/* propagate changes across the path forR2*/
for i ← 1 to

for j ← 1 to
if (x) ∈ R2(y)

thenR2(y) ← R2(y) ∪ temp_tuple

Figure 3

Intuitively, the constraint on computing the
closure of an expression in constant time implies
that given the mapping of formal parameters gen-
erated by a single trip around a cycle in the call
graph, we can compute, in constant time, the com-
plete mapping which results from multiple trips
around the cycle. In general, this is not possible.
The following example illustrates this point:

SUBROUTINE S(x, x, ..., x)
...
CALL S(y, x, x, ... x.nm 1

)
...
END

If (S) is unbounded, then the computation of can
take unbounded time.

Fortunately, it is unlikely that (S) is
unbounded. We assume that there is a small con-
stant whichbounds (p) for each procedure p. If
this is true, and is independent of the size of the
program, then the time to interpret the closure of
an expression R can be viewed as a constant.
Hence, Tarjan’s techniques can be used to com-
pute inO(α(,)) time.

Tarjan expresses the requirements which a
problem must meet to be suitable for solution with
his technique as acontinuous data flow frame-
work. Such a framework can be formulated for
the bound-tuple computation. To understand the
time complexity of the resulting algorithm, we
should examine the implementations of the regu-
lar expression operators on the bound sets.

The interpretation of∪ is simply the tuple
constructed by unioning the individual sets which
comprise the tuple. Thus,

T ∪ S = <t∪s, t∪s, ..., t∪s>.

This operation can be done inO(1) time, assum-
ing is a small constant.

ComputingR1 R2is more complex. Here,
R1 is a tuple representing the set of paths from
procedure v to procedure w, and tupleR2 repre-
sents the set of paths from procedure x to proce-
dure y. The junction of the two paths is an edge e
= <w,x>. An algorithm for computing the correct
tuple for the set of paths from v to y which go
through e is given in figure 3. The algorithm sim-
ply computes the addition of the single edge e,
and then uses the knowledge contained inR2 to

Interpreting R1*

/* assuming a cycle from v→ v */
/* build β to represent cycle */
for i ← 1 to

for j ← 1 to
if (v) ∈ R1(v)

thenβ(i,j) ← true
elseβ(i,j) ← false

/* reflexive, transitive closure */

β ← β*

/* useβ to build newboundtuple */

for i ← 1 to
for j ← 1 to

if β(i,j)
thenR1(v) ← R1(v) ∪ R1(v)

Figure 4

directly update itself. This algorithm takesO()
time.

An algorithm to take the closure of the
information represented by a tuple is required to
interpret cycles in the graph. This is shown in fig-
ure 4. The algorithm capitalizes on the fact that
all of the relevant behavior of the cycle is con-
tained in thebound tuple for the node which
begins and ends the cycle, v. The algorithm com-
putes a side data structure, a× arrayβ, takes its
reflexive transitive closure, and uses that closure
to compute the closure of the entire expression.
The dominating cost is the reflexive transitive clo-
sure ofβ, which takesO() time.

Since we assume that is a small constant,
all of the regular expression interpretations
require constant time. Thus, we can annotate the
call graph with the tuples containing the columns
of in O(α(,)) time. This information can then
be used to compute GMOD.

If the reader is uncomfortable with this use
of Tarjan’s algorithm, it should be noted that any
of the structural data flow algorithms can be
applied, using the same assumptions. Michael

Burke of IBM Research has described to us an
interval analysis adaptation of this approach
[Burk]. It is easy to envision equivalent strategies
which would work with the Graham-Wegman
method [GWeg] and the SSFG method [FaKZ].

4.3. Computing MOD

Given GMOD and GMOD, constructing
MOD sets for each statement containing a call site
is a three step process. First, GMOD(p) and
GMOD(p) must be combined to form GMOD(p)
for each procedure p. Next, DMOD(s) is pro-
duced for each call site by projecting the GMOD
set of the called procedure back along the edge,
according to the equation from Banning’s formu-
lation. Finally, DMOD(s) is extended to account
for aliasing, yielding MOD(s).

Computing GMOD(p) is simple: we set
GMOD(p) to GMOD(p) ∪ GMOD(p). This
works because GMOD and GMOD are disjoint,
except when a call site passes a global variable as
an actual parameter. This case corresponds pre-
cisely to alias introduction by a global variable.
The algorithm which derives MOD from DMOD
accounts for aliasing effects and handles this
interaction of GMOD(p) and GMOD(p) naturally.

Given the set GMOD(v), DMOD(s) for a
statement containing a single call site e=<u,v> is
produced by computing an edge specific propaga-
tion function for the GMOD information and
applying it to GMOD(v). The function is based
on the equations from Banning’s framework. This
is done by setting:

DMOD(s) = IMOD(s)
∪ (GMOD(v) ∩ (v))
∪ backbind

e
{GMOD(v)∩(v)}.

This also adds in IMOD(s) to account for any
purely local side effects of s.

To obtain MOD(s), set MOD(s) to
DMOD(s) and add every possible alias of a vari-
able in DMOD(s). To model aliasing information,
we assume that each procedure is annotated with a
set of pairs <x,y>, where <x,y> is interpreted to
mean that x and y can be aliased on some path

leading to an invocation of the procedure.5 The
4 1
5 2 5[Coop] shows an algorithm which computes aliasing
6 3 information in a programming environment.

Computing MOD from DMOD

for each statement s in u
do

MOD(s) ← DMOD(s)

for each x∈ MOD(s)
do /* add aliases */

for each y s.t. <x,y>
are potential aliases
on entry to u

do
MOD(s) ← MOD(s) ∪ y
end

end

Figure 5

algorithm of figure 5 performs this computation.
This computation requires time linear in the size
of DMOD(s) and the number of aliases for vari-
ables in DMOD(s). While the number of poten-
tial aliases can be large, programs with such alias-
ing patterns are difficult to write and understand.
We expect that actual programs do not exhibit
such aliasing patterns.

5. Computational Complexity

Because the presentation of the algorithm
has been interspersed with its derivation, a brief
review of the algorithm and its complexity may be
helpful. We hav e taken the GMOD computation
proposed by Banning and split it into two distinct
problems. The first of these involves annotating
each node with a set GMOD and each edge with a
set DMOD. These sets describe the cumulative
side effects of procedure invocations on the values
of global variables. This data flow problem can
be solved using the iterative algorithm in
O(× d()) time, where d() is expected to be a
small constant.

The second step involves annotating each
node with a set GMOD and each edge with a set
DMOD. These sets describe the cumulative
MOD side effects which involve call by reference
formal parameters. Using Tarjan’s method, this
data flow problem can be solved inO(α(,))
time.

To obtain Banning’s GMOD and DMOD
sets, we simply union the GMOD and GMOD
sets, and propagate along each graph edge the
resulting information in the form of a DMOD set
computed from the new GMOD sets. This
requires visiting each node and each edge once, so
it is aO() operation.

Finally, to derive MOD sets from the
DMOD sets, we extend DMOD by adding in
potential aliases. This operation requires a time
linear in the size of the DMOD set and the num-
ber of potential aliases available on entry to the
procedure containing s. Thus, the cost of comput-
ing the summary information isO((× d()) +
(α(,)) + A) where A is the total number of
potential alias pairs in the program.

6. Updating the Information

For summary information to be useful in
the context of a programming environment, there
must be efficient techniques for updating the sum-
mary information of a program in response to
editing changes in one of its constituent proce-
dures. To update MOD(s), we update GMOD and

Deleting a Variable

G[i] ← false

GMOD ← GMOD not(
.i
)

for each true bit in
.i

where j is its position
do

temp← G
j.

if temp is all false G[j] is false
then GMOD[j]← false
else GMOD[j]← true

Figure 6

GMOD separately. If this results in a change to
GMOD, then we repeat the three step derivation
for MOD(s) presented in section 4.3.

To update GMOD, we rely on techniques
presented in [Coop]. Briefly, the call multi-graph
is annotated with sufficient information to allow
easy updating using a version of the iterative algo-
rithm. The updates maintain the GMOD informa-
tion in response to editing changes and limit their
attention to that portion of the program’s call
graph where the data flow information has actu-
ally changed.

To update GMOD, we have dev eloped a set
of techniques for directly updating . Using the
updated , GMOD is recomputed in the same man-
ner as in section 4.2.1

Because the array concisely expresses the
intricate relationships between the formal parame-
ters of different procedures, it is a useful tool for
updating itself. Te xtual changes to the program
can impact the summary information in two dis-
tinct ways. A change to the source text can
change the initial information from which we
compute the summary information, by adding or
deleting variable names from one of the (p) sets.
Because such a modification does not change the
call graph, we call this a non-structural change. A
change to the source text can also modify the
structure of the call graph and its binding patterns,
by addition or deletion of a call site.

To examine non-structural changes, con-
sider a single variable change in (p). If the change
adds a variable to (p), then we must mark all vari-
ables which can be bound to that parameter as
potentially modified. In a bit vector implementa-

tion, the addition of a modification to the ith for-
mal parameter in G can be accomplished by set-
ting

G[i] ← true
GMOD ← GMOD

.i

where is the booleanor function and
.i

is the i
th

column vector of . Recall that
.i

has a bit set to

true for every variable which can be bound to the
formal parameter corresponding to i, so this oper-
ation simply adds that set of variables to the com-
plete set of GMOD information for the program in
a single step.

If the change removes a variable from (p),
the process is slightly more complex. Since each

variable in the GMOD vector can be included as
the result of distinct entries in the sets of many
other procedures, we can not simply set to false
all GMOD bits arising from the changed variable.
Instead, the update must recompute the potentially
changed bits from scratch. A simple algorithm to
perform this operation is shown in figure 6. Note
that is used to represent the booleanand function
rather than semi-lattice meet. It first removes all
variables from GMOD which can be bound to the

ith formal. Next, for each of these formals, it
examines all formals to which it can be bound. If
one or more of these is in the set of the procedure
declaring it, it is included in GMOD.

Just as the non-structural changes divide
nicely into addition and deletion of individual
variables from the sets, the structural changes
divide into the addition and deletion of call sites.
As with non-structural changes, the update for
addition can only add variables to the GMOD
sets, while deleting a call site can only remove
variables from GMOD sets. Unfortunately, the
updates for both of these cases are complex. In
response to the addition of a call site, new bind-
ings must be added and their impact propagated
both forward and backward in the matrix. After
accounting for the new bindings, an update must
be applied which is identical to that for adding a
variable to .

The actual update for adding an edge is
shown in figure 7. The addition of an edge e =
<u,v> requires detailed explanation. Since the
call site can pass more than a single parameter,
the update is specified for a single actual parame-
ter, and then enclosed in a loop which iterates
over all of the actuals at the new call site.

First, every formal parameter to which (v)
can be bound, in any combination of calls out of v
must have its column vector updated to reflect the
fact that each of the formals which can reach (e)
can now reach it, through the new call site. Recall
that a column vector of , designated

.i
, has a true

bit for each formal parameter which can be bound
to the formal indexed by i. Likewise, a row vector
of , designated as

i.
, has a true bit for every formal

to which the formal indexed by i can be bound.
Thus, we can perform this update by setting each
column vector with a true bit in the row for the
current formal to the logical or of itself and the
column vector for the corresponding actual
parameter in the new call site. This is done in the

Update for Adding a Call Site

for p ← 1 to (e)
i ← index of

p
(e) in

j ← index of
p
(v) in

if not(
ij
) /** if already true, no work **/

then
for each true bit in

j.

where k is its index

.k
←

.k .i

for each true bit in
.i

where k is its index

k.
←

k. j.

.j
←

.j .i

i.
←

i. j.

ij
← true

if GMOD[j]
then GMOD← GMOD

.j

Figure 7

first inner loop.

Next, each variable which can reach (e), in
any combination of calls leading to an invocation
of u, must have its row vector updated to reflect
the fact that it can now reach any of the formals to
which (v) can be bound. In a manner analogous
to the first inner loop, we need to set the appropri-
ate row vectors to the logical or of themselves
with the row vector for the current formal. The
row vectors requiring updates are precisely those
which have a true bit in the column vector corre-
sponding to the current actual parameter. The
second inner loop performs this part of the update.

Having accounted for all of the variables
indirectly involved in the call site, the update must
now account for those directly involved. It
updates the column vector of (v) to reflect new
variables which reach (v) through (e). Likewise,
it modifies the row vector of (e) to account for
new variables which (e) can reach through (v).
Finally, it sets true the entry indicating that (e) is
bound to (v), and updates the bit vector represent-
ing GMOD.

Removing Bindings for a Call Site

for i ← 1 to (v)

if (e) ∈ (u)
then

j ← index of (e) in
k ← index of (v) in

jk
← false

Figure 8

Deleting an edge from a call site is more
complex. Since the information retained by the
algorithm is , it is not easy to back out the impact
of an edge. We do not as yet have a bit-vector ori-
ented solution to this problem. There is, however,
a simple iterative approach which will work.

Assume that a call site corresponding to
e=<u,v> has been removed from the program.
The only information available aboutmap is
encoded in the relation. Deleting e removes a set
of bindings from the program. It is not immedi-
ately apparent from , however, whether or not
equivalent bindings appear along other call chains
in the program. To update the relation, we can
fall back on a fundamental fact about
and theboundtuples. Recall that we formulated
the problem of annotating the graph with tuples as
a data flow problem with the following equation:

tuple(v) =
e=<u,v>

f
e
(tuple(u)).

We can use this equation to produce a two step
algorithm for updating
in response to a call site deletion.

In the first step, all of the bindings involved
in the old call site are removed from . This is
accomplished by the code fragment of figure 8.

As a second step, we can simply apply a
version of the iterative algorithm like that given in
[Coop] and used to update the GMOD informa-
tion. This algorithm will update the tuples of the
program until they become consistent, under the
data flow equations described above.

7. Name Scoping

Throughout this exposition, we have
assumed the two lev el name scoping rules of
FORTRAN. It is important to understand the
impact of more general name scoping rules on the
computation.

The assumption of section 4 is that the
GMOD and GMOD computations are indepen-
dent, except for the interactions caused by the
aliasing effects of reference formal parameters. In
languages which allow lexically nested scoping,
like Algol and PL/I, a second complication arises.

With nested definitions of procedures, there
are cases where, for a variable v, v∈ (p) and v∈
(q). This can only occur if q is lexically nested
inside of p, as in a PL/I internal procedure. In this
case, however, it is easy to envision a program
where v∈ GMOD(q), and q is called from p. As
formulated in section 4, our GMOD computation
will produce incorrect information, since
GMOD(p) will not contain v.

Fortunately, the remedy for this situation is
simple. By solving the GMOD computation
before the GMOD computation, we can construct
our initial vector G from the set

((p) ∪ GMOD(p))∩ (p)

rather than from (p)∩ (p). If we observe this
ordering constraint, the algorithm will produce
correct information for the more general case of
multiply-nested name scopes.

In fact, this observation suggests a slightly
different computational approach to solving the
entire GMOD problem. If we use Tarjan’s algo-
rithm to solve both the GMOD problem and the
bound-tuple problem concurrently, the informa-
tion needed for the computation will be available
at the appropriate time and we will be able to use
a single path sequence computation to solve both
problems.

8. Conclusions

The computation of flow insensitive sum-
mary information has been broken into two sub-
problems, a computation for global variables and
a computation for call-by-reference formal param-
eters. There are techniques to solve each of these
subproblems in nearly linear time, using a rapid
Kam-Ullman framework for the global problem
and Tarjan’s single source path expression

algorithm for the reference formal parameter
problem. The information produced by these two
techniques can be combined to solve the complete
problem, yielding an efficient algorithm for com-
puting flow insensitive summary sets. To apply
these techniques in a programming environment,
we have dev eloped a series of techniques to
update the summary information in response to
editing changes to the program’s source text.

References

[AhHU] A. Aho, J. Hopcroft, and J. Ullman,The
Design and Analysis of Computer Algorithms,
Addison Wesley, Reading, Ma., 1974.

[Bann] J. Banning, "A Method for Determining
the Side Effects of Procedure Calls", PhD Disser-
tation, Stanford University, Aug. 1978.

[Bart] J. Barth, "A Practical Interprocedural Data
Flow Analysis Algorithm". CACMVol. 21, No. 9,
Sept. 1978, pp. 724-736.

[Burk] M. Burke, Private Communication,
November 1983.

[Coop] K. Cooper, "Interprocedural Data Flow
Analysis in a Programming Environment", PhD
Dissertation, Rice University, May 1983.

[FaKZ] R. Farrow, K. Kennedy, and L. Zucconi,
"Graph Grammars and Global Program Flow

Analysis", Proc. 17th Ann. IEEE Symp. on Foun-
dations of Computer Science, Houston, Tx,
November 1975.

[GrWe] S. Graham and M. Wegman, "A Fast and
Usually Linear Algorithm for Global Flow Analy-
sis", JA CM Vol. 23, No. 1, January 1976, pp.
172-202.

[Henn] J. Hennessy, "Program Optimization and
Exception Handling",Proceedings 8th POPL,
Jan. 1981.

[HoKe] R. Hood and K. Kennedy, "A Program-
ming Environment for Fortran", Rice University,
Department of Computer Science Technical
Report, in preparation.

[KaUl] J. Kam and J. Ullman, "Global Data Flow
Analysis and Iterative Algorithms",JA CM, Vol.
23, No. 1, Jan. 1976, pp. 158-171.

[HoKe] R. Hood, and K. Kennedy, "A Program-
ming Environment for Fortran", Rice University,
Department of Mathematical Sciences TR83-22,
1983.

[Myer1] E. Myers, "A Precise and Efficient Algo-
rithm for Determining Existential Summary Data
Flow Information", University of Colorado at
Boulder, Department of Computer Science Tech-
nical Report #CU-CS-175-80.

[Myer2] E. Myers, "A Precise Interprocedural
Data Flow Algorithm", Proceedings 8th POPL,
Jan. 1981.

[Rose] B. Rosen, "Data Flow Analysis for Proce-
dural Languages",JA CM, Vol. 26, No. 2, April
1979, pp. 322-344.

[Spil] T. Spillman, "Exposing Side-Effects in a
PL/I Optimizing Compiler", IFIPS Proceedings,
1971, pp 376-381.

[Tarj1] R. Tarjan, "Applications of Path Compres-
sion on Balanced Trees"JA CM, Vol. 26, No. 4,
Oct. 1979, pp. 690-715.

[Tarj2] R. Tarjan, "A Unified Approach to Path
Problems",JA CM, Vol. 28, No. 3, July 1981, pp.
577-593.

[Tarj3] R. Tarjan, "Fast Algorithms for Solving
Path Problems",JA CM, Vol. 28, No. 3, July 1981,
pp. 594-614.

