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Abstract

We present a new algorithm for computing interprocedural aliases due to passing parameters by
reference. This algorithm runs inO(N2 + NE) time and, when combined with algorithms for
alias-free, flow-insensitive data-flow problems, yields algorithms for solution of the general flow-
insensitive problems that also run inO(N2 + NE) time.

1. Introduction

Interprocedural analysis of the side effects of subrou-
tine invocation has been widely discussed in the litera-
ture [Spil 71, Alle 74, Bart 78, Bann 79, Rose 79, Myer 80, Burk 84,

CoKe 84, BuCy 86, CaRy 86, CoKe 87, Call 88, CoKe 88, HoRB 88].
Banning first suggested the approach of decomposing
interprocedural data-flow problems into two subcompo-
nents: the problem of analyzing potential aliases and
the alias-freedata-flow analysis problem[Bann 79]. For
many important data-flow analysis problems, these two
subproblems can be solved independently and the
results combined later to produce a general solution.
Cooper and Kennedy have shown that alias-free flow-

insensitive problems1 can be solved inO(N + E) bit
vector steps ofO(N) length, whereN and E are the
number of nodes and edges of the program’s call graph,
respectively. Thus, the overall running time of the algo-
rithm isO(N2 + NE) [CoKe 88].

The best previous algorithm for single-variable
alias analysis requires at leastO(N3 + N2E) time
[Coop 85]. Hence, the time to solve the alias problem
dominates the computation of the complete solution.
Furthermore, once aliases are determined, there still
remains the problem of integrating them with the solu-
tion of the alias-free problem to produce a general
result. A naive solution to this problem can easily take
O(N2E) steps.

In this paper we present a new algorithm for
alias analysis that requiresO(N2 + NE) steps, along
with a method for integrating the solution with the solu-
tion to the alias-free problem inO(NE) steps. It builds
on the fundamental insight, developed in our previous
work, that significant advantages can be achieved by
separating the treatment of reference formal parameters
from the treatment of global variables. Combining this
result with our previous work yields a method for pre-
cise solution of flow-insensitive summary problems in
time proportional to the size of the call graph times the
number of variables in the program.

This paper divides into nine sections. Section 2
introduces the problem of interprocedural alias analysis
and shows how it relates to a particular interprocedural
summary problem. Section 3 introduces the assump-
tions we make about the relationship of certain problem
parameters to the size of the call graph. Section 4
describes the graphical representation that the algorithm
will use, thebinding graph. Section 5, we present the
algorithm for languages with a simple two-level nesting
structure. Section 6 sketches how to extend the method
to languages with general procedure nesting. Section 7
discusses practical implementation details. Section 8
proposes several areas for future work. Finally, section
9 contains a summary of the results.

† This work has been supported by the National Science
Foundation through grants CCR 86-19893, CCR 87-06229,
and ASC 85-18578 and by IBM Corporation.

1 Some researchers use the terms ‘‘may’’ and ‘‘must fol-
lowing Barth[Bart 78]. Howev er, we prefer Banning’s classifi-
cation of side-effects as ‘‘flow-insensitive’’ and ‘‘flow-
sensitive’’ because the terminology reflects the precise defini-
tion that he provided for this distinction[Bann 79].



2. The Problem

Whenever a program can reference a single storage
location using two different variable names, those
names are said to bealiases. In the following example,
formal parameters f3 and f4 must be considered aliases
on entry to q, since the call at s4 passes y to both of
them.

global x, y, z
...
procedure p(f1, f2)
s1: call q(f1, z)
s2: call q(f2, f1)
end
...
procedure q(f3, f4)

...
end
...

s3: call p(x, z)
s4: call q(y, y)

The goal of alias analysis is to determine, for each vari-
ablev that is visible in procedurep, the set of variables
that may be aliases ofv in some invocation ofp.

Throughout this paper, we will use the interpro-
ceduralMOD problem as our example. In that problem,
one wishes to determine, at each call sites, the set of
variablesMOD(s) that may be modified as a side effect
of the call. Banning observed that the treatment can be
simplified by first computingDMOD(s), the set of vari-
ables that may be modified by execution ofs, ignoring
any aliasing effects in the procedure containings, and
factoring aliasing in later. In other words,MOD(s) can
be computed by adding toDMOD(s) any variable that
may be aliased to a member ofDMOD(s). For the pur-
poses of this paper, we will only consider aliases that
are generated through the use of reference formal
parameters to procedures.

Hence, the problem is to compute, for each vari-
ablev and procedurep in the program, a setALIAS(v, p)
of the variables visible in p that may be aliased tov
within p. Then for a call sites in p, we can compute
MOD(s) by the equation

(1)MOD(s) = DMOD(s) ∪
v ∈ DMOD(s)

∪ ALIAS(v, p) .

From the naive point of view, if we assume that each
DMOD set is of lengthO(N) and eachALIAS set is of
lengthO(N), this operation will requireO(N2) time at
each of theE call sites in the program or at leastN2E
time overall. Thus, one of the challenges of producing
a faster algorithm is to reduce the time required for this
operation.

We assume a simple language that supports
recursion and in which parameters are passed to proce-
dures by reference. Procedures may be declared within
other procedures and scoping is static — that is, code
within a procedure may reference any variable that is

known in the procedure that contains its declaration.2

Thus, the language resembles Pascal with simple vari-
ables and call-by-reference binding and the analysis is
relevant to both Fortran and C.

3. Problem Parameters

It will be critical in the analysis that follows to deter-
mine which problem parameters grow as the size of the
total program grows and which remain relatively con-
stant. In a program consisting of many procedures, we
will make the following assumptions:

1) The number of formal parameters to any procedure
is relatively constant and bounded from above by
the constantcP.

2) The maximum depth at which a procedure is nested
in the program is a constantdP.

3) The total number of variables in the program is pro-
portional to the number of proceduresN.

4. The Binding Graph

This method uses thebinding graphintroduced in our
previous work on alias-free flow-insensitive summary
problems [CoKe 88]. It is a natural adaptation of the
scheme used in Torczon’s algorithm for interprocedural
constant propagation[Torc 85, CCKT 86]. The program’s
binding graph,β = (Nβ , Eβ), represents interactions

between formal parameters. Nodes inNβ uniquely rep-

resent the formal parameters of the various procedures
in the program. Edges inEβ represent individualbind-

ing events. If p callsq from some call sites and f1 gets
bound to f7 at s, then there is an edge (f1, f7) ∈ Eβ .

Sincep can callq several times, bindingf1 to f7 at each
call site,β may be a multi-graph. Becauseβ reflects the
pattern of binding chains in the program, it will almost
certainly consist of a number of disjoint components.

The binding graph for the program fragment
shown in Section 2 looks like:

2We assume, without loss of generality, that each vari-
able is mentioned in only one declaration.



f1 f2

f3f4

s2 s2s1
β for

example
program

We will use this example throughout the paper.

How large isβ? Since the complexity of data-
flow algorithms is usually stated in terms of the size of
the underlying graph, this issue is crucial to our later

complexity analysis.3 The important comparison is to
the program’s call graph,C = (N, E). C contains a
node for each procedure and an edge for each call site.
Since we have assumed that no procedure in the pro-
gram takes more thancP formal parameters, wherecP

is a constant independent of program size, we have
Nβ ≤ cP N andEβ ≤ cP E.

The binding graph can be constructed in time
linearly proportional to its size by simply visiting each
of the call sites in the original call graph. The construc-
tion need not represent a node unless it is the endpoint
of an edge inEβ . Thus, 2Eβ ≥ Nβ , everywhere.

5. Algorithm Overview

The important insight in the algorithm is that significant
savings can be achieved if we treat formal parameters
and global variables separately. Although the total
number of formal parameters in the program can be as
large asO(N), the number visible from any particular
point in a program is bounded bycPdP, a constant. On
the other hand, there may beO(N) global variables vis-
ible from any point in the program.

Now consider the alias sets. Ifv is a variable
that is global to procedurep and is not a formal param-
eter to any procedure in whichp is nested,ALIAS(v,p),
its alias set withinp, can consistonly of formal param-
eters visible from p. Hence, its alias set can have no
more than a constant (cPdP) number of members. This
is because each global variable is mapped to a particu-
lar location in storage and two global variables may not
be mapped to the same location unless one of them is a
formal parameter to which the other is passed through a
series of calls (or both are formal parameters to which
the same location is passed). On the other hand, ifv is
a formal parameter, its alias set can contain any global
variable. Hence it can be as large asO(N). We will
take significant advantage of this observation in

3 We use set names likeN
β

to name both the set and its

cardinality The meaning should be clear from the context.

designing the algorithm.

The algorithm has four distinct phases.

1) Solve a forward data-flow problem overβ to com-
puteA( f ) for each formalf . A( f ) is the set of vari-
ablesv such thatv can be aliased tof by virtue of a
call chain that bindsv to f .

2) Find all pairs of formal parameters that can be
aliased to each other. This involves constructing a
pair-wise analogue ofβ, calledπ, and using a mark-
ing algorithm to propagate the pairs of formals over
π.

3) Use the solutions from steps 1) and 2) to compute
preciseALIAS sets.

4) Combine the preciseALIAS sets with the results of
an alias-free summary analysis to derive the solu-
tion for the general summary problem.

The following subsections explain the individual phases
in greater detail.

5.1. Two-Level Model

For simplicity, we describe the algorithm for the case of
a two-level nesting hierarchy where only global and
local variables are permitted, as in Fortran or C. The
extension of this method to languages that permit gen-
eral nested procedure declarations will be discussed
later.

Assume that some number of variables can be
declared local to each routine and some number can be
declared global to the whole program. A local variable
is visible only in the routine where it is declared, while
global variables are visible everywhere. Formal param-
eters are local variables that are bound to addresses
dynamically by reference parameter passing.

In the discussion that follows, we will assume
that all alias sets are represented by bit vectors of the
appropriate length, eitherO(N) or cPdP. In this model,
inserting a single element into a set takes constant time,
as does testing a set to determine if it contains some
specific element. Set initialization, set union and set
intersection take time proportional to the size of the
largest possible set. In some cases this will be a con-
stant; in others it will beO(N).

5.2. Phase 1: Global Aliases

For each formalf in the program, letA( f ) be the set of
variablesv that may be aliased tof at its instantiation
by virtue of a call chain that passesv to f . Note thatv
must be visible at the instantiation off — that is, v
must be visible in the procedure to whichf is a formal
parameter.



/* Reduce to a directed acyclic graph */
1 find the strongly connected components ofβ;
2 for eachstrongly connected componentc do
3 replacec with a representer noden;

/* Initialize */
4 for eachnodex in the reduced binding graphdo
5 A(x) := ∅;
6 for eachcall sites do
7 for eachglobal variablev passed to formalf at s do
8 A( f ) := A( f ) ∪ { v};

/* Traverse the binding graph */
9 for eachnode f in β in forward topological orderdo
10 A( f ) : = A( f ) ∪

(g, f )∈Eβ
∪ A(g) ∩ GLOBAL;

/* Set values for nodes in a cycle */
11 for eachstrongly-connected componentc do
12 for eachvertex f ∈ c do begin
13 letn be the representer node forc;
14 A( f ) := A(n);
15 end

Figure 1 - Global Alias Computation

To computeA(v), we make a forward pass over
the binding graph according to the algorithm shown in
Figure 1. As we observed in our previous work, the
binding graph can be reduced to an acyclic graph, by
simply treating all the variables in a cycle as the same
variable, and shrinking the cycle to a single node. Once
the graph is so reduced, the algorithm initializes the
globals that can be passed to each formal, then propa-
gates these sets forward along the binding graph, taking
unions when two paths merge. When the computation
is complete, each node that was part of a cycle in the
original binding graph inherits theA set from its repre-
senter.

The running time of this phase is dominated by
the loops at lines 4, 6 and 9. The loop at line 4 per-
formsO(N) bit-vector operations of lengthO(N). The
nested loop at line 6 performsO(N2) single element
insertions, a constant-time operation. The loop at line 9
performsO(E) bit-vector operations, one for each edge
in the binding graph, of lengthO(N). Hence, the entire
phase takesO(N2 + NE) time.

Since a global variable can only become an alias
by being passed to a formal parameter of a procedure in
which the global is visible,A( f ) contains all the global
variables that can be aliased tof . Thus, we can now
compute theALIAS sets for each global variable in the
program by a simple inversion.

1 for eachprocedurep do begin

2 for each g ∈ GLOBAL do
3 ALIAS(g,p) := ∅;

4 for each formal parameterf of p do
5 for each g ∈ A( f ) do
6 ALIAS(g,p):= ALIAS(g,p) ∪ { f };
7 end

The loop at line 1 is iteratedN times and the loop at
line 2 is iteratedO(N) times but, since each of the alias
sets for a global variable in a particular procedure can
have no more thancP elements, the overall cost of line
3 is only O(N2) operations. The loop on line 4 is iter-
atedcP times and the one on line 5 is iterated no more
thanO(N) times, so the overall cost of this loop and the
entire inversion isO(N2).

Consider applying Phase 1 to the example from
Section 2. Becauseβ is acyclic, the reduced graph is
just β. The loop at line 7 will find the following bind-
ings:

call site s1 s2 s3 s4

z→f4 — x→f1 y→f3
z→f2 y→f4

bindings

The propagation step (the loop at line 9) computes theA

sets for each formal parameter.



f1 f2 f3 f4

A(f) x z x,y,z x,y,z

Applying the inversion procedure produces correct
ALIAS sets for the global variables.

ALIAS x y  z

p f1 — f2

q f3, f4 f3, f4 f3, f4

5.3. Phase 2: Formal Pair Analysis

Because formal parameters can become aliased by sev-
eral different mechanisms, the computation of aliases
for formal parameters is much more subtle. Tw o formal
parameters can be aliased to one another if a single
variable is passed to both formals at some call site.
Similarly, if a call site passes a global variable to one
formal parameter and one of its aliases to another, the
call site creates an alias between the corresponding for-
mal parameters of the called procedure. Furthermore,
formal parameter alias pairs can be passed from routine
to routine if the aliased formal parameters are both
passed at the same call site.

To analyze this situation, we must do two things:
determine the points at which two formals become
aliased to one another and trace the propagation of alias
pairs through the call chains.

To compute the points where pairs of formal
parameters become aliases, we note that aliasing is
introduced in two ways:

1) the same variable is passed in two different actual
parameter positions at a call site, or

1 for eachcall sites do begin;

2 if variablex is passed to two different formal parameters
3 f1 and f2
4 then mark (f1, f2) an initial alias pair;

7 else if f0 is a formal parameter of the procedurep
containings, and f0 is passed to formalf1
of procedureq called ats

8 then
9 for eachparameterx passed to another formal

parameterf2 at the same call sitedo
if x∈ALIAS( f0) then

12 mark (f1, f2) an initial alias pair;
13 end

Figure 2 - Marking Parameters onπ

2) a formal parameterf0 of routine p is passed to for-
mal parameterf1 of procedureq and some global
g ∈ A( f0) is passed to formal parameterf2 of q at
the same call site.

The algorithm shown in Figure 2 finds all pairs of
parameters (f1, f2) to the same procedure that may
become aliases in either of these fashions. Since there
are at most a constant number of parameters at each of
the E call sites in the program and testing for member-
ship is a constant-time operation on bit vectors, this
operation takesO(E) time.

To analyze the propagation effects, we make use
of an analogue of the binding graph called thepair
binding graphπ = (Nπ , Eπ ). In this new graph, each
vertex is a pair of formal parameters to the same proce-
dure and each edge represents a possible mapping of an
alias pair in one procedure to an alias pair of another
procedure called within it. This graph is needed to
insure that we determine pairs of parameters that can be
mapped to the same location along the same path
through the call graph.

Since there are at mostcP parameters to each of
the N procedures in a program, there are fewer than
c2

PN or O(N) vertices in the pair binding graph. Fur-
thermore, since each pair of vertices can map to no
more thanc2

P different pairs at a given call site, there
must be fewer thanc4

PE or O(E) edges in the pair bind-
ing graph. Hence, the pair binding graph is only a con-
stant factor larger than the call graph. In practice, we
expect that it will remain fairly small.

We associate with each node in the pair binding
graph a mark which indicates whether or not the pair
can be aliases. The marks are initiallyfalse, but some
are set to true by the alias introduction algorithm of



Figure 2. Now the marks are propagated by a simple
bit-pushing algorithm.

1 let the worklistW initially contain all
marked nodes as determined by the
alias introduction routine above;

2 while W ≠ ∅ do begin
3 select and remove a pair p from W;
4 for eachedge (p, q) ∈ Eπ do
5 if q is unmarkeddo begin
6 markq;
7 W := W ∪ { q};
8 end
9 end

When the algorithm halts, every pair of formal parame-
ters that can be aliased to one another is marked. The
pair binding graph is needed in this algorithm because
two formal parameters can be aliased to one another
only if they are mapped to the same locationalong the
same paththrough the call graph. The simple binding
graph doesn’t contain sufficient information to trace
these propagations.

Since each node can be put on the worklist at
most once and each edge can be examined at most
once, this phase takesO(N + E) steps.

Returning to our example program fragment, its
pair binding graph looks like:

(f2,f1)

(f3,f4)

s2
π for

example
program

Applying the marking algorithm to this graph yields
only one marked node, (f3,f4). It is discovered by the
test at line 2 applied to call site s4. The bit-pushing
algorithm removes the sole marked node from the
worklist, discovers that it has no outward edges, and
halts.

5.4. Phase 3: Formal Parameter Alias Sets

The setA( f1) is an approximation to the set of possible
aliases to a given formal parameterf1. It contains those
global variables that may be directly mapped to a for-
mal along some path through the call graph. We claim
this comprises all the global variables that can be
aliased tof1, because mapping into a formal parameter
via a chain of reference parameter passing at call sites
is the only way for a global to become an alias of a for-
mal parameter.

Therefore, the only other candidates for aliases
of f1 are other formal parameters of the same proce-
dure. To compute the correct alias sets we must add
each formalf2 that may be aliased tof1, as determined

by the marking algorithm of the previous section. This
is accomplished by the following algorithm.

1 for eachprocedurep do
2 for each formal parameterf1 of p

do begin
3 ALIAS( f1,p) := A( f1);
4 for each formal parameterf2 of p

that may be an alias off1
5 do
6 ALIAS( f1,p) = ALIAS( f1,p) ∪ { f2};
7 end

Since there areN procedures, each with at mostcP

parameters, and since the alias sets for formal parame-
ters are of sizeO(N), the complexity of this phase is
O(N2).

Applying this algorithm to the sets for our exam-
ple program, we find that it initializes each formal’s
ALIAS set to itsA set. The loop at line 4 adds f4 to
ALIAS(f3) and f3 to ALIAS(f4). (Recall that Phase 2
found only that one pair alias, between f3 and f4.) This
yields the correctALIAS sets for all the formal parame-
ters in the program.

ALIAS f1 f2 f3 f4

p x z —  —

q — — x,y,z,f4 x,y,z,f3

5.5. Phase 4: Integration

Recall that we have alias sets of two sizes. Ifx is a
global variable,ALIAS(x,p) can only contain formal
parameters ofp and hence need not be larger thancP

bits. If x is a formal parameter,ALIAS(x,p) can contain
any global and the bit vector representation will have
lengthO(N).

We capitalize on this fact in the algorithm to
integrate theALIAS and DMOD sets, shown in Figure 3.
The complexity of this phase is determined by the loops
at lines 4 and 8. The loop at line 4 performs at mostcP

operations of lengthO(N), while the loop at line 8 per-
forms up toO(N) operations of lengthcP. Hence the
overall complexity of this phase isO(NE).

To apply this algorithm to our example, we must
add a side-effect to procedure q. Assume that q modi-
fies its formal parameter f4, soGMOD(q) is {f4}. This
results in the following sets:

s1 s2 s3 s4

DMOD z f1 x,z y

MOD z,f2 f1,x x,z y

The loop at line 4 adds x toMOD(s2), while the loop at
line 8 adds f2 toMOD(s1).



1 for eachcall sites in the programdo begin
2 let p be the procedure containings;
3 MOD(s) := DMOD(s);
4 for each formal parameterf of p in DMOD(s) do
5 MOD(s) = MOD(s) ∪ ALIAS( f ,p);
6 let tempAbe a bit string of length equal to the number of

formal parameters ofp;
7 tempA:= ∅;
8 for eachglobal variablex in DMOD(s) do
9 tempA:= tempA∪ ALIAS(x,p);
10 expandtempAto a bit string of full length by inserting zeros

in the positions not represented in the short form;
11 MOD(s) := MOD(s) ∪ tempA
12 end

Figure 3 - Integrating ALIAS and DMOD

Since the complexity of each phase of the algo-
rithm is less than or equal toO(N2 + NE), this is a
bound for the entire algorithm.

6. General Nesting

Let us now reexamine the algorithm under the assump-
tion of general nesting. We must show how each step
of the program can be extended to handle nesting lev-
els. There are two principal problems introduced by
nesting.

1) Formal parameters of a routine defined at levelk
can be globals to a procedure at levelk + 1. This
complicates the construction of the binding graph
and the pair binding graph, makes it more difficult
to identify alias introduction points and causes more
work in updating the alias sets after pair propaga-
tion.

2) Variables defined at levelk cannot be global to a
procedure defined at levelk − 1. This will force a
revision of Phase 1, which propagates global vari-
ables along the binding graph, because a variablex
defined at levelk cannot be aliased to any parameter
of a procedure defined at levelk − 1.

In the discussion below we will make use of one impor-
tant insight regarding the number of formal parameters
visible from any procedure in the program. Although
the total number of formal parameters in a program can
be O(N), from a given procedurep, the only parame-
ters that are visible are the parameters ofp itself and
parameters of procedures in which it is nested. The
total number of procedures that can be nested isdP (not
counting the main procedure, which has no formal
parameters). Since we have assumed thatdP is a con-
stant independent of program size, the total number of
formal parameters visible from any procedure is also
bounded by a constant,dPcP. We will sometimes refer

to the entire collection of parameters visible fromp as
theextended formal parameter setof p.

6.1. Phase 1: Global Aliases

The problem of constructing a binding graph in the
presence of nesting was discussed in connection with
our previous work on flow-insensitive side-effect analy-
sis [CoKe 88]. The same construction will work for
alias propagation as well. Therefore, let us concentrate
on the problem of propagation.

A naive way to address the problem of nesting
levels in this phase is to solve for global aliases by lev-
els. Begin by applying the algorithm in Figure 1 of
Section 5.2, taking as global only those variables
declared at nesting level 0. Next, delete all edges (f , g)
whereg is a parameter of a procedure at level 0 from
the binding graph and apply the algorithm in Figure 1,
taking variables declared at level 1 as global and adding
these to theA sets for formal parameters computed for
the previous level. Continue in this manner until all
nesting levels have been processed. Since the total
number of passes will be at mostdP and each pass can
take no more thanO(N2 + NE) time, the entire process
takesO(N2 + NE) time.

In practice, reconstructing and reanalyzing the
binding graphdP times can be avoided by noticing that
problems only arise when cycles occur in a graph. If
there are no cycles, the algorithm in Figure 1 can be
slightly modified to handle the problem. Iff is a for-
mal parameter of procedurep, we defineABOVE( f ) to
be the set of all variables that are declared at a nesting
level equal to or greater than the nesting level ofp.
Then we can replace line 10 of the first algorithm of
section 5.2, with the statement



A( f ) : = A( f ) ∪
(g, f )∈Eβ

∪ A(g) ∩ ABOVE( f );

This prevents variables that are not visible from within
the procedurep from being added to the alias set forf .

In this framework, a cycle can be handled by
processing it when its representer would be processed
in line 10 of the algorithm in Figure 1. Instead of
applying line 10, expand the representer node to the full
cycle and perform a level-by-level analysis on the sub-
graph to get theA sets for each formal in the cycle.
Then continue with the algorithm normally. This
should be significantly more efficient than reconstruct-
ing the entire binding graph on each pass.

Once theA sets are computed, the alias sets for
global variables can be computed by an inversion that
differs from the one in Section 5.2 in that any member
of the extended formal parameter set for a procedure
may be aliased to a global in that procedure. IfdP is a
constant, as we have assumed, the total number of
extended parameters is still a constantcPdP. Suppose
we defineGLOBAL(p) to be the set of variables that are
global to procedurep and not formal parameters of any
procedure in whichp is nested. Then the following
modified inversion routine can be used.

1 for eachprocedurep do begin

2 for each g ∈ GLOBAL(p) do
3 ALIAS(g,p) := ∅;

4 for each f in the extended formal
parameter set ofp do

5 for each g ∈ A( f ) do
6 ALIAS(g,p):= ALIAS(g,p) ∪ { f };
7 end

By analogy with the analysis of this algorithm in Sec-
tion 5.2, the entire inversion requiresO(N2) time
because no more thancPdP formals, the maximum
number in the extended formal parameter set, can be
aliased to a global variable in a given procedurep.
Hence the same time bound holds for the modified
algorithm.

6.2. Phase 2: Formal Pair Analysis

To handle formal pair analysis, the pair binding graph
must be correctly constructed in the presence of proce-
dure nesting. Using a direct analogue of the trick for
constructing the binding graph with nesting, we view
formal parameters of procedures in which the declara-
tion of p is nested as an extended set of formal parame-
ters of p. Suppose there is a procedureq that contains
procedurep. If there are two parameters ofq, say f1

and f2 and a call site inp where f1 and f3 are passed to
f4 and f5, we put an edge in the binding graph between
( f1, f2) and (f4, f5) if f2∈A( f3). This is illustrated by

the following example.

procedure q(x,y);
procedure p(z);

...
call s(x,z);
...

end
procedure s(a,b);

...
end
...
call p(y);

end

In addition to the obvious edge from (x,z) to (a,b), we
would also construct an edge from (x,y) to (a,b)
because z is an alias of y at the call site to s.

With this construction of the pair binding graph,
the algorithm in Figure 2 of Section 5.3 will work cor-
rectly if line 7 is modified to consider extended formal
parameters. The second algorithm in Section 5.3 works
without change. Both retain their time bounds.

6.3. Phase 3: Formal Parameter Alias Sets

In the algorithm of section 5.4, the only formal parame-
ters that could be aliases of one another were the
parameters of the same routine. Hence, the simple
marking algorithm of section 5.4 identified all of the
possibilities. With nesting, however, it is also possible
that two parameters of different routines, one nested
within the other, can be aliased to one another. The
only way this can happen is for there to be a pair of for-
mals, f1 and f2, of some procedurep aliased to one
another (this would be discovered by the pair computa-
tion) and a third parameterf3 to a procedureq nested
within p such thatf2∈A( f3). Then f1 and f3 are poten-
tial aliases inq. This principle is illustrated in the fol-
lowing example.

procedure p(x,y);
procedure q(z);

...
end
...
call q(y);
...

end

If (x,y) is marked as an alias pair, we must add x to the
alias set for z in q, and vice versa, since y is passed to z.
Note that y and z would be recognized as potential
aliases in Phase 1.

Thus, to correctly compute the alias sets for for-
mal parameters, we must use the modified procedure
shown in Figure 4. The success of this algorithm



1 for eachprocedurep do
/* Copy alias sets from above */

2 for each formal parameterf global top
and visible within itdo

3 ALIAS( f , p) : = ALIAS( f , q),
whereq is the procedure in whichp is declared;

/* Process parameters of the current procedure */
4 for each formal parameterf1 of p do begin
5 ALIAS( f1,p) = A( f1);
6 for each formal parameterf2 of p

or of any procedure in whichp is nested
such thatf2 may be an alias off1 or
of some formal inA( f1)

7 do begin
8 ALIAS( f1,p) := ALIAS( f1,p) ∪ { f2};
9 ALIAS( f2,p) := ALIAS( f2,p) ∪ { f1};
10 end
11 end

Figure 4 - Modified ALIAS Computation

depends on visiting the procedures of the program in an
outside-in order. That is, procedurep is only visited
after procedures in which it is nested have been visited.
This insures that the assignment in line 3 gets the right
versions of alias sets for global parameters.

To see the correctness of this algorithm, recall
that Phase 1 correctly computes the alias sets for global
variables. In addition, iff is a formal parameter of
procedurep andg is a parameter of some procedure in
which p is nested andg is passed tof by a series of
calls, A( f ) containsg. The only aliases off missing
from A( f ) are those that arise from pair binding—a sin-
gle variable is passed to two different formal parame-
ters which are passed through a sequence of formal
parameter pairs top or a routine in whichp is nested.
Any pair of formal parameters for which this is true
will be marked by Phase 2. Now all that remains is to
add to the alias set forf all formal parameters that can
be aliased tof because of pair binding. This can hap-
pen if f itself is a member of a pair or some member of
a pair visible inp is passed tof by a sequence of calls.
In either case, the other member of the pair should be
added toALIAS( f , p). In addition, a symmetric addition
should be performed, as it is in line 9.

Next, we consider the complexity of the algo-
rithm in Figure 4. Since there arecPdP parameters vis-
ible from any procedure, line 3 is executed at most
cPdPN times and contributes no more thanO(N2) to
the time bound. A similar analysis bounds the cost of
line 5. The test in line 6 is entered at mostcPN times
and can be implemented by searching through all the

pairs of aliased formals that are visible withinp—there
are no more thanc2

Pd2
P of these—to see if one member

of the pair is inA( f1) or is equal tof1. Thus, the test
takes at most constant time and the updates in lines 8
and 9 takeO(N) time. Therefore, the overall cost of
this phase is O(N2).

6.4. Phase 4: Integration

The integration algorithm can be run unchanged if the
test in line 4 of the algorithm in Figure 3 (Section 5.5)
considers extended formal parameters. That is, look for
parameters of the current procedure and any procedure
it is nested within. The time bounds still hold because
there are at mostcPdP of these and the alias set for any
global variable that is not a formal parameter can have
no more thancPdP elements in any giv en procedure.

7. Implementation Considerations

Phase 2 can be implemented without ever constructing
the pair binding graph itself. Suppose we associate
with each procedurep a setPAIRS(p). Initially, all these
sets are empty. Whenever the alias introduction calcu-
lation indicates that a pair ofp’s formal parameters
may be aliased, we add that pair to a worklist. We then
extract elements from the worklist one at a time.
Whenever we extract a pair (f1, f2) of parameters top
from the worklist, we check to see if it is already in
PAIRS(p). If not, we insert it and visit every call site in
the body ofp, including those of procedures nested in
p. If one of the parameters in the pair, sayf1, is passed
to parameterf4 of procedureq at that call site and



another parameterf3 of some procedure withinp is
passed tof5 at that call site, then we add (f4, f5) to the
worklist if f2 = f3 or f2∈A( f3). Since we only visit call
sites when we have a new pair, we visit each call site no
more than a constant number of times, because there
can never be more thandPcP pairs that can affect any
call site. As a result no pair can be put on the worklist
more thanO(E + N) times and the time bound follows.

The same trick can be used to implement Phase
1 without building the binding graph. However, since
the lattice of values being propagated is not bounded,
the time bound will not hold. Nevertheless, this may be
effective in practice because the only problem arises in
cycles, which are likely to be infrequent and small
when they do occur.

8. Future Work

In the course of developing this method, a number of
interesting problems have presented themselves for
future work:

1) Callahan has demonstrated an algorithm for alias-
free flow-sensitive summary problems that runs in
time proportional toN times the size of thepro-
gram summary graph[Call 88]. We believe that
information about aliases can be used to improve
the precision of the answers to some, but not all,
problems solvable with his method.

2) The method we have presented computes informa-
tion about variables that may be aliases. While it is
unlikely that exact must-style alias information can
be computed efficiently, it may be possible to com-
pute useful approximations to such sets with effi-
cient techniques.

3) This method treats arrays in a very naive way — as
single names. A more sophisticated treatment of
arrays, in the style of Callahan and Kennedy’s regu-
lar section analysis, might produce useful informa-
tion about the offsets and patterns of overlap in a
program[CaKe 87].

We intend to pursue each of these ideas.

9. Conclusions

We hav e introduced a new interprocedural analysis
algorithm for computing aliases due to call-by-
reference parameter binding. This algorithm has a
complexity ofO(N2 + NE) whereN is the total number
of procedures in the program andE is the number of
call sites. It is amenable to bit-vector implementation
and uses the same graphical representation as our algo-
rithms for the alias-free summary problems[CoKe 88]

and interprocedural constant propagation[Torc 85,

CCKT 86].

We hav e demonstrated how the method can be
used to produce a general solution to an interprocedural
summary problem from the solution to the alias-free
problem. This process takesO(NE) time. When com-
bined with previous results on the flow-insensitive anal-
ysis of alias-free problems[CoKe 88], this produces an
algorithm for solving these problems in time propor-
tional to the size of the call graph times the number of
variables in the program.

The time bound achieved is asymptotically the
fastest known. We expect variants of this algorithm to
be extremely fast in practice.
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