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1. Abstract

Compilers for languages with call-by-
reference formal parameters must deal with
aliases arising from the renaming effects at call
sites. This paper presents a set of techniques for
analyzing aliasing patterns. The analysis is
divided into detecting the introduction of aliases
and tracking their propagation. The algorithm for
introduction analysis is simple enough to be per-
formed in a structured editor or parser. A data
flow analysis framework is given for the propaga-
tion problem, making it possible to solve using
standard algorithms from global data flow analy-
sis. Several optimizations are shown which can
shrink the size of the problem, and extensions are
given to handle Algol-style name scoping.
Finally, this technique is compared to an alterna-
tive implementation strategy and an approxima-
tive technique.

2. Introduction

Any compiler for a language which has
call-by-reference formal parameters must deal
with potential aliases involving formal parame-
ters. In traditional optimizing compilers, this
complication is handled in one of two ways: either
the compiler intentionally ignores aliasing or else
it avoids many optimizations involving either
global variables or call-by-reference formal
parameters. This problem is of particular concern
to compilers which attempt to look across proce-
dure boundaries to gather information and per-
form optimizations. Several such systems have
been either designed or implemented [Alle] [Spil]
[HoKe].
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Mechanisms for gathering information
about aliases have been examined in some depth
in the literature. Barth worked the aliasing com-
putation into his relational formulas for comput-
ing flow-insensitive interprocedural summary
information [Bart]. In Banning’s dissertation, he
gives an aliasing algorithm which follows parame-
ter binding chains through the program in a depth
first fashion to compute possible aliases [Bann].
Myers presents an algorithm for solving the alias-
ing problem which is similar in flavor to the work
presented here [Myer].

While the techniques proposed in the litera-
ture certainly work, the papers presenting these
techniques have largely dealt with aliasing as a
side issue. As a result, they provide the reader
and the implementor with little intuition into the
underlying problem. This paper gives a tutorial
treatment of the analysis of aliases arising from
the use of call-by-reference formal parameters.
The analysis is formulated as a data flow analysis
problem, allowing the compiler writer to use any
of the standard techniques from global data flow
analysis to solve the problem. The techniques
shown are intended for implementation in a pro-
gramming environment. They work equally well
in a more traditional batch compiler. Sev eral sim-
ple optimizations are identified which can shrink
the size of an instance of the problem.

The call-by-reference binding mechanism
for formal parameters creates new names for stor-
age locations in a program. Because of this, using
call-by-reference parameters can lead to situations
where a single procedure has multiple names
which refer to a single storage location. These
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names are said to bealiases.

Aliases can also arise from other source
language features, notably pointers and user spec-
ified storage overlays like the FORTRAN EQUIV-
ALENCE statement or the PL/I DEFINED
attribute. This paper does not address these
issues; a discussion of pointers can be found in
[Wieh] while standard techniques to deal with
EQUIVALENCE style aliasing are discussed in
[AhUl].

To simplify the discussion, most of this
paper will assume the two-level name scoping
conventions of ANSI FORTRAN. Section 6
shows how to extend the algorithms to account for
the nested name scoping of Algol-like languages.
Discussing aliasing and FORTRAN seems prob-
lematical; the ANSI standard [ANSI] expressly
prohibits a program from storing a value into a
variable which is aliased. Nonetheless, most
FORTRAN compilers painstakingly avoid using
register optimizations on global variables or call-
by-reference formal parameters to ensure that
aliased variables behave in the expected fashion.

To simplify the task of generating concise
pathological examples, I will use recursion in the
example FORTRAN program fragments even
though recursion is not included in standard FOR-
TRAN. Several current compilers support recur-
sion and it is likely to appear in the next FOR-
TRAN standard.

3. Terminology

A small amount of notation is necessary to
simplify the remainder of the paper. Because
aliasing is an interprocedural phenomenon, any
algorithm which computes information about
potential aliasing patterns requires structural
information about the program. In particular, the
program is represented by a graph,C = (N,E),
which has a node n∈ N representing each proce-
dure in the program and an edge e = (m,n)∈ E,

m, n ∈ N1, for each call site in procedure m which
invokes procedure n. Since procedure m can con-
tain several calls to procedure n, each with a
unique set of actual parameters,C must be a
multi-graph with a unique edge for each call site.
To make this structural information accessible to

1Throughout the paper, an edge e is assumed to be (m,n)
unless it is explicitly stated otherwise.

the algorithms, each node is assumed to be anno-
tated with two sets:

(1) in(n) contains each edge enter-
ing n,

(2) out(n) contains each edge leav-
ing n.

Aliasing arises from the renamings that
occur during parameter binding at call sites. Dis-
cussing these interactions requires a notation for
specifying the various parameters at each call site.
For the call site corresponding to an edge e∈ E,
there are two sets associated with the call site to
describe its parameters:

(1) fp(n) contains the formal param-
eters of n,

(2) ap(e) contains the actual param-
eters at the call site.

Specific parameters are referenced by simply sub-
scripting them with an ordinal position. Thus, at
an edge e,ap(e) is passed tofp(n), 1≤ i ≤ fp(n) .

To describe the impact of name scoping
rules, a setgv(n) is associated with each proce-
dure n. This set contains the names of all vari-
ables which are mentioned in the body of n but
are not declared as local to n. This information
should be readily available as a result of the nor-
mal syntactic analysis performed by the editor or
parser prior to aliasing analysis.

It is convenient to have a concise notation
to describe the bindings which occur at call sites.
Along edge e, x isboundto y, denoted x→

e
y, if

one of the following is true:

(1) x isap(e) and y isfp(n)

(2) x is global to n and y is x.

Thus,ap(e) →
e

fp(n), 1≤ i ≤ fp(n) , and, for every

v ∈ gv(n), v →
e

v. A chain of bindings

w →
e1

x, x →
e2

y, y →
e3

z

is denoted by w→* z.

4. The Problem

Whenever a program can reference a single
storage location using two different variable
names, those names are said to bealiases. It is



essential that the compiler understand which
aliases can occur, since even trivial inter-statement
optimizations, like retaining values in registers
across statement boundaries, can yield incorrect
code in the presence of aliasing. Consider the fol-
lowing sequence of assignments:

a = 10
b = 12
c = a * b.

In the absence of aliasing, the compiler would
probably retain the values of a and b in registers,
since they are computed and then referenced
immediately. If, however, a and b are names for a
single storage location because they are aliases,
then this simple optimization leads toincorrectly
assigning the value 120 to c. Thus, if aliases are
possible, the compiler is faced with the choice of
either not using register optimizations on global
variables and call-by-reference formal parameters,
or generating code which may produce incorrect
results.

The goal of alias analysis is to annotate
each procedure n in the program with a set
Alias(n) containing all the aliases which can hold
on entry to n. Each potential alias is represented
by analias pair, written <x,y>. The presence of
the alias pair <x,y> inAlias(n) indicates that some

PROGRAM MAIN
COMMON //N
INTEGER I,J,K,N
...
CALL S1(N, I, J, K)
...
END

SUBROUTINE S1(A, B, C, D)
COMMON //N
INTEGER A,B,C,D,E
...
CALL S1(E, A, B, C)
...
END

Figure 1

sequence of call sites in the program results in n
being invoked with x and y as names for a single
storage location. This does not imply that x and y
are aliases on every invocation of the procedure,
but simply that the procedure can be invoked with
x and y aliased.

To provide a concrete example of the infor-
mation derived by this analysis, consider the
FORTRAN program fragment shown in Figure 1.
The call site in MAIN gives rise to an alias on
entry to procedure S1, since it passes the global
variable N as an actual parameter. When invoked
from MAIN, S1 can access a single storage loca-
tion using either of the two names, N or A. Thus,
the call site in MAIN gives rise to an alias pair
<N,A> on entry to S1. The remaining variables
passed at the call site in MAIN are purely local in
their name scope and visibility, so no other aliases
arise from that call site. Thus,Alias(S1) contains
the pair <N,A>.

The recursive call in S1 gives rise to a num-
ber of aliases. Given that the alias pair <N,A>
holds on entry to S1, the first execution of the
recursive call site creates an alias pair <N,B>.
This happens because the global variable N is vis-
ible to each incarnation of S1, and the original ref-
erence to N, through A, is now passed through to
B. Similarly, the next two calls add <N,C> and
<N,D> to the set of potential aliases which can
hold on entry to S1. Since there are no more call
sites to consider,Alias(MAIN) is ∅ andAlias(S1)
is {<N,A>,<N,B>,<N,C>,<N,D>}.

In the example, all of the aliasing patterns
discovered are the direct result of binding patterns
at call sites. In MAIN, an alias is produced
because a variable global to S1 is passed as an
actual parameter. In S1, new alias pairs are cre-
ated when the recursive call passes a variable
already involved in an alias pair as an actual
parameter.

To simplify the task of understanding the
problem, consider it as a pair of separate and dis-
tinct subproblems: detecting theintroduction of
aliases, and analyzing thepropagationof aliases
through the call graph. Aliases are introduced by
specific binding patterns at call sites and propa-
gated by another type of binding patterns at call
sites. Call sites which introduce no aliases may
propagate aliases; likewise call sites which propa-
gate no aliases may introduce aliases.



4.1. Alias Introduction

Alias introduction occurs only at call sites,
because only at a procedure call is the mapping

from names to locations modified.2 An alias is
created when the called procedure is given multi-
ple names for a single location. This occurs in
two ways:

(1) a single actual parameter is
passedin more than one param-
eter position. This binds the
corresponding formal parame-
ters of the called procedure to a
single storage location, making
them potential aliases.

(2) a variable which is global to the
called procedure is passed as an
actual parameter. This intro-
duces an alias between the cor-
responding formal parameter of
the called procedure and the
global variable.

These are theonly mechanisms for introducing an
alias. Any call site which passes distinct actual
parameters, none of which is global to the called
procedure, cannot introduce aliases.

4.2. Propagation Analysis

Once an alias has been introduced at a call
site, that alias can hold on entry to the called pro-
cedure. Thus, any modifications of the value of
one name in the alias pair changes the value of the
other name. Further, any call site inside that pro-
cedure can propagate the alias pair to another pro-
cedure simply by giving the called procedure a
name for each element of the alias pair.

More precisely, an alias pair <x,y>∈
Alias(m) can be propagated along an edge e by
two different mechanisms:

2Language features which dynamically manipulate the
mapping of names to storage, like the IDENTIFY statement in
VECTRAN [Paul], would of course introduce another source
for introduction of aliases.

(1) If x, y ∈ fp(m), x →
e

x’ and y

→
e

y’ then <x,y> is propagated

into the pair <x’,y’> which can
hold on entry to n.

(2) If x ∈ fp(m), y is global to n,
and x→

e
x’, then <x,y> is prop-

agated into the pair <x’,y>
which can hold on entry to n.

In either case, the procedure propagating the alias
must pass one of its own formal parameters as an
actual parameter, creating a situation where there
exists an i, 1≤i≤ fp(m) , and a j, 1≤j≤ fp(n) , such
that fp(m) →

e
fp(n), Thus, alias propagation only

occurs where call-by-reference formal parameters

are used as actual parameters.3 Call sites which do
not pass formal parameters as actual parameters
cannotpropagate aliases.

Because the alias propagation problem
involves storage mappings, parameters bindings,
and tracking the binding paths of pairs of names
through the call multi-graph, there are a number
of properties of the problem which may not be
obvious. Aliasing is nottransitive; knowing that
both <X,Y> and <Y,Z> are contained inAlias(n)
does not imply that <X,Z> is also inAlias(n). To
see this, consider the program fragment of figure
1. The only alias introduced at any call site in the
program is <N,A>, introduced from the call in
MAIN. On entry to S1, this is the only alias aris-
ing from introduction effects.

The propagation effects of the recursive call
in S1 are complex. Each execution of the call
causes the following bindings to occur:

N →
e

N, A →
e

B, B →
e

C, C→
e

D.

Thus, when called from MAIN, the only alias
which actually occurs is <N,A>. The first recur-
sive call propagates <N,A> into <N,B>, the sec-
ond <N,B> into <N,C>, and the third <N,C> into
<N,D>. On consecutive calls, each of A, B, C,
and D is an alias of N, butat no timedo any two
of them refer to the same location. Thus in any
execution of S1, at most one of A, B, C, or D is
aliased to N. The other names are bound to local

3There is one other possibility, that both x and y are
global to n. This arises only with more complex name scoping
rules, and is dealt with in section 6.



PROGRAM MAIN
COMMON //N
...
CALL S2(N)
...
END

SUBROUTINE S2(A)
INTEGER A
...
CALL S3(A)
...
END

SUBROUTINE S3(B)
COMMON //N
INTEGER B,C
...
N = B * C
B = C - N
...
END

Figure 2

variables of MAIN or the local variable E some
previous incarnation of S1. However, all of the
alias pairs <N,A>, <N,B>, <N,C>, and <N,D> are
potential aliases on entry to S1.

Alias propagation ispath sensitive. It
requires that both elements of the alias pair be
bound at a single call site. Propagation must
involve both elements of the pair, not just one of
the individual variables in the pair. Assume <x,y>
∈ Alias(m) and that both x and y get propagated

into some procedure p, so x→* x’, y →* y’,
where x’ and y’ are parameters or globals of p.
This is not sufficient to conclude that <x’,y’>∈
Alias(p). For the alias pair to be propagated
requires not only that both names in the original
alias pair, <x,y>, reach p, but also that the bind-
ings leading to x’ and y’ occur along the same
path through the call graph.

The propagation analysis must be careful in
considering the range of global names. Reference

formal parameters can propagate only through
parameter bindings, so the program regions over
which a given binding chain merits attention is
obvious. With global names, like FORTRAN
COMMON or PL/I EXTERNAL, this is not the
case. Such variables appear in a procedure’s
name space by explicit declaration; their absence
from one procedure’s name space implies nothing
about their presence in either an invoked proce-
dure or an internally nested name scope. In any
case where a global is involved in an alias, the
global must be considered to be declared in each
procedure which the other element of the alias
pair can reach. This does not mean that the com-
piler should consider such an alias pair in generat-
ing code; clearly the alias is irrelevant to the com-
pilation of any procedure in which one of its ele-
ments is not visible.

The program fragment shown in figure 2
illustrates this point. The call site in MAIN intro-
duces an alias <N,A> which holds on entry to
procedure S2, but N is not accessible inside S2.
At the call from S2 to S3, A→

e
B. Since N is

declared in S3, this propagates <N,A> into
<N,B>, even though <N,A> was not meaningful
as an alias in S2.

5. An Analytical Technique

The actual computation of aliasing informa-
tion reflects the division of the problem into intro-
duction and propagation analysis. The computa-
tions required to detect and record alias introduc-
tions at call sites are completely local in nature,
while the analysis of propagation effects uses the
machinery of data flow analysis to account for
interactions between procedures.

5.1. Introduction Analysis

Introduction analysis constructs, for each
call site, a setIntro(e) containing the alias pairs
representing all of the aliases created by the call
site. All of the information required to perform
the computation is contained in the text of the call
site and the data declarations associated with the
procedure containing the call site. ThusIntro(e)
is a local property of the call site. Because all this
information is readily available,Intro(e) can be
computed by the programming environment’s edi-
tor or by the parser in a compiler.

The algorithm for performing alias intro-
duction analysis assumes the existence of the





Computing Intro(e)

/* initialize the temporary slots */
for 1 ≤ i ≤ ap(e)

let AliasPtr[ap(e)] ← λ

/* build the lists from actual parameters */
for 1 ≤ i ≤ ap(e)

add i to the list AliasPtr[ap(e)]

/* use the lists to constructAlias(n) */
let Intro(e) ← ∅

for 1 ≤ i ≤ ap(e)
/* 1 name, > 1 position */
if AliasPtr[ap(e)] > 1

for each pair of list elementsj andk
add <fp(n),fp.if 0>0 . tm Line 507 -- I cannot skip multiple pages

(n)> to Intro(e)

/* global passed as an actual */
if ap(e) is globally visible in n,

add <ap(e),fp(n)> to Intro(e)

Figure 3

typical environment found inside a language
based editor or parser. Specifically, it expects that
a symbol table has been constructed, that there is
a slot of temporary space, named AliasPtr, avail-
able for each entry in the table, and that variables
are represented in the intermediate form by sym-
bol table indices. Given this information, the
analysis of a call site e proceeds as shown in Fig-
ure 3. For each actual parameter of the call site,
the algorithm builds a list containing the name of
the corresponding formal at each parameter posi-
tion in which the variable is bound. It then tra-
verses these lists placing an alias pair inIntro(e)
ev ery time an actual is found which is passed in
two distinct parameter positions. At the same
time, it checks the scopes of the actual parame-
ters, creating appropriate alias pairs for any vari-
ables which are global to the called procedure.
Thus, constructingIntro(e) takes O( ap(e) +
Intro(e) ) time for each call site e.

To aid in optimizing the propagation analy-
sis, some additional information can be

constructed during the introduction analysis. As
each call site is analyzed, two additional lists can
be kept:

(1) call sites with non-emptyIn-
tro(e) sets. These are the only
call sites which can introduce
aliases.

(2) call sites which pass formal pa-
rameters of the calling proce-
dure as actual parameters.
These are the only call sites
which can propagate aliases.

Because these lists will require some pre-
processing before they are useful to the propaga-
tion analysis, it suffices to maintain the lists on a
procedure by procedure basis. Since the first list
is trivial to construct, there is no need to store it.
The overhead entailed in keeping the latter list is
minimal. The next section shows how to use
these lists to speed up the propagation analysis.



5.2. Propagation Analysis

The task of propagation analysis is to anno-
tate each node n∈ N with a setAlias(n) contain-
ing the set of aliases whichmayhold on entry to
the procedure corresponding to n. Since propaga-
tion analysis only tracks aliases which originate in
the Intro(e) set of some e∈ E, introduction analy-
sis is a prerequisite for propagation analysis.

An alias pair belongs inAlias(n) only if it is
in Intro(e) for some edge e or derives from a pair
in Alias(m) by propagation through an edge e =
(m,n). Thus,Alias(n) can be computed as:

Alias(n) = ∪
e=(m,n)∈in(n)

(Intro(e) ∪ b
e
(Alias(m)))

where b
e

is an edge specific function modeling the

alais propagation rules. It is defined as:

b
e
(X) = ∪

<x,y>∈X
{ <x’,y’> x →

e
x’ and y→

e
y’ }.

Formulating the propagation problem as a set of
simultaneous equations over the nodes and edges
of a graph makes it natural to solve it with stan-
dard techniques from global data flow analysis.

5.2.1. A Data Flow Framework

Much of the underlying theory of global
data flow analysis has been developed using semi-
lattice based models. To help understand the
properties of the propagation problem, it is
instructive to pose a Kam-Ullman style semi-
lattice framework for the problem [KaUl].

A data flow framework for a problem is a
four-tuple, (G, L, F, M), where

G is a graph, (N,E), representing the
control flow in the portion of the
program being analyzed,

L is a semi-lattice representing the
facts being derived about the pro-
gram,

F is a function space of transforma-
tions on elements of L, F:L→L,
and

M is a mapping, M:E→F, which as-
signs a function in F to each edge
in the graph G.

Casting the propagation problem as a data flow
framework makes a number of theoretical results
applicable to it.

The data flow framework for the propaga-
tion problem is

P = (C, L , F, M )
where

C is the program’s call multi-graph,
(N,E), from section 3.

L is a semi-lattice (2AP, ), whereAP
is the set of possible names of
alias pairs, or the set of pairs of

variables in the program, 2X de-
notes the power set of X, and is

set union (∪). 2AP is finite, and
is idempotent, associative, and
commutative.

F is the function space consisting of

all functions mapping 2AP→2AP

which are of the form f(X) = A

g{X}, with A ≤ 2AP a constant,

g:AP→2AP a function, and {} de-
noting elemental application of a
function to a set.

M defines a specific function for
ev ery edge e = (m,n)∈ E. This is
done by assigning A the valueIn-
tro(e) and letting g be the function
f(<x,y>) =
{<w,z> x→

e
w and y→

e
z}.

Kam and Ullman give a set of four criteria which
a framework must meet for their results to apply.
P meets the criteria. BecauseP is an admissible
Kam-Ullman framework, the solution derived by
the iterative algorithm is independent of the order
in which nodes of the graph are updated. This
leaves the implementor free to order the node
updates in an order which leads to an efficient
implementation. Further, applying the iterative
algorithm to an instance of the problem yields a
unique least fixed point solution, which is identi-
cal to the meet over all paths solution for the
instance.

Among admissible frameworks, Kam and
Ullman identified a class ofrapid frameworks
which the iterative algorithm can solve in nearly
linear time. A framework is rapid if and only if:

f(X) ≥ X f(), ∀ f ∈ F, ∀ X ∈ L .4



The propagation framework isnot a rapid frame-
work. Similarly, P is not Graham-Wegmanfast
[Coop]. Thus, the problem cannot not be directly
solved using one of the near linear time tech-
niques from global data flow analysis.

5.2.2. Time Complexity

It is important to understand the time com-
plexity of solving this problem with the iterative
algorithm. The iterative algorithm halts only
when the information being propagated through
the graph can go no further. Aliases propagate
along paths defined by the bindings of parameters,
u→v, v→w, w→x, x→y. If the call multi-graphC
is acyclic, the longest such binding path has
length N - 1. If C contains a cycle, then the path
can loop back and pass through multiple formal
parameters of a single procedure. In a graph with
a single cycle, the longest possible path will be
bounded by k(N - 1) where k is the smallest
number of formal parameters of any procedure
involved in the cycle. Following this line of rea-
soning, the longest binding chain through a cyclic
graph is bounded by (N − 1) × MaxParmswhere
MaxParms is the maximum number of formal
parameters of any procedure in the program.

Consider a round-robin version of the itera-
tive algorithm. It makes complete passes over the
call graph, updating each node. If any node’s
value changes during a pass, another pass is made.
In this scheme, any alias pair which can propagate
further through the graph advances along at least
one edge each pass. Thus, the round-robin itera-
tive algorithm halts in no more than

( N − 1) × MaxParms+ 1  passes5, assumingMax-
Parmsis a constant independent of program size.
Since each pass can visit every node in the graph,

this requiresO( N 2) individual node updates,

The performance of the iterative algorithm
on an actual instance of the alias propagation
problem depends on two characteristics of the
program, which I call thedensityof aliasing and
the longevityof individual alias pairs. It is impor-
tant to realize that it is unlikely that the worst case
will be encountered.

4[KaUl] Observation 6, p. 166.
5Using a worklist formulation of this algorithm, with a

depth first ordering to visit nodes can improve the expected
case running time of the algorithm, but the asymptotic com-
plexity remains the same.

The density of aliasing refers to the raw
number of introduced aliases. If there are few
introduced aliases, opportunities for alias propa-
gation are few. In practice, the number of alias
introductions per call site is likely to be small
because most call sites will introduce no aliases.
Although there is no empirical evidence to sup-
port this claim today, examination of several large
programs appears to support it. Most call sites
pass local variables and constants as distinct
actual parameters.

The longevity of an alias pair is the length
of the path over which it can be propagated.
Recall that an alias pair only propagates through a
call site if both variables in the alias pair are visi-
ble in the called procedure. In the case of an alias
pair between two formals, this requires that the
procedure use both formals as actuals in the same
call site. If the alias pair contains a global and a
formal, the procedure need only pass the formal.

Aliases should have relatively short life-
times, no more than two or three procedures for
most alias pairs. Programmers do not normally
pass variables into a procedure as formal parame-
ters and out of it as actuals, repeatedly, over long
chains of procedures. Global variables, like FOR-
TRAN COMMON, were created precisely to
allow programmers to avoid doing this! To
achieve the maximum binding path length dis-
cussed above would require a procedure to pass a
single value around the cycle through every for-
mal parameter in the procedure with the smallest
number of formal parameters. Such a program
would be difficult to design and understand.

If the density of aliasing is low, and the
longevity of alias pairs is not long, the expected
running time of an iterative implementation will
be much lower than the worst case time bound.

5.2.3. Optimizations

In an implementation of the iterative frame-
work, the additional information collected during
the introduction analysis can be used to decrease
the size of the graph being processed. For each
procedure, the introduction analysis constructed a
list of call sites which can propagate aliases. Call
sites which introduce aliases can be easily identi-
fied by their non-emptyIntro(e) sets. This infor-
mation is used to construct, for each procedure, a
set introduces(n) containing those edges entering
n which can introduce aliases and a setpropa-
gates(n) containing those edges entering n which



can propagate aliases. This can be done inO( E )
time.

Given that each node is annotated with
introduces(n) andpropagates(n) sets, the formula
for computingAlias(n) can be restructured to per-
form unions over the edges which are relevant to
the analysis, rather than over all edges incident to
a giv en node. This yields the formula:

Alias(n) = (∪
e∈introduces(n)

Intro(e))

∪ (∪
e=(m,n)∈propagates(n)

b
e
(Alias(m)))

which avoids examining unnecessary edges. In
effect, this allows the introduction analysis to trim
the graph seen by propagation analysis. Further,
the Intro(e) term is invariant throughout the analy-
sis. Thus, it can be precomputed, restricting the
actual computations performed at each node to
evaluating the propagation functions for each e∈
propagates(n) and unioning together the result
with precomputedIntro(e) term. In practice, these
optimizations can produce substantial savings.

6. Algol-style Name Scoping

In developing the techniques for analyzing
aliases, there has been an implicit assumption that

Implementation of b
e
(X)

result← ∅

for i ← 1 to ap(e)
if ap(e) is involved in

an alias pair <ap(e),x>
then

if x ∈ gv(n)
then add alias pairs <x,z> to result

for each z∈ bind
e
(ap(e))

if x ∈ ap(e)
then add alias pairs <y,z> to result

for each y∈ bind
e
(x)

for each z∈ bind
e
(ap(e))

Figure 4

the programming language being analyzed has the
two-level name scoping rules of FORTRAN.
While the FORTRAN rules simplify the task of
explaining the aliasing problem, these techniques
will find far more application if they are readily
adaptable to the more general block structured
scoping rules typically found in Algol-style lan-
guages. This section shows how the techniques
can be extended to cope with this more general
case.

The alias introduction analysis is
unchanged. Recall that the setgv(n) contains all
of the name scoping information required by the
introduction algorithms. In an analyzer for a lan-
guage with more complex scoping rules, the
increased complexity of name scoping is absorbed
completely in the computation ofgv(n). Since
this knowledge is already needed by the editor or
parser, the added complexity is of no real concern.
The algorithm for computingIntro(e) given in
section 5.1 needs no modification.

The discussion of propagation analysis
relied on the assumption that the name spaces of
the calling and called procedures are disjoint,
except where explicit sharing exists in the form of
global variables. In a block structured language,
the name scopes of two procedures can be nested.
This requires a re-examination of the propagation
analysis to insure that aliases which arestatically
inherited from surrounding name spaces are han-
dled properly.

In section 4.2, two conditions were given
for alias propagation along an edge e = (m,n):

(1) If x, y ∈ fp(m), x →
e

x’ and y

→
e

y’ then <x,y> is propagated

into the pair <x’,y’> which can
hold on entry to n.

(2) If x ∈ fp(m), y is global to n,
and x→

e
x’, then <x,y> is prop-

agated into the pair <x’,y>
which can hold on entry to n.

Extending the name scoping rules to handle block
structure requires a third rule:

(3) If x and y∈ gv(n), then <x,y> is
inherited by n from m.

This rule allows an alias to be propagated into any
nested block in which both elements of the alias
pair are visible.



Again, this rule hides much of the complex-
ity of the issue in the construction ofgv(n). All of
the issues like redeclaration of the textual name
are absorbed intogv(n). Of course, names must
be assumed to be unique; in an implementation
this would naturally lead to the use of fully quali-
fied names in the analysis.

In an actual implementation, the impact of
adding this third rule is straightforward. The
interpretation of the propagation function b

e
is

changed slightly. In the two-level name scoping
situation, the implementation might look like the
fragment shown in Figure 4. Here,bind

e
(x) con-

tains the set of variables to which x can be bound
at the call site corresponding to e. This is identi-
cal to the information constructed in the AliasPtr
lists in the introduction analysis. The code frag-
ment examines each actual parameter, and applies
the propagation rules to any actual parameter
which is an element of an alias pair.

In a more general block structured lan-
guage, the following loop must be added to the
fragment shown in figure 4 to account for the third
rule. It should be placed at the outermost nesting
level.

for each <x,y>∈ Alias(m)
if x ∈ gv(n) and y∈ gv(n)

result← result∪ <x,y>

This extends the computation of b
e

to account for

more general name scoping rules.

7. Other Techniques

It is important to consider other techniques
to solve the alias propagation problem. In particu-
lar, we should consider a technique similar to that
presented in [CoKe] for computing flow insensi-
tive interprocedural summary information. That
algorithm runs in O( E α( E , N )) time. It
achieves that time bound by computing a mapping
which describes all of the binding patterns among
the formal parameters of procedures in the pro-
gram. This information might prove useful in an
aliasing analysis.

The fundamental assumption which allows
Cooper and Kennedy to achieve that time bound is
that the maximum number of formal parameters
of any procedure in the program,MaxParms, is
bounded by a small constant. Applying the same

technique to the alias propagation problem would
lead to an assumption that
MaxParms(MaxParms-1) / 2 is a small constant
since alias propagation must track pairs of formal
parameters. This assumption is fairly tenuous; it
is reasonable to claim that 20 is a small constant,
but the claim is less clear for 190.

The second technique worthy of considera-
tion is an approximative technique. If aliasing is
rare, as suggested in the previous section, it may
be reasonable to compute an extremely conserva-
tive approximation to the information. In section
4.2, it was pointed out that alias propagation
requires that both elements of the alias pair be
transmitted along the same call chain. Removing
this requirement will produce an extremely con-
servative approximation; the resulting information
includes any pair produced by using the actual
propagation framework from section 5.2, along
with some additional pairs propagated because of
the relaxed propagation rule.

By removing the path sensitivity, the propa-
gation algorithm need only track the manner in
which formal parameters of one procedure can be
bound to other formal parameters in the program.
This is precisely the information computed in the
Cooper-Kennedy technique for producing flow
insensitive summary information. Because the
algorithm need only track formal parameters,
instead of pairs of formal parameters, the assump-
tion that MaxParmsis bounded by a small con-
stant is still reasonable. Further, the parameter to
parameter mapping required to compute the alias-
ing information is produced as a part of the inter-
procedural summary computation.

The tradeoffs between these three tech-
niques are difficult to assess. The iterative
approach is certainly the simplest to implement,
but has the worst case asymptotic behavior. A
method based on [CoKe] will have trouble claim-
ing the O( E α( E , N )) time bound, but it is
important to remember that the expensive opera-
tions only arise in response to cycles in the call
graph, and that the actual size of the operations
performed is not based onMaxParms, but on the
actual number of parameters at each call site.
Finally, the approximative technique will achieve
the O( E α( E , N )) time bound, but with a poten-
tially disastrous loss of precision. The cases
where the approximation is close to precise are
also cases where the iterative approach should
converge quickly.



8. Conclusions

The problem of analyzing the aliasing rela-
tionships introduced as artifacts of call-by-
reference parameter passing is a complex and sub-
tle problem. The problem divides nicely into
analysis of alias introduction and alias propaga-
tion. The former problem has a simple solution,
suitable for implementation in either a traditional
parser or a structured editor. The latter problem
can be solved with standard data flow analysis
techniques.

The alias propagation problem is not
amenable to direct solution using one of the
nearly linear time methods from global data flow
analysis. An iterative framework for the problem

has a worst case complexity ofO( N 2), but the
actual behavior of the algorithm is a function of
the frequency with which the programmer intro-
duces aliases and passes formal parameters
through chains of calls.

To determine whether the iterative algo-
rithm is an appropriate implementation strategy
will require quantitative study of aliasing patterns
in real programs. Only then will the trade-offs
between iterative, Cooper-Kennedy style, and
approximative schemes become clear.
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