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Abstract

The combination of pointers and pointer arithmetic in
C makes the task of improving C programs somewhat
more difficult than improving programs written in sim-
pler languages like Fortran. While much work has been
published that focuses on the analysis of pointers, little
has appeared that uses the results of such analysis to
improve the code compiled for C. This paper examines
the problem of register promotion in C and presents
experimental results showing that it can have dramatic
effects on memory traffic.

1 Introduction

The presence of pointer-valued variables in C has long
been recognized as an impediment to effective compile-
time optimization. Pointers introduce a degree of un-
certainty into the results of static analysis. Pointer as-
signments create multiple names for storage locations,
with the result that the compiler must avoid reordering
stores to memory. Pointer arithmetic introduces further
ambiguity; understanding the results of *(p+8) requires
a detailed knowledge, at compile-time, of the run-time
storage layout. In the case of values stored in the heap,
such knowledge is tenuous at best. This uncertainty,
coupled with separate compilation, forces compilers to
treat variables with potentially exposed addresses quite
conservatively. As a result, C compilers often produce
code that would appear naive to a good assembly-level
programmer.

Recent attempts to address this problem have fo-
cused on the problem of analyzing the values that can be
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taken on by pointer variables. The literature on pointer
analysis has expanded greatly in recent years [18, 8, 22,
5, 14, 9, 12, 6, 13]. This paper presents a technique for
using the results of pointer analysis to make the code
generated by a C compiler run faster. We call the tech-
nique register promotion; quite simply, it uses the re-
sults of pointer analysis to determine which scalar vari-
ables can be safely kept in registers and rewrites the
code to reflect those facts.

To study the problems introduced by pointer vari-
ables, we have built a pointer analyzer for our experi-
mental compiler. It performs static analysis to derive
information about which variables might be addressed
by a specific pointer. To assess the value of register
promotion, we implemented it and tested it using two
forms of pointer analysis. The experimental results sug-
gest that register promotion can be quite effective at re-
ducing memory traffic; they also show that these results
are relatively insensitive to the precision of the pointer
analysis.

2 Background

During translation, the compiler makes many decisions
that determine the “shape” of the code that is even-
tually generated. A particularly important decision re-
lates to the storage of values; the compiler must deter-
mine, for each value, where it will reside at run-time. To
simplify matters, we will assume that only two choices
are possible: in memory and in a register.1 Since reg-
isters are faster to read and write than memory, it is
generally desirable to keep values in registers. Thus,
modern RISC-style compilers try to keep as many values
in registers as possible. This decision gets encoded into
the shape of the intermediate language (IL) generated
for each statement, usually as an explicit assignment of
a “virtual register” to each distinct value. Definitions
target this register and uses refer to it directly.

1Of course, different locations in memory, such as the heap and the
stack, may have different properties and different costs.



Loads Stores Purpose
iLoad – immediate load

a known constant value
cLoad – constant load

an invariant, but unknown value
sLoad sStore scalar load/store

a value known to be scalar
Load Store general load/store

general form

Table 1: Hierarchy of memory operations

Situations can arise that prevent retention of a value
in a register across statement boundaries. For example,
if multiple names exist for a value, it must be stored to
memory after every definition and loaded from memory
before each use. The presence of pointers introduces
precisely this problem; in the absence of specific knowl-
edge about the set of variables that can be referenced by
each pointer, the compiler is forced to treat references
to any storage that the pointer might possibly address
in this conservative fashion. In our compiler, like many
other RISC-style compilers, this conservative treatment
is enforced by inclusion in the intermediate code of ex-
plicit stores and loads for the values that cannot be
enregistered safely. To improve this situation, the com-
piler can analyze the code to improve its knowledge,
and use this information to “promote” some values from
memory into registers.

The IL for our research compiler contains several fea-
tures that encode information to facilitate analysis and
optimization of memory-based values. Each memory
operation has an associated list of “tags”; these are tex-
tual names that identify the memory locations that can
be used by the operation. Procedure calls have lists of
modified tags and referenced tags to record their sum-
mary side effects [7]. Finally, the IL contains a hierarchy
of memory instructions that denote increasingly more
specific knowledge (see Table 1.) When it emits the IL,
the front end encodes the best information it has into
the tag field and the opcode. In many cases, however, it
must behave conservatively and assume that an opera-
tion may reference any memory location. The informa-
tion encoded in the tags is part of the IL representation
of the code and is available to every subsequent phase
of compilation.

The key to improving the quality of code generated
for pointer-based operations is to improve the preci-
sion of these tag sets. To achieve this, we implemented
a pointer analyzer. It performs interprocedural data-
flow analysis to discern better information about the

addresses that each pointer variable can contain. This
knowledge can improve the compiled code in two ways.
First, it lets the compiler shrink the tag sets of many
loads and stores. This produces better results from sev-
eral of the optimizations. Second, specific transforma-
tions can capitalize directly on the pointer information
to rewrite the code in ways that classical techniques can-
not. This paper describes one such technique, register
promotion.

3 Register Promotion

Register promotion improves code by allowing a value
that normally resides in memory to reside in a register
for some portions of the code. This is done by identify-
ing sections of the code in which it is safe to place the
value in a register. Before entering such a section, the
value is “promoted” (i.e. loaded) from its memory loca-
tion to a register. Within the section, references to this
value are rewritten to refer to the register. Upon exit
from the section, the value is “demoted” (i.e. stored)
to a memory location.

The compiler performs promotion in the early phases
of optimization (see § 5). It rewrites the IL to keep ad-
ditional values in a register. However, subsequent ac-
tions by the register allocator can “undo” a promotion.
At the time that promotion occurs, the compiler can-
not accurately predict the availability of a register to
hold the promoted value. If the register allocator dis-
covers that demand for registers exceeds supply, it must
“spill” some values back to memory. The promoted val-
ues compete for registers on an equal footing with other
values; nonetheless, some of them may get spilled.

3.1 The Algorithm

The algorithm that we have developed is relatively sim-
ple. It proceeds as follows:

1. interprocedural analysis—The compiler performs
an interprocedural analysis to disambiguate mem-
ory references. The results are used to shrink the
tag sets for references and procedure calls.

2. gather initial information—For each block b, the
compiler computes two sets. B EXPLICITb con-
tains all tags referenced by an explicit memory
operation in b. B AMBIGUOUSb contains all tags
referenced ambiguously in b, through procedure
calls or pointer-based memory operations where
the pointer contains multiple tags.

3. find loop structure—The compiler computes dom-
inator information to identify loop nests using an
algorithm due to Lengauer and Tarjan [15].

4. analyze loop nests—For each loop l, the compiler
solves the equations shown in Figure 1. The set



L EXPLICITl =
⋃
b∈l

B EXPLICITb (1)

L AMBIGUOUSl =
⋃
b∈l

B AMBIGUOUSb (2)

L PROMOTABLEl = L EXPLICITl − L AMBIGUOUSl (3)

L LIFTl =


L PROMOTABLEl if l is an outermost loop

L PROMOTABLEl − L PROMOTABLEsurrounding loop(l) otherwise
(4)

Figure 1: Equations for Register Promotion

L PROMOTABLEl contains the tags that may safely
be promoted inside loop l.

5. rewrite the code—For each tag that is in some
L PROMOTABLEl, a virtual register v is created. All
references to the tag in loops for which the tag is
promotable are converted to a copy involving v.2

6. promote the tags—A tag that has had its accesses
rewritten to use a virtual register must be loaded
into its virtual register before entering the outer-
most loop in which it is promotable. It also must
be stored to at the loop exits. The set of tags that
needs to be loaded and stored around a loop l is
in L LIFTl.

The equations from Figure 1 merit some additional ex-
planation. B EXPLICITb and B AMBIGUOUSb are com-
puted in a simple linear pass over each block. The pass
must examine each operation and its tag set. Equa-
tions (1) and (2) simply aggregate together the infor-
mation for all the blocks in a loop. Equation (3) is
solved once per loop; it computes the set of values that
are only referenced explicitly in the loop. If a tag t is
in L PROMOTABLEl for loop l, the loop can be rewritten
safely to keep the value associated with t in a register.
Finally, equation (4) ensures that a tag t is only loaded
and stored around the outermost loop where it may be
promoted.

What have we accomplished? As presented, the al-
gorithm promotes references to a scalar variable in a
loop if all the references to the scalar variable in the
loop are explicit. It does not promote references based
on pointers that may point to multiple objects; neither
does it promote array references. The promoted vari-
ables are scalars that the compiler did not enregister be-
cause it lacked the information to show that enregister-
ing them was safe. Section 3.3 discusses one technique

2The copies are subject to coalescing by the register allocator [1]. It
is quite effective at eliminating copies like these.

for extending the domain of promotion to include some
array and more pointer-based values. The algorithm
only examines references inside loops; our implementa-
tion of partial redundancy elimination[17] uses memory
tag information to achieve most of the effects of promo-
tion in straight-line code.

What does this algorithm cost? The cost of the inter-
procedural analysis used to support register promotion
varies with both the algorithm used and the desired pre-
cision of the information (See Sections 4 and 5). The
promotion algorithm itself runs efficiently. Its complex-
ity is expressed as a function of the following variables
that characterize a program.

C code size
T number of tags
L number of loops
X maximum number of exits in a loop
B number of basic blocks
E number of edges in CFG

Computing B EXPLICIT and B AMBIGUOUS takes a sim-
ple pass over the code. In each block, it examines each
statement and, possibly, each tag set. This requires
O(CT ) time, worst case. The dominator algorithm used
to find the loop structure can be implemented to re-
quire O(Eα(E,B)) time, where α(E,B) is related to a
functional inverse of Ackermann’s function [15]. Com-
puting L EXPLICIT and L AMBIGUOUS requires O(LBT )
time, while L PROMOTABLE and L LIFT require O(LT )
time. Rewriting the code requires O(C) time to con-
vert memory operations to copies, plus O(TLX) time
to insert loads and stores at loop landing pads and loop
exits. Thus, the overall time bound is

O(CT + Eα(E,B) + LBT + LT +C + TLX),
which simplifies to

O(Eα(E,B) + T · (C + LB + LX)).
In practice, it runs quite quickly.
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Loop Nest and Relevant Code

Block Information
Set 0 B1 B2 B3 B4 B5 B6 B7 B8 B9

B EXPLICIT C B A
B AMBIGUOUS A B Z B

Loop Information
Loop Blocks Landing Pad Exit L EXPLICIT L AMBIGUOUS L PROMOTABLE L LIFT
B1 B1-B8 B0 B9 A B C A B Z C C
B3 B3-B7 B2 B8 A B B A A
B5 B5-B6 B4 B7 A A

Figure 2: An Example



for (i=0; i<DIM_X; i++) {
B[i]=0;
for (j=0; j<DIM_Y; j++) {
B[i]+=A[i][j];

}
}

Original code

for (i=0; i<DIM_X; i++) {
rb=0;
for (j=0; j<DIM_Y; j++) {
rb+=A[i][j];

}
B[i]=rb;

}

Transformed code

Figure 3: Promoting Array References

3.2 An Example

To make this discussion more concrete, consider the ex-
ample shown in Figure 2. It shows a triply nested loop,
along with some of the code that populates the loop.
(The remaining code is assumed to have no impact on
the example.) The instructions are presented in an ab-
stracted form; each shows its tag list followed by any
relevant registers. The mnemonics have simple mean-
ings.

SST Scalar store
SLD Scalar load
CP Register copy
PST Pointer-based store
PLD Pointer-based load
JSR Jump to subroutine

The version on the left shows the code before register
promotion. The version on the right shows the results
of register promotion. Notice that each loop has an
explicit landing pad before its header and an explicit
exit block. Our compiler automatically inserts landing
pads and exits as part of constructing the control-flow
graph; empty blocks are automatically removed after
optimization. Loops are referred to by the block number
of their headers.

The tables at the bottom of the figure show the local
information computed for the example, B EXPLICIT and
B AMBIGUOUS, as well as the sets computed for the loops.
The L PROMOTABLE and L LIFT sets concisely summa-
rize the situation. The value associated with tag A is
promotable in the two inner loops but not the outer
loop. The JSR instruction in block B1 references A am-
biguously, so it cannot be promoted in that loop. The
value associated with tag B is referenced ambiguously
in loop B3; since it is not referenced in loop B5, no
opportunity for promoting it exists. Finally, the value
associated with tag C is never referenced ambiguously.
Since it is referenced in the outer loop (B1), it is pro-
motable in that loop. The L LIFT set correctly shows

that A should be promoted in B3 rather than B5 since
loop B3 contains loop B5.

When the compiler rewrites the code, it promotes C
in loop B1 and A in loop B3. Thus, it inserts a scalar
load of C into rc in loop B1’s landing pad (block B0)
and a scalar store into loop B1’s exit block (B9). The
store in block B1 becomes a copy into rc. To promote
A, it inserts a scalar load of A into ra in loop B3’s
landing pad (B2), and a scalar store into loop B3’s exit
block (B8). The load in B5 becomes a copy out of ra.
The other instructions remain unchanged.

The net result is to replace the scalar load in the
innermost loop with a copy operation and a load/store
pair two loops farther out. The scalar store in the outer
loop is replaced with a copy operation and a load/store
pair outside that loop. In many cases, the register allo-
cator can coalesce away these copies.

3.3 Handling Pointer-based References

The algorithm from Section 3.1 only promotes scalar
variables that are only explicitly referenced. Pointer-
based loads and stores that may point to multiple lo-
cations cannot be modified. Consider, for example, the
code shown on the left hand side of Figure 3. The in-
ner loop uses a single value of B[i] per iteration of the
outer loop; since i does not change, the address of B[i]
is invariant. Thus, the compiler should rewrite the code
as shown on the right by promoting B[i] into a register
rb. This eliminates a load before the reference to B[i]
in the inner loop and a store after it. To achieve this,
however, the compiler must recognize that B[i] refers
to the same location in each iteration of the inner-loop
and that only one way to reference the code is possible
in the inner loop. The analysis described earlier cannot
do that.

We developed another algorithm to promote some
pointer-based references to multiple locations. In par-
ticular, it finds memory references, r, where the base



register, b, is invariant in a loop and the only accesses
in the loop to the tags accessed by r are through the
invariant base register b. This algorithm relies on loop-
invariant code motion to identify the loop-invariant base
registers and place the computation of these registers
outside a loop. When it finds memory references satis-
fying these conditions, it promotes the reference into a
register using the same rewriting scheme as before—a
load before each loop entry, a store at each loop exit,
and a copy at each reference. These conditions include
the example from Figure 3.

Anecdotally, the pointer-based promotion scheme is
a success. When its conditions apply, it produces the
code that might be expected of a good assembly pro-
grammer. For example, it produces a loop equivalent to
the transformed code shown in Figure 3, after coalescing
removes the copy operations. In our suite of test pro-
grams, however, the measured improvements were not
overwhelming when compared with scalar promotion.
For total operations executed, pointer-based promotion
hurt performance for one program and had no effect on
nine others. The improvements in three of the other
four programs were less than 1% of the improvement
due to scalar promotion. In fft, the only significant
success, pointer-based promotion was able to remove
48.3% more operations, 48.3% more stores, and 48.4%
more loads than scalar promotion was able to remove.
This accounted for 0.41% of the stores and 0.34% of the
loads in the execution of fft. The reason for this disap-
pointing performance may be that the restrictions are
too strict; it may be that the promotable pointer-based
references in our collection of programs are relatively
unimportant to performance. We intend to continue to
investigate this set of problems.

3.4 Planned Improvements

Our current register promoter misses some opportuni-
ties. We are interested in extending this work to in-
crease its coverage of real programs.

• The loop-based approach to analysis and transfor-
mation causes the promoter to overlook situations
that occur outside loop nests. There should be
many cases where it is profitable to promote val-
ues to registers in straight-line code.
In our compiler, partial redundancy elimination
catches many of these cases in straight-line code.
It uses the tag fields to eliminate redundant loads.
It must treat stores more conservatively. Extend-
ing the promoter could improve the behavior for
these stores.

• The array references handled by the scheme de-
scribed in Section 3.3 catches a set of relatively
simple cases. Some of the more complex examples

require detailed dependence analysis or an equiva-
lent technique to reason about conflicts with other
references to the same array inside the loop [11,
16]. For example, Carr used dependence analy-
sis to detect consistent patterns of cross-iteration
reuse in Fortran and to promote the correspond-
ing values into scalar temporaries that ended up
in registers [2].
We are interested in expanding the set of array
references promoted by the compiler. Our work to
date has focussed on poor code that results from
lack of information about the behavior of other
procedures and pointer-based memory operations.
As we delve deeper into array promotion, we will
need to improve our analysis of subscripts.

As in any experimental study, examining the code that
comes out of the compiler suggests additional areas of
improvement. Further cases for improvement will sug-
gest themselves as we continue this work.

However, we must sound a note of caution. Regis-
ter promotion increases the demand for registers—often
called register pressure. As we improve the promoter,
we increase its ability to generate an intermediate code
program that requires spilling in the register allocator.
Carr discovered this effect in his work on scalar replace-
ment in Fortran [3]; beyond some point, the memory ac-
cesses removed by the transformation were balanced by
the spills added during register allocation. He adopted a
bin-packing discipline to “throttle” the promotion pro-
cess. As we extend our work, we will undoubtedly en-
counter the same problem and need a similar solution
to moderate register pressure.

4 Our Approach to Analysis

To test our ideas, we implemented two forms of inter-
procedural analysis: interprocedural MOD/REF analysis
and a “points-to” analysis. The results of analysis are
used to limit the size of the tag sets for pointer-based
memory operations and function calls.

The MOD/REF analyzer starts by limiting the tag
sets of pointer-based memory operations in two ways.
First, only tags that have had their address taken are
placed in the tag sets of pointer-based memory oper-
ations. The front end identifies these tags. To fur-
ther limit the tag sets, it only places the tag of a local
variable into the tag sets of memory operations that
appear in descendants of the function that creates the
local variable. Indirect calls are conservatively assumed
to target any addressed function. Once pointer-based
memory operations are limited, the tag sets of function
calls can be limited. A function call receives the tag
set of the called function. A function’s tag set is the
union of the sets of tags that it uses or its descendants
in the call graph use. To compute function tag sets, the



Program Lines Description

tsp 760 a traveling salesman problem

mlink 9264 genetic linkage analysis

fft 1037 fast-fourier transform

clean 11191 basic-block cleaning pass

cachesim 2849 cache simulator

dhrystone 534 classic benchmark code

water 1345 from SPLASH benchmark

indent 5955 prettyprinter for C programs

allroots 215 polynomial root-finder

bc 7583 calculator language from GNU

go 28553 game program from SPEC benchmarks

bison 10179 LR(1) parser generator

jpeg 19842 graphics compression code from SPEC

gzip 7331 file compression program

Figure 4: Program Descriptions

algorithm identifies the strongly-connected components
(SCC) of the call-graph, and calculates the tag set of
each SCC. Inside an SCC, all the functions have identi-
cal tag sets. Processing the SCCs in reverse topological
order ensures that the tag set of any called function not
in the current SCC has already been calculated.3

Our approach to pointer analysis is similar to Ruf’s
work [18]. We analyze the entire program at once. Each
function is converted into SSA form. For each SSA name,
the analyzer determines the set of tags to which it may
point. This is done by initializing SSA names with the
pointer values they may initially have. Pointer values
are propagated through the program using a worklist
algorithm. Non-local memory is modeled with explicit
names rather than representative names. Heap memory
is modeled with a single name for each call-site that can
generate a new heap address. The analysis is context-
insensitive. The effects of recursion are approximated.
Addressed locals of recursive functions are represented
with a single name. Since this one name represents
multiple locations, strong updates are not possible.

Once the analyzer has found a set of possible pointers
for each pointer-based memory operation, it can calcu-
late a more restrictive set of tags for each pointer-based
memory operation. MOD/REF analysis is then repeated,
using the new tag sets for the pointer based-memory op-
erations.

3This algorithm seems quite simple. The equations for MOD and
REF are drastically simplified by C’s lack of call-by-reference param-
eters [7].

5 Experimental Results

To understand the impact of register promotion, we
compiled 14 C programs using our laboratory compiler
(see Figure 4). Four versions of each program were pre-
pared, using the combinations of scalar promotion, no
scalar promotion, MOD/REF analysis, and pointer anal-
ysis. Each version was optimized with value numbering,
partial redundancy elimination, constant propagation,
loop invariant code motion, dead code elimination, reg-
ister allocation, and a basic block cleaning pass. Each
version was instrumented to record the total number
of operations executed, stores executed, and loads exe-
cuted. These results are shown in Figures 5, 6, and 7.
Note that these numbers are for whole programs, rather
than individual procedures.

The principal effect of register promotion is the re-
moval of memory operations–stores and loads. The fig-
ures for total operations executed show small improve-
ments in some applications. Figures 6 and 7 provide
a more precise picture of the impact of promotion. In
several of the applications, promotion removed a large
fraction of the stores and many of the loads. In other
applications, it found few, if any, opportunities. When
it found opportunities, the promoter often made signif-
icant improvements. If memory operations take more
cycles than other operations, as in many modern ma-
chines, the positive impact of promotion will be greater.

In some cases, the net effect of promotion was a mi-
nor performance degradation. Degradation was caused
by two effects, promoting rarely used or conditionally
used values and increasing register pressure. For ex-
ample, in dhrystone, values were promoted in a loop
that always executed once, and in bison, values were
promoted that were only accessed on an error condi-
tion. In water, register promotion was able to promote
twenty-eight values for one loop nest. Unfortunately,
this caused the register allocator to spill values which
resulted in a performance loss compared to no register
promotion.4 Most of the improvements were the result
of global variables which are normally placed in memory
being promoted to registers.

The results also show that the improved information
derived from pointer analysis does not greatly improve
the results of register promotion. This does not war-
rant a conclusion that pointer analysis is unprofitable;
it does suggest that MOD/REF analysis is a good basis
for evaluating the benefits of improved analysis.

For example, register promotion removed 2.8 million
loads from one function in mlink. This particular im-
provement did not require the extra precision provided

4It might be expected that the allocator would simply spill some sub-
set of the twenty-eight promoted values and avoid the actual perfor-
mance degradation. Our compiler uses a graph-coloring allocator [1].
These allocators are known to “over-spill” in tight situations.



Program analysis without with difference % removed
tsp modref 657067 657067 0 0.00

pointer 651283 651283 0 0.00
mlink modref 132386726 126902038 5484688 4.14

pointer 130108670 124562634 5546036 4.26
fft modref 12636489 12635955 534 0.00

pointer 12575809 12558866 16943 0.13
clean modref 1106502 1087295 19207 1.74

pointer 1112754 1097759 14995 1.35
cachesim modref 11590290 11590303 -13 0.00

pointer 11588693 11588707 -14 0.00
dhrystone modref 588194 596194 -8000 -1.36

pointer 560195 568195 -8000 -1.43
water modref 13736948 13737985 -1037 -0.01

pointer 12934445 12935195 -750 -0.01
indent modref 869492 865766 3726 0.43

pointer 869609 866171 3438 0.40
allroots modref 1011 1011 0 0.00

pointer 1001 1001 0 0.00
bc modref 5630210 5605846 24364 0.43

pointer 5642432 5618569 23863 0.42
go modref 13136359 13118131 18228 0.14

pointer 13013054 12995062 17992 0.14
bison modref 3347717 3348166 -449 -0.01

pointer 3344839 3345288 -449 -0.01
jpeg modref 37071266 37071326 -60 0.00

pointer 37070488 37070548 -60 0.00
gzip(enc) modref 5813661 5712142 101519 1.75

pointer 5804903 5679946 124957 2.15
gzip(dec) modref 984570 984770 -200 -0.02

pointer 984202 984257 -55 -0.01

Figure 5: Total Operations

by pointer analysis; note, however, that pointer analysis
did enable other improvements in mlink. An example
where pointer analysis was required to promote a value
arose in fft.

for (I = begin; I < end; I++)
for (J = 0; J < N3; J++)
for (K = 0; K < N1; K++)

{
index3 = (I*N3+J)*N1+K;
index1 = (I*N3+J)*N1*2+K;
T1 = pow(X3[index3], (double) KT) ;
X2[index1] = T1 * X1[index1];
X2[index1+N1] = T1 * X1[index1+N1];

}

T1’s address is taken elsewhere in this code. X2 is a
pointer so the stores through it may modify T1. Thus T1

is not promotable with just MOD/REF analysis. Pointer
analysis can discover that the stores through X2 cannot
modify T1, and thus T1 can be promoted.

Finally, some of the improvement due to register pro-
motion was hidden because other passes in the opti-
mizer achieve similar results. For example, loop invari-
ant code motion can remove a load of a constant value
out of a loop. Register promotion’s main benefit seems
to be transforming multiple stores of a promoted vari-
able in a loop to a single store at the loop’s exit, an
effect that other optimization passes cannot achieve.

6 Related Work

The literature contains prior work that relates to our
work in two broad categories: techniques that use im-
proved analysis to enregister more values and methods



Program analysis without with difference % removed
tsp modref 51049 51049 0 0.00

pointer 51049 51049 0 0.00
mlink modref 5885109 2506412 3378697 57.41

pointer 5885454 2358048 3527406 59.93
fft modref 1036669 1036401 268 0.03

pointer 1016181 1007706 8475 0.83
clean modref 86889 84035 2854 3.28

pointer 86888 84034 2854 3.28
cachesim modref 594474 594474 0 0.00

pointer 594474 594474 0 0.00
dhrystone modref 60012 60012 0 0.00

pointer 56012 56012 0 0.00
water modref 1080062 1080060 2 0.00

pointer 1064672 1064605 67 0.01
indent modref 71302 68462 2840 3.98

pointer 71302 68462 2840 3.98
allroots modref 11 11 0 0.00

pointer 11 11 0 0.00
bc modref 273922 249732 24190 8.83

pointer 273916 249727 24189 8.83
go modref 751252 432982 318270 42.37

pointer 750242 432183 318059 42.39
bison modref 540001 539666 335 0.06

pointer 540001 539666 335 0.06
jpeg modref 2566591 2566613 -22 0.00

pointer 2566861 2566883 -22 0.00
gzip(enc) modref 274719 212585 62134 22.62

pointer 274718 199108 75610 27.52
gzip(dec) modref 17575 17389 186 1.06

pointer 17575 17243 332 1.89

Figure 6: Stores

for disambiguating memory references in the presence
of pointers. The goal of our work is to enregister values
that the compiler placed in memory because it lacked
the information to safely place them in registers. When
the algorithm discovers such a value, it allocates a new
virtual register and rewrites the code accordingly. This
work is similar to Carr’s work on scalar replacement
in Fortran [2, 4, 3]. Carr developed a source-to-source
translator that used dependence information to pro-
mote array elements that are reused across different it-
erations of the loop. To force the value into a register,
he rewrote the code using a scalar temporary, subjecting
his results to the vagaries of subsequent optimization
and register allocation. Our technique works from data-
flow information rather than dependence and promotes
a different set of references (scalar values and pointer
references based on loop invariant base registers). 214z

The work on pointer analysis is somewhat peripheral
to this paper. Our effort has focussed on discovering
ways to profit from pointer disambiguation. However,
since pointer analysis has received so much attention in
the literature, some comparisons with previous work in
that arena are warranted. Many papers have described
techniques for discerning information about the side ef-
fects of memory operations through pointer variables.
Our work is based on “points-to” analysis; earlier work,
like Landi and Ryder [13];, Choi, Burke, and Cytron [6];
and Deutsch [8] cast the problem in an “aliasing” frame-
work. Algorithms for computing “points-to” informa-
tion have been described by Emami, Ghiya, and Hen-
dren [12]; by Wilson and Lam [22]; aand by Ruf [18].
Steensgaard showed a linear-time algorithm for per-
forming a flow-insensitive points-to analysis by casting
it as a type-inference problem [20]. Other papers have



Program analysis without with difference % removed
tsp modref 113723 113723 0 0.00

pointer 107940 107940 0 0.00
mlink modref 30033837 27232067 2801770 9.33

pointer 28738653 25717677 3020976 10.51
fft modref 1253052 1252784 268 0.02

pointer 1216700 1208230 8470 0.70
clean modref 188518 184919 3599 1.91

pointer 185694 182095 3599 1.94
cachesim modref 1901621 1901622 -1 0.00

pointer 1900700 1900701 -1 0.00
dhrystone modref 62024 62024 0 0.00

pointer 54024 54024 0 0.00
water modref 2675456 2676497 -1041 -0.04

pointer 1912295 1913113 -818 -0.04
indent modref 161367 145378 15989 9.91

pointer 161927 145992 15935 9.84
allroots modref 145 145 0 0.00

pointer 141 141 0 0.00
bc modref 843078 823047 20031 2.38

pointer 838366 818341 20025 2.39
go modref 1954619 1650736 303883 15.55

pointer 1877295 1573600 303695 16.18
bison modref 553970 553728 242 0.04

pointer 552830 552588 242 0.04
jpeg modref 6659671 6659684 -13 0.00

pointer 6658356 6658369 -13 0.00
gzip(enc) modref 910746 854886 55860 6.13

pointer 902023 836200 65823 7.30
gzip(dec) modref 136740 136387 353 0.26

pointer 136408 136055 353 0.26

Figure 7: Loads

looked at the problem of deriving better understanding
of the “shape” of objects in the heap; two of the most
recent are by Ghiya and Hendren [10] and Sagiv, Reps,
and Wilhelm [19].

Each of these techniques has strengths and weak-
nesses. We chose to compute points-to rather than
aliasing because we felt that it more closely corresponds
to the problem that we were addressing in the compiler.
It also handles function pointers in a natural and useful
way. Our work on transformations, to date, have not
looked deeply into the heap; thus, our analyzer uses
the simple expedient of splitting the heap by allocation
site as opposed to the more precise techniques used in
shape analysis. Within the literature on points-to anal-
ysis, variations occur in the choice of approximation
techniques for modeling parameter binding, for model-
ing the heap, and for tracking path information during

analysis. The following table summarizes these differ-
ences. For parameter binding, the methods either prop-
agate representative names or explicit names. The heap
is either modeled as a single name or it is split on some
criteria, like the call path that reaches the allocation
site or the specific call site causing the allocation. Fi-
nally, they differ in the amount of information about
call paths that they associate with names.

Parm’s Heap Path Info.
Emami et al. repr 1 name arbitrary
Wilson & Lam repr call path arbitrary
Ruf explicit call site none/arbitrary
Our work explicit call site none

The experimental results shown in Section 5 might
be interpreted as showing the benefits that can be ob-
tained from increasing the precision of program anal-



ysis. These numbers are not a general indictment of
pointer analysis; they simply show that increased pre-
cision did not significantly change the results from our
transformation. Little prior work compares the results
obtained by using a fixed set of transformations with
different precisions of program analysis. One notable
exception is David Wall’s work on available instruction
level parallelism (ILP) [21]. Wall estimated available ILP

under a set of five different assumptions for the quality
of analysis available in the compiler. His results suggest
that increased precision in the analysis of pointers can
have a significant impact on the amount of ILP discov-
ered by a compiler.

7 Summary and Future Directions

We have implemented a method for register promotion
that is loop-based. This method converts references to
scalar values in memory to references to a register. We
have shown that this technique can have a substantial
impact on memory traffic for whole programs even after
register allocation. As memory references become more
expensive this reduction in memory traffic will become
more important.

Register promotion can increase register pressure.
This, in turn, can cause the register allocator to spill
some values by inserting new loads and stores. These
spill operations hurt performance; in some cases, this
effect can lead to slower code than that obtained with-
out register promotion. To guard against this problem,
we may need to extend our promotion algorithm with
an explicit decision-making process that considers reg-
ister pressure and frequency of use before promoting a
value.
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