
Editing and Compiling Whole Programs

Keith D. Cooper
Ken Kennedy
Linda Torczon

Alan Weingarten
Mary Wolcott

Department of Computer Science†

Rice University
Houston, Texas 77251-1892

Abstract

The programming environment pays systematic attention to the problems entailed in developing,
debugging, and optimizing large programs. This paper reviews the principal mechanisms provided
by to support large programs. It describes the structure used to represent large programs and the
tools that manipulate this structure. It also explores the way that the compiling system handles
whole programs: performing interprocedural analysis, removing redundant modules, and generating
customized procedure linkages.

1. Introduction

An environment designed to support large
software systems must address several problems
of scale. Programmers construct large systems
from smaller subparts. System designers need
tools for describing the interfaces between sub-
parts and for specifying how to combine these
subparts to produce an executable program.
Given a structural description of the program, the
system should automatically construct an
executable that consistently and efficiently imple-
ments the specification. The system must be flex-
ible enough to deal with problems like naming
conflicts and multiple versions of subparts.
Finally, the environment should use its knowledge
of the program to provide both powerful debug-
ging tools and excellent optimization of compiled
code.

The programming environment attempts to
provide coordinated support for programmers

building large numerical software systems in For-
tran [HoKe˜85, CoKT˜85]. It includes a structure edi-
tor for Fortran, called themodule editor, an opti-
mizing module compiler, a debugging interpreter
and anexecution managerall of which interact
with the user under control of a window-based
monitor. Each tool produces information used by
other tools. The principal mechanism for passing
such information is the environment’s database.

Because numerical software systems are
often large, the environment also provides tools
that help manage the development of large sys-
tems. To create a program in the environment,
the software developer builds a concise structural
description of the program, called the program’s
composition. The composition serves as a basis
for performing consistency and completeness
checks on the program’s design, as a set of rules
to direct construction of an executable image, and
as an aid to debugging. All of the environment’s
tools collect information about the program and
its components. The composition also serves as a
focal point for program-specific information; all
such information is stored with the composition.

† This research has been supported by the National Sci-
ence Foundation through grants MCS 81-21844, MCS
83-03638, and DCR 85-03608 and by IBM Corporation.



Many of the environment’s tools use the
composition and its associated information. The
module editor uses the composition to provide the
user with call templates that document the name,
type, and dimension of each parameter at a call
site. The optimizing compiler examines this
structural representation of the whole program
when looking for opportunities for cross-
procedural optimizations. Using information
found in the composition, the debugger can pre-
pare a program for hybrid execution, running
most of the program as compiled code but inter-
preting those procedures being tested.

In this paper we discuss the facilities pro-
vided in for editing and compiling whole pro-
grams. These facilities are provided by two of the
environment’s tools. Thecomposition editorper-
mits the user to interactively define the contents of
a program while checking to insure that the pro-
gram is well-formed. Theprogram compilerpre-
pares a program for execution. We describe these
facilities and show how they cooperate with tools
in the environment to help produce whole pro-
grams.

2. Goals

The environment supports the construction
of whole programswith tools for creating, modi-
fying, and manipulating composite objects. These
tools address the following issues:

• system contents— The system designer must
be able to specify which components make up
a composite object and where each of them
can be found.

• system structure— The description of the sys-
tem must display its structure. Notationally, it
must be clear which component provides each
resource and which resources each component
uses.

• system consistency— The programmer must
be able to define interfaces to component sub-
systems so that the environment can check
whether a proposed systems satisfies such
specifications.

• system documentation— The tools for manip-
ulating composite objects should provide con-
venient ways for entering and updating docu-
mentation in order to encourage builders and
maintainers to write it.

• system efficiency— The compiling system
should improve the efficiency of compiled

code because of its detailed knowledge about
program structure.

The program’s composition provides the unifying
structure for the tools that specify, modify, and
compile programs in . The composition editor
allows the user to browse, create, and modify
compositions for programs, libraries, and compos-
ite modules. The program compiler analyzes a
composition and its associated source modules to
detect opportunities for interprocedural optimiza-
tion and collect information that aids in perform-
ing purely intraprocedural optimization. Like
other tools in the environment, they produce
information used by other tools.

3. Fundamental Notions

This section introduces the structures and
notation used to describe programs in the environ-
ment.

3.1. Units

A unit is the fundamental object in the envi-
ronment. In , all the familiar components of a
large system, like programs, libraries, and source
code modules, are represented as units. A unit
has animplementationand two sets that define its
name scoping properties:

(1) its requires set contains all entry points
referenced but not defined in its imple-
mentation.

(2) its provides set contains all entry points
defined in its implementation that are
available for external reference.

The requires and provides sets correspond to
imports and exports lists. Thus, a unit can be
viewed as an implementation along with sets that
describe its interaction with the surrounding name
space.

In general, a unit’s implementation is a list
of other units that it includes. The degenerate
case, asimpleunit, has a Fortran source file as its
implementation. In , a simple unit is also called a
module. A compoundunit has a list, called its
memberslist, as its implementation. Elements of
a compound unit’smemberslist are defined either
directly by sets, in the case of aninternal subunit,
or by a named reference to anexternalsubunit. A
compound unit is also called acomposition.



3.2. Name Scoping

The notion of name scoping used in fol-
lows naturally from this structural view of units.
Each unit constitutes a distinct name scope; its
provides set defines the set of internally defined
names available to a unit that includes it. Simi-
larly, a unit’s requiresset defines the set of names
the unit inherits from its immediately enclosing
scope. Either set may specify a binding of an

internal name to an external name.1 This scheme
has reasonable flexibility. For example, a single
compound unit can contain multiple implementa-
tions of a single entry point, provided the imple-
mentations occur in different subunits and the
appropriaterequiresand providessets prevent both
names from reaching a common scope.

The scheme also has a clean simplicity.
The set of names visible inside a given scope
namedC is simply

requires(C) ∪
x∈C
∪ provides(x).

Throughout this paper, we use the notationx∈C in
place of x∈members(C) whenever the meaning is
clear.

3.3. Consistency and Completeness

A well formed composition satisfies certain
constraints. A compositionC is consistentif it
fulfills the following two criteria. First, its name
space must be well formed, that is, for anyx∈C
andy∈C such thatx ≠ y,

(1) provides(x) ∩ provides(y) = ∅,

(2) provides(C) ⊆
x∈C
∪ provides(x), and

(3) each of its subunits is consistent.

Second, all of its call sites must be type consistent
with the corresponding entry points. This means
that each call site in the composition agrees with
the corresponding entry point in terms of the num-

ber of parameters and the type of each.2

A compound unit may also becomplete.
Formally, a compositionC is completeif

1 For the sake of simplicity, equations in this paper that
involve requiresor providessets ignore renaming effects.

2 To facilitate enforcing this requirement, therequires
and providessets store the number of parameters and the
type of each parameter with each entry.

(1)
x∈C
∪ requires(x) −

x∈C
∪ provides(x) ⊆ requires(C),

and

(2) each of its subunits is complete.

A complete unit has no unimplemented entry
points, except those named in itsrequiresset. In ,
a program is simply a consistent, complete com-
position with an emptyrequires set, along with a
designated main entry point.

3.4. A Sample Composition

These ideas are best illustrated through an
example. Suppose we are implementing a pro-
gram that requires an efficient sorting routine, say
quicksort, and we wish to use the linear-time
median finding algorithm to select the pivot ele-
ment. The median finder needs another sorting
routine for small sets, for examplebubblesortto
deal with sets of fifty or fewer elements.

Figure 1 shows an instance of the composi-
tion editor. Its leftmost pane, thecomposition
pane, shows one possible implementation of our
sorting program. The innermost composition,
namedmedian, contains one of the two modules
needed for the linear median algorithm, bubble-
sort. It doesn’t yet include an implementation for
the entry point median. This composition is
included, in turn, in a composition namedquick-
sort, which is one of the subunits of the outermost
composition, namedexample.

The example illustrates the facilities for
managing name scopes. Because theprovidesset
of the compositionmedian doesn’t containsort,
the entry inside modulebubblesortcan’t be seen
outside that composition. Thus, it doesn’t conflict
with the entrysort provided by the modulequick-
sort. The compositionquicksort, in turn, makes
the entrysort available externally under the name
qsort by renaming it in theprovides set. The
example also illustrates the power of this system
for structural description. The median finder is
encapsulated into one composition while the main
sorting procedure is encapsulated into another.
Throughout, comments are used to elucidate the
program map.

4. Composition Editor

The composition editor is a structure editor
for a module interconnection language. Because
the language was designed in concert with the edi-
tor, it has a simple, graphically-oriented, concrete
syntax. The editor allows the user to specify



Figure 1. Sample Composition Editor Display

which modules are incorporated in a composition
and where their source is to be found. It sub-
sumes the functions of the linkage editor input
language in traditional systems and the module
interconnection and configuration management
languages of modern programming systems
[DeKr˜76, MiMS˜79, Tich˜82, LaSc˜83, LeMc˜85].

The composition editor allows the user to
edit a composition’smemberslist and itsrequires
and provides sets. The user can add and delete
subunits from thememberslist. Subunits can be
modules, external compositions referenced by
name, or internal compositions. The details of
internal compositions are also available for edit-
ing. Additionally, the user can add or delete
entries from therequires and provides sets and
specify renamings. The editor supports searching
for specific entries in single compositions or

collections of libraries. It also provides a mecha-
nism for automatically completing a composition
through library search.



Like most tools in , the composition editor
produces information needed by other tools. In
particular, for a given compositionC, it produces:

(1) members(C), requires(C) and provides(C).

(2) Makefile(C) — the input to the3 utility
make required to produce an executable
for C using standard tools.

(3) CallGraph(C) — information to help the
program compiler construct the program’s
call graph.

(4) EntryTable(C) — a map from each entry in

x∈C
∪ provides(x) to the subunit ofC that pro-

vides it.

It also performs the necessary checks to ensure
that the composition is consistent.

4.1. The Display

To simplify the editor’s display, the editor
window is divided into several panes. Each pane
hierarchically displays its data using an elision
mechanism like that found in the module editor.
The user can choose from several different elision
settings. For example, the programmer can dis-
play all the entries in an unfamiliar library while
showing only the names of other libraries.

An instance of the composition editor
appears in Figure 1. The uppermost pane in the
window is thetitle pane; it identifies the window
as a composition editor. Directly below thetitle
pane is the editor’sbutton pane; it contains but-
tons for functions applied to the entire editor.
There are also buttons associated with individual
panes; their functions apply only to the contents
of that pane. Section 4.2 describes the function of
the various buttons.

The remaining space divides into four sepa-
rate panes. The leftmost pane, called thecompo-
sition pane, contains the current composition.
Each unit is represented by a header and an
indented implementation. The header displays the
unit’s name along with itsrequires and provides
sets. The implementation is either a module or a
memberslist. The example composition has two
primary units,driver[versn12] andquicksort. The
latter is a compound unit. Its internal components
and their requires and provides sets are shown.

3 is a trademark of AT&T Technologies.

The internal subunitquicksortprovides theqsort
entry by redefining the entry pointsort provided
by quicksort[working]. The programmer could
hide these internal details using the elision mecha-
nism.

The upper right pane, called thelibrary
pane, displays the current set of libraries in their
search order. Libraries are displayed hierarchi-
cally, with several elision options. Libraries may
be inserted or deleted from the list, but their inter-
nals may not be edited in this pane.

Immediately below thelibrary pane is the
entries needed pane. It displays all the unresolved
entries in the composition. In a compositionC, an
entry is unresolved if it is called by some unit inC
and is neither provided by a subunit nor contained
in requires(C). Thus, theentries needed panedis-
plays all the members of the set given by:

provides(C) ∪
x∈C
∪ requires(x) −

x∈C
∪ provides(x) − requires(C).

If this set is non-empty, the composition is incom-
plete.

Below theentries needed paneis thecopy
buffer pane. It displays subunits that have been
clipped for copying from one pane to another.

4.2. Editor Functions

An element is selected by clicking the
mouse on it. Editing functions are invoked using
one of two mechanisms: clicking on a button or
clicking on a selected item.

Clicking the mouse on a selected item
brings up a menu of editing commands. These
commands include operations to insert, cut, and
paste objects. Using these familiar functions, the
user can interactively build compositions. The
menu includes a visit selection; if a module or an
external composition is selected, this function
invokes the appropriate editor on the selected
item.

The editor’s button pane contains three
functions. Thedatabasebutton appends a pane to
the right hand side of the window and invokes the
database browser inside that pane. Thesavebut-
ton writes the current composition back to the
database; it includes options for saving the com-
position under a new name. Therun button
invokes the execution monitor to prepare an



executable for the current composition and run it.

There are two buttons associated with each
of the composition paneand the library pane.
They provide equivalent function in each pane.
The mgmt button provides a menu to control the
elision mechanism. Thesearch button provides
facilities for textually searching the pane’s current
contents.

The entries needed panehas three buttons.
The resolve button invokes a library searching
mechanism. The editor searches, in order, the
current members of the library list for each
selected entry and adds the first implementation of
each entry to the composition. Of course, adding
implementations to the composition can add
entries to the list of unresolved entries. If the
entire list is selected, the editor attempts to
resolve any entries added as a result of its own
searching. Thequery button invokes the search
mechanism to locate the next implementation of a
selected entry in the library list. By repeating
this, the user can step through all the implementa-
tions of an entry. As in the other panes, the
search button provides a textual search of the
pane.

The copy buffer panehas only one button.
The drop button deletes the current element from
the copy buffer.

4.3. Composite Modules and Libraries

Since a library is also a composition, it may
be viewed as a composite module and may be
incorporated into another composition. This facil-
ity is particularly useful because the program
compiler doesn’t include modules containing
unused entries in executables. Thus, if a library
contains several needed modules that must be
used together, the programmer can simply include
the entire library. If some entry in the library con-
flicts with an entry in the composition, the offend-
ing entry can be hidden using the normal name
scoping facilities.

When a composition appears in thelibrary
pane, the user can select any individual subunit of
its memberslist, but cannot directly select ele-
ments of those subunits. This facility allows a
library designer to package a set of entries that
must be used together as a single subunit, ensur-
ing that any search which includes one entry will
add all the related entries.

4.4. Autoinclude Libraries

The linkage editor, ld, provides the
autoinclude library, a useful feature that cannot be
duplicated using the scheme presented so far.
Using ld, the programmer can provide one or
more default libraries that behave in the following
fashion: if any entry has no implementation,ld
searches the libraries, at linkage time, for one. In
a later compilation, if an implementation is
expressly provided for the entry, the autoincluded
module is no longer included.

The pervasive use of this feature in leads us
to believe that it is worth providing an equivalent
mechanism in . Thus, a library may be added to a
composition inautoincludemode, so that modules
from the library are automatically added as
needed to provide entries and deleted when they
become either unnecessary or duplicates.

This feature differs from the wholesale
inclusion of libraries. While including whole
libraries is useful, it does not permit the inclusion
of two libraries that have conflicting entries. The
autoinclude feature permits this, deleting autoin-
cluded entries as explicit duplicates are added to
the composition.

4.5. Program Updates

If a system like the environment is to be
truly useful, consideration must be given to the
problem of program updates. For example, the
system must deal with the situation that arises
when a programmer edits and changes one of the
component modules of a program in a way that
makes the program incomplete, or worse, incon-
sistent.

In , we have taken a middle ground. The
system prevents the user from making a change to
a module when that change might make the pro-
gram inconsistent. While this sounds restrictive,
in practice it isn’t. The only change that can make
a program inconsistent is adding a new entry to a
module. Thus, the system prevents addition of
entries to a module once that module has been
incorporated into a program. This is not a severe
restriction since the programmer need only define
a new module containing the changed source and
build a new program composition around it.

On the other hand, changes to modules
which would only make the program incomplete,
such as adding a call or deleting an entry, are per-
mitted since the environment allows incomplete



programs in the database. If a user makes such a
change, the system will notify them and mark the
incorporating program incomplete. This gives the
programmer the flexibility to continue editing the
module and fix the program composition later.

In all cases, program updates are bound by
the basic guidelines for permissions in the envi-
ronment[HoKe˜85]. In particular, public programs
may not be modified, nor may any modules incor-
porated in a public program.

5. Program Compiler

Fortran users expect their compilers to gen-
erate excellent code. In , we plan to improve the
efficiency of compiled code through systematic
use of interprocedural analysis. Indeed, one of the
primary goals of the project is to mount a con-
certed attack on the problems of performing inter-
procedural analysis and optimization in a compil-
ing system[CoKT˜86a]. The compilers in the envi-
ronment attempt to optimize whole programs
instead of independent subroutines. A recent esti-
mate by Conradi suggests that ambitiously opti-
mizing whole programs can lead to improvements
of up to twenty percent in run-time efficiency
[Conr˜83].

To provide effective support for optimizing
whole programs, we have divided the compilation
process between two compilers: amodule com-
piler and aprogram compiler. The module com-
piler consists of an optimizer and code generator
for single modules. It corresponds to the back end
of a traditional optimizing compiler. Theprogram
compiler, the principal innovation of the optimiza-
tion strategy in , manages the optimization of the
whole program.

The program compiler is anincremental
compilation systemfor whole programs, where
the single source module is the incremental unit.
The program compiler is invoked after a change to
either a module or the program composition. To
construct an executable, it

• analyzes the program to discover what inter-
procedural information has changed,

• uses a special technique calledrecompilation
analysis to determine which source modules
need to be recompiled[CoKT˜86b],

• inv okes the module compiler to perform the
individual recompilations, and

• builds a new executable for the program.

Using its knowledge about the entire program, the
program compiler can perform optimizations that
are difficult to implement in a traditional indepen-
dent compilation system. Tw o examples that we
will examine are eliminating redundant module
implementations and replicating definitions to
improve optimization.

5.1. Incremental Updates

To improve the quality of the code it gener-
ates, the program compiler computes various
types of interprocedural information. As part of
the design work for the environment, we have
developed the fastest known technique to compute
flow-insensitive interprocedural summary and
aliasing information. The algorithm requires
O(Eα (E, N)) time, whereE is the number of call
sites in the program,N is the number of proce-
dures in the program, andα is an extremely slow
growing function bounded above bythe functional
inverse of Ackermann’s function. The algorithm
and incremental updating techniques for the infor-
mation it produces are described in detail in other
papers[CoKe˜84, CoKe˜86].

In response to an editing change, either to
the program’s composition or the source of one of
its components, the program compiler updates the
program’s interprocedural information. Because
programs can be large, the program compiler
chooses the most cost-effective mechanism to
achieve this goal. Tw o different techniques are
available to it: recomputing the summary and
aliasing information, or updating the information
with an incremental technique. The literature
dealing with analogous global problems suggests
that the latter is preferable. Unfortunately, the
interprocedural data flow problems solved by the
program compiler are more complex than typical
global problems. In some cases, complete recom-
putation may be less expensive.

To see this point, consider the algorithm for
computing summary information. We cannot
directly compute the summary information effi-
ciently because of complications introduced by
the combination of call-by-reference parameter
binding and name scoping rules. Instead, the
Cooper-Kennedy technique constructs a mapping
that describes the parameter binding behavior of
the program; the mapping can be used to directly
construct the desired interprocedural sets. The
incremental update techniques involve either an



update to the mapping relation, a recalculation of
the desired sets from the mapping, or both. The
updates fall into two categories: informational
changes or structural changes.

In response to an informational change, the
program compiler can simply change the initial
fact sets for the changed procedure and redo the
direct computations using the old mapping rela-
tion. These updates requireO(1) bit-vector steps.
For both types of update, the length of the bit-
vectors is proportional to the number of proce-
dures in the program.

In response to a structural change, the pro-
gram compiler must update the mapping relation.
This requires far more work than an informational
change. Each structural change requires an
update that takesO(N) bit-vector steps in the
worst case, whereN is the number of procedures
in the program.

Thus, given a set of changes, the program
compiler must decide whether to apply the batch
algorithm or the incremental algorithm. While the
constant of proportionality on the batch algorithm
is large, for a sufficient number of structural
changes the batch algorithm becomes an inexpen-
sive alternative to the incremental update. So, the
program compiler uses the number of call site
additions and deletions as the key factor in decid-
ing how to construct consistent interprocedural
information.

This section has discussed only the updat-
ing techniques for summary and aliasing sets. We
are currently investigating incremental techniques
for updating sets describing interprocedural con-
stants[CCKT˜86].

5.2. Eliminating Redundant Modules

While the hierarchical style of composition
supported in provides the user with tools for
abstracting away details about the implementation
of modules, it can also give rise to very large
executables due to multiple inclusions of a single
module in different subunits. Rather than imple-
ment mechanisms to eliminate redundancy in the
composition itself, we rely on the program com-
piler to determine the minimal number of copies
of each module required to correctly implement
the composition. By applying this space opti-
mization, the environment allows the user the
organizational expressivity of trees coupled with
the storage efficiency of acyclic graphs. As a side

effect, this optimization deletes any module not
reachable from the main program entry point.
This allows the programmer to include whole
libraries in a composition without concern for the
size of the resulting executable.

Ignoring the linkage tailoring considera-
tions discussed in the next section, a module can
generally be implemented with a single copy of its
body. To understand the exception to this rule,
consider a modulem that calls entry pointe. If m
appears in two subtrees of the composition ande
is provided by different modules in each subtree,
then a single copy ofm doesn’t suffice to correctly
implement the composition. The compiler could
avoid this problem by using a complex calling
sequence. Instead, generates two copies of such
a module, allowing the program compiler to deter-
mine when different instances of such a module

can be coalesced.4

To determine when it is safe to coalesce
multiple copies of a module, the program com-
piler examines an annotated version of the pro-
gram’s call graph. Each node in the graph repre-
sents a module in the program and is labeled by
the module’s name. The edges represent calls
from within one module to entries within another
and are labeled by the name of the called entry
point. The program compiler constructs the initial
call graph by starting at the root and creating
nodes for module instances as it encounters calls
to entries they contain. If it finds duplicate
instances of a module, it creates a node for each
instance. This creates a graph that contains only
modules actually reachable from the program’s
main entry; at the same time, the graph may con-
tain multiple nodes with the same name.

The minimization procedure is shown in
Figure 2. It operates by examining sets of nodes
that can be correctly implemented by a single
copy of the procedure. In a setS, it looks for two
nodesx and y that have arcs labelede going to
nodes that are members of different sets. If such
nodes exist, we say thatx and y have acall con-
flict. Two nodes can be coalesced only if they
have no call conflicts. The algorithm uses a work-
list of sets,Candidates, that may need to be parti-
tioned. The algorithm stops whenCandidatesis

4 To preserve the semantics of Fortran’s SAVE state-
ment, the two code bodies share a single static storage area.



(1) Partition the nodes into sets by label. Ini-
tialize Candidatesto contain all sets consist-
ing of more than one node.

(2) WhileCandidatesis non-empty,

Remove anelementS from Candidates.

Partition S into setsT1, T2, . . . , Tn such
that nodesm1, m2 ∈ Ti iff all edges leav-
ing m1 andm2 have no call conflict.

For every set containing a nodeVk that
calls an entry inTi and a nodeVl that
calls an entry inTj , i ≠ j , add that set to
Candidates.

Figure 2

empty. At this point, all the nodes in a single set
can be coalesced. The compiler makes a pass
over the graph to coalesce nodes and relabel the
arcs appropriately.

The number of sets considered during the
algorithm is bounded by 2N, whereN is the num-
ber of nodes in the graph. During execution of the
algorithm, a set can be on theCandidateslist at
most twice. A set may be placed on theCandi-
dates list once during initialization. Once a setS
is removed from the list, it can only be placed
back on the list one time, the first time that split-
ting another set creates a call conflict between
members ofS. Because a set placed on the list
this way is always partitioned, it no longer exists
and cannot reappear onCandidates. Thus, a set
appears on theCandidateslist at most twice, so
step 2 requires at mostO(N) iterations.

5.3. Interprocedural Optimization

The program compiler analyzes the pro-
gram and selects one of several ways to imple-
ment each procedure call. It assigns linkage
styles to call sites in a way that is likely to
improve the run-time performance of the resulting
code. Deciding how to handle each call site is a
complex problem.

At each call site, the program compiler
chooses from three alternatives:

(1) it can performinline substitution, replac-
ing the call site with a copy of the called

procedure’s body appropriately modified
to model parameter binding;

(2) it canclone the called procedure, binding
the call site to a copy of the procedure
invoked only by call sites with similar
interprocedural properties; or

(3) it can generate astandard procedure call,
assigning the call site to an instance of the
procedure body shared in common by all
call sites that invoke the procedure.

We call the problem of assigning call styles to call
siteslinkage tailoring.

Each call style has advantages and disad-
vantages. Inline substitution completely elimi-
nates the overhead of the procedure call and
results in optimizing the called procedure specifi-
cally to the run-time situation at a single call site;
it can also lead to exponential growth in the size
of the resulting program. Procedure cloning can
prevent call sites that require full generality from
inhibiting optimization at call sites where the gen-
erality isn’t needed; it also carries with it a space
penalty. Generating a standard linkage incurs no
space penalty; unfortunately it opens up no new
ground for interprocedural optimization.

To assign call styles to call sites, the pro-
gram compiler uses a conceptually simple tech-
nique. First, any procedures that are called from
only one call site are marked for inline substitu-
tion. Second, any procedure whose anticipated
code size is smaller than the size of the procedure
linkage is marked for inline substitution. These
two cases remove from the analysis all call sites
where inline substitution is always profitable. For
each remaining call site, the program compiler
estimates the anticipated improvement and code
size growth and then enters this alternative in a
priority queue ordered by estimated improvement.

For each remaining call site, the potential
improvement must be estimated assuming inline
substitution and procedure cloning. Thus, for
each call site, the program compiler estimates the
improvement possible with inline substitution and
enters that information in the queue. Next, each
procedure is examined. If the information on
incoming call graph edges differs enough to make
improvements from cloning likely, it enters that
alternative into the queue.

Given the initialized queue, the program
compiler removes the most profitable linkage
from the queue, marks the call graph accordingly,



and updates its estimate of final code size. It
repeats this process until the estimated final code
size reaches a predetermined multiple of the origi-
nal estimated code size. This condition prevents
the exponential explosion of code size possible
with a complete inline substitution. All remaining
call sites receive standard linkages.

The one remaining issue is computing esti-
mated improvement. In , the editor will produce
an estimate of possible improvement due to inter-
procedural information using a technique similar
to that described by Ball[Ball˜79]. To obtain the
estimated improvement for a call site, it estimates
the improvement possible in the called procedure
based on the information known at the call site. It
then multiplies that estimate by a static estimate
of dynamic execution frequency. The estimated
execution frequency is derived from the loop nest-
ing depth of the statement within the procedure
and an approximation of the loop nesting depth
along all acyclic paths from the program’s main
entry point to the call site. The estimated
improvement for a cloned procedure is the sum of
the estimates of the effected call sites.

An interesting opportunity exists for one
further optimization on the call sites that have not
been substituted inline. By changing the calling
sequence, the program compiler can move the
prologue code across the call site boundary into
the calling procedure. Assuming the prologue
code is reasonably short, the space growth would
be proportional to the number of call sites in the
program. However, in return for this growth, the
module compiler would get the opportunity to
optimize the prologue code with the calling proce-
dure. For example, the module compiler could
move loop-invariant prologue code out of loops
that contain call sites. In particular, large parts of
the code to establish the addressability of parame-
ters is likely to be loop invariant.

Rather than applying this optimization at all
call sites, the program compiler could transform
only those call sites where it appears that an
actual run-time improvement would occur. How-
ev er, it is likely that the overhead of tracking this
partial application of the optimization across the
lifetime of the program would overwhelm the
benefits gained from applying it. Since the space
penalty for partially opening up each call is rea-
sonably small, the program compiler will either
apply this transformation to all call sites or to
none, depending on the level of optimization

selected by the user.

6. Implementation Status

The current version of the programming
environment runs on both the IBM RT/PC and the

SUN Workstation.5 It includes stable versions of
many tools, including a module editor, debugging
interpreter, execution monitor, documentation edi-
tor, database browser, calculator, and help proces-
sor. The current version of the composition editor
implements the features described in section 4,
except for autoinclude libraries. It was installed
in the environment at mid-summer, replacing an
earlier prototype. A skeleton program compiler
that builds interprocedural information has been
part of the environment since early 1986. The
program and module compilers are under con-
struction; we expect to install them in the environ-
ment in early 1987. Currently, the environment
uses the utilitiesmake and f77 to construct an
executable with a makefile automatically pro-
duced by the composition editor.

6.1. Acknowledgements

The implementation team has provided us
with a marvelous vehicle for experimenting with
our ideas. In particular, Kim Taylor and Scott
Alexander worked on earlier versions of the com-
position editor. The example composition for
quicksort using the linear median finder is due to
Robert Hood. To all these people go our heartfelt
thanks.

References

[Ball˜79] J.E. Ball. Predicting the effects of
optimization on a procedure body.
Proc. of the SIGPLAN 79 Symposium
on Compiler Construction, SIGPLAN
Notices 14(8), August 1979, 214-220

[CCKT˜86] Callahan, D. Cooper, K.D., Kennedy,
K. and Torczon, L. Interprocedural
constant propagation.Proc. of the
SIGPLAN 86 Symposium on Compiler
Construction, SIGPLAN Notices 21(7),
July 1986, 152-161.

5 RT/PC is a trademark of IBM; SUN is a trademark of
SUN Microsystems, Inc.



[Conr˜83] R. Conradi, Inter-procedural optimiza-
tion of object code. TR 25/83, Divi-
sion of Computer Science, University
of Trondheim, Trondheim-NTH, Nor-
way, 1983.

[CoKe˜84] K.D. Cooper and K. Kennedy. Effi-
cient computation of flow insensitive
interprocedural summary information.
Proc. of the SIGPLAN 84 Symposium
on Compiler Construction, SIGPLAN
Notices, 19(6), June 1984, 247-258.

[CoKe˜86] K.D. Cooper and K. Kennedy. Flow
insensitive interprocedural problems.
In preparation.

[CoKT˜85] K.D. Cooper, K. Kennedy and L. Torc-
zon. The impact of interprocedural
analysis and optimization on the
design of a software development envi-
ronment. Proc. of the SIGPLAN 85
Symposium on Language Issues in
Programming Environments, SIG-
PLAN Notices 20(7), July 1985,
107-116.

[CoKT˜86a] K.D. Cooper, K. Kennedy and L. Torc-
zon. Optimization of compiled code in
the programming environment.Proc.
of the Nineteenth Annual Hawaii Inter-
national Conference on Systems Sci-
ences, January 1986, 492-502

[CoKT˜86b] K.D. Cooper, K. Kennedy and L. Torc-
zon. Interprocedural optimization:
eliminating unnecessary recompila-
tion. Proc. of the SIGPLAN 86 Sympo-
sium on Compiler Construction, SIG-
PLAN Notices 21(7), July 1986, 58-67.

[DeKr˜76] F. DeRemer and H.H. Kron. Program-
ming-in-the-large versus program-
ming-in-the-small. IEEE Trans. Soft-
ware Engineering SE-2(2), June 1976,
80-86.

[HoKe˜85] R.T. Hood and K. Kennedy. A pro-
gramming environment for Fortran.
Proc. of the Eighteenth Annual Hawaii
International Conference on Systems
Sciences, January 1985, 625-637.

[LaSc˜83] B.W. Lampson and E.E. Schmidt.
Organizing software in a distributed
environment. Proc. of the SIGPLAN
83 Symposium on Programming Lan-
guage Issues in Software Systems, San

Francisco, 1983, 1-13.

[LeMc˜85] D.B. Leblang and G.D. McLean. Con-
figuration management for large-scale
software development efforts.Work-
shop on Software Engineering Envi-
ronments for Programming-in-the-
large, Harwichport, Massachusetts,
June, 1985.

[MiMS˜79] J.Mitchell, W. Maybury and R. Sweet.
Mesa language manual. Technical
Report CSL-79-3, Xerox Palo Alto
Research Center, Palo Alto CA, April
1979.

[Tich˜82] W.F. Tichy. A data model for pro-
gramming support environments and
its applications. Automated Tools for
Information Systems Design (H.-J.
Schneider and A.L. Wasserman, eds.).
North-Holland, 1982.


