
Effective Partial Redundancy Elimination

Preston Briggs
Keith D. Cooper

Department of Computer Science
Rice University

Houston, Texas 77251–1892

Abstract

Partial redundancy elimination is a code optimization
with a long history of literature and implementation. In
practice, its effectiveness depends on issues of naming
and code shape. This paper shows that a combination
of global reassociation and global value numbering can
increase the effectiveness of partial redundancy elimina-
tion. By imposing a discipline on the choice of names
and the shape of expressions, we are able to expose more
redundancies.

As part of the work, we introduce a new algorithm
for global reassociation of expressions. It uses global in-
formation to reorder expressions, creating opportunities
for other optimizations. The new algorithm generalizes
earlier work that ordered FORTRAN array address ex-
pressions to improve optimization [25].

1 Introduction

Partial redundancy elimination is a powerful optimiza-
tion that has been discussed in the literature for many
years (e.g., [21, 8, 14, 12, 18]). Unfortunately, partial
redundancy elimination has two serious limitations. It
can only recognize lexically-identical expressions; this
makes effectiveness a function of the choice of names in
the front end. It cannot rearrange subexpressions; this
makes effectiveness a function of the shape of the code
generated by the front end. The net result is that de-
cisions made in the design of the front end dictate the
effectiveness of partial redundancy elimination.

This paper shows how an optimizer can use global
reassociation (see Section 3.1) and a form of partition-
based global value numbering [2] to improve the effec-
tiveness of partial redundancy elimination. We consider
these to be enabling transformations. They do not im-

This work has been supported by ARPA through ONR grant
N00014-91-J-1989.

To appear in Sigplan PLDI, June 1994.

prove the code directly; instead, they rearrange the code
to make other transformations more effective. The com-
bination of these transformations with partial redun-
dancy elimination results in removing more redundant
expressions, hoisting more loop-invariant expressions
(and sometimes hoisting them farther), and removing
some partially-dead expressions. By using global reas-
sociation and partition-based global value numbering to
generate the code shape and name space automatically,
the optimizer can isolate partial redundancy elimination
from the vagaries of the front end. This lets the opti-
mizer obtain good results on code generated by sources
other than a careful front end – for example, on code re-
sulting from other optimization passes or from restruc-
turing front ends.

The primary contributions of this paper are: (1) the
use of reassociation to achieve a canonical code shape for
expressions, (2) the use of partition-based global value
numbering to achieve a canonical naming, and (3) a new
technique for global reassociation of expressions. Addi-
tionally, we present experimental evidence that demon-
strates the effectiveness of partial redundancy elimina-
tion, with and without our transformations.

2 Partial Redundancy Elimination

Partial redundancy elimination (PRE) is a global op-
timization introduced by Morel and Renvoise [21]. It
combines and extends two other techniques.

common subexpression elimination An expression is re-
dundant at some point p if and only if it is com-
puted along every path leading to p and none of its
constituent subexpressions has been redefined. If e
is redundant at p, the evaluation of e at p can be
replaced with a reference.

loop-invariant code motion An expression is loop in-
variant if it is computed inside a loop and its value
is identical in all the iterations of the loop. If e is
invariant in a loop, it can be computed before the
loop and referenced, rather than evaluated, inside
the loop.

PRE combines and extends these two techniques.



Source code Low-level, three-address code

Code x+ y + z
r1 ← rx + ry
r2 ← r1 + rz

r1 ← rx + rz
r2 ← r1 + ry

r1 ← ry + rz
r2 ← r1 + rx

Tree
+

x y z
?��	 @@R +

rx ry

rz

+

�� AU

�� AU
+

rx rz

ry

+

�� AU

�� AU
+

ry rz

rx

+

�� AU

�� AU

Figure 1: Alternate Code Shapes

An expression is partially redundant at point p if it
is redundant along some, but not all, paths that reach
p. PRE converts partially-redundant expressions into
redundant expressions. The basic idea is simple. First,
it uses data-flow analysis to discover where expressions
are partially redundant. Next, it solves a data-flow
problem that shows where inserting copies of a com-
putation would convert a partial redundancy into a full
redundancy. Finally, it inserts the appropriate code and
deletes the redundant copy of the expression.

A key feature of PRE is that it never lengthens an
execution path. To see this more clearly, consider the
example below. In the fragment on the left, the second
computation of x + y is partially redundant; it is only
available along one path from the if. Inserting an eval-
uation of x+y on the other path makes the computation
redundant and allows it to be eliminated, as shown in
the right-hand fragment. Note that the left path stays
the same length while the right path has been shortened.

partially redundant

if p branch

?

�
?

y ← . . .

� -

x← . . .
← x+ y

?
← x+ y

⇒

redundant

if p branch

?

�
?

y ← . . .
← x+ y

� -

x← . . .
← x+ y

?
← x+ yHH��

Loop-invariant expressions are also partially redundant,
as shown in the example below. On the left, x + y is
partially redundant since it is available from one pre-
decessor (along the back edge of the loop), but not the
other. Inserting an evaluation of x + y before the loop
allows it to be eliminated from the loop body.

partially redundant

⇒
x←

?
← x + y
· · ·

if p branch

� �
�

redundant

x←
← x + y

?
← x + yHH��
· · ·

if p branch

� �
�

2.1 Code Shape

The optimizer in our compiler uses a low-level interme-
diate language. Most operations have three addresses:
two source operands and a target. Translating a source
expression to three-address code can introduce artificial
ordering constraints. Figure 1 shows the different pos-
sibilities for the source expression x+ y + z.

Consider the case where rx = 3, rz = 2, and ry is
a variable. Only the middle shape will allow constant
propagation to transform the expression into y+ 5. Al-
ternatively, if ry and rz are both loop invariant, only
the rightmost shape will allow PRE to hoist the loop-
invariant subexpression. This case is quite important,
since it arises routinely in multi-dimensional array ad-
dressing computations.

The choice of expression ordering occurs with associa-
tive operations such as add, multiply, and, or, min, and
max. In general, there are a combinatorial number of or-
derings for an associative expression having n operands.
Source language specifications sometimes restrict possi-
ble reorderings, especially in the case of floating-point
arithmetic where numerical precision may be affected.
The large number of possible orderings makes an ex-
haustive search for optimal solutions impractical.

2.2 Naming

Another important issue is the selection of names. Our
implementation of PRE distinguishes between variable
names and expression names. This distinction was in-
troduced by Morel and Renvoise [21, page 97]. A vari-
able name is the target of a copy instruction; conceptu-
ally, these correspond to source-level assignments. An
expression name is the target of a computation – in
practice, an instruction other than a branch or copy.
This gives every expression (and subexpression) a name.
Thus, the statement i = i + 1 might be represented as:

r1 ← 1
r2 ← ri + r1
ri ← r2

where ri is the name of the variable i, r1 is the name
of the expression “1”, and r2 is the name of expression



“ri + r1”. Within a single routine, lexically-identical
expressions always receive the same name. Therefore,
whenever we see the expression ri+r1, we would expect
to see it named r2.

This naming discipline can be implemented in the
compiler’s front end by maintaining a hash table of ex-
pressions and creating a new name whenever a new ex-
pression is discovered [3]. Unfortunately, relying on the
front end limits the applicability of PRE. It is difficult to
maintain the naming rules across other optimizations;
thus, PRE must be run first and only once. Further-
more, the ability of PRE to recognize identities is limited
by the programmer’s choice of variable names. Consider
the following source sequence and its corresponding in-
termediate representation:

x = y + z

a = y

b = a + z

r1 ← ry + rz
rx ← r1
ra ← ry
r2 ← ra + rz
rb ← r2

Obviously, r1 and r2 receive the same value (that is,
the expression named by r2 is redundant). PRE can-
not discover this fact even though value numbering can
eliminate this redundancy [10]. Of course, this is a sim-
ple example, but its very simplicity should suggest the
large number of opportunities missed by PRE when con-
sidering an entire routine.

3 Effective PRE

To address the limitations of PRE, we propose a set of
techniques that reorder and rename expressions. Global
reassociation uses information about global code shape
to rearrange individual expressions. Global value num-
bering uses knowledge about run-time equivalence of
values to rename expressions. In combination, they
transform the program in a way that exposes more op-
portunities to PRE.

3.1 Global Reassociation

To address the code shape problems, we use a technique
called global reassociation. It uses algebraic properties
of arithmetic to rearrange the code. In broad terms, it
uses commutativity, associativity, and distributivity to
expose common subexpressions and loop-invariant ex-
pressions. The effects can be substantial; Cocke and
Markstein note that as much as 50% of the code in some
inner loops can be eliminated as a result of reassocia-
tion [9, page 225]. Our approach has three steps:

1. Compute a rank for every expression.

2. Propagate expressions forward to their uses.

3. Reassociate expressions, sorting their operands by
ranks.

FUNCTION foo(y, z)

s = 0

x = y + z

DO i = x, 100

s = 1 + s + x

ENDDO

RETURN s

END foo

Figure 2: Source Code

The next three sections discuss these steps and intro-
duce several important refinements. To help clarify
the process, we provide a running example. Figure 2
shows the source code and Figure 3 shows a transla-
tion into a simple intermediate form. This translation
does not conform to the naming discipline discussed in
Section 2.2.

Computing Ranks To guide reassociation, the opti-
mizer assigns a rank to each expression and subexpres-
sion. Intuitively, we want loop-invariant expressions to
have lower ranks than loop-variant expressions. In a
deeply nested loop, we would like the rank of an ex-
pression that is invariant in the inner two loops to be
lower than the rank of an expression that is invariant
only in the innermost loop. In practice, we compute
ranks on the SSA form of the routine during a reverse-
postorder traversal of the control-flow graph; therefore,
our first step is to build the pruned SSA form of the rou-
tine [11, 7]. During the renaming step [11, Figure 12], we
remove all copies, effectively folding them into φ-nodes.
This approach simplifies the intermediate code by re-
moving our dependence on the programmer’s choice of
variable names (recall Section 2.2).

Given the SSA form, we traverse the control-flow
graph in reverse postorder, assigning ranks. Each block
is given a rank as it is visited, where the first block vis-
ited is given rank 1, the second block is given rank 2,

enter(ry , rz)
rs ← 0
rx ← ry + rz
ri ← rx
if ri > 100 branch

?
r1 ← rs + 1
rs ← r1 + rx
ri ← ri + 1
if ri ≤ 100 branch

� - return rs

�

?

� �

�

Figure 3: Intermediate Form



enter(r0, r1)
r2 ← 0
r3 ← r0 + r1
if r3 > 100 branch

?
r4 ← φ(r3, r8)
r5 ← φ(r2, r7)
r6 ← r5 + 1
r7 ← r6 + r3
r8 ← r4 + 1
if r8 ≤ 100 branch

� - r9 ← φ(r7, r2)
return r9

�

?

� �

�

Figure 4: Pruned SSA Form

and so forth. Each expression in a block is ranked using
three rules:

1. A constant receives rank zero.

2. The result of a φ-node receives the rank of the
block, as do any variables modified by procedure
calls. This includes the result of a load instruction.

3. An expression receives a rank equal to its highest-
ranked operand. Since the code is in SSA form, each
operand will have one definition point and will have
been ranked before it is referenced.

Figure 4 shows the result of rewriting into pruned SSA

form (minimal SSA would have required many more φ-
nodes). Notice that the copy ri ← rx has been folded
into the first φ-node. The rank of r2 is 0, the rank of
r0, r1, and r3 is 1, the rank of r4, r5, . . . , r8 is 2, and the
rank of r9 is 3. These ranks have the intuitive proper-
ties described above – loop-invariant expressions are of
lower rank than loop-variant expressions and the rank
of a loop-variant expression corresponds to the nesting
depth of the loop in which it changes.

Forward Propagation After ranks have been com-
puted, we copy expressions forward to their uses. For-
ward propagation is important for several reasons. It
builds large expressions from small expressions, allow-
ing more scope for reassociation. Additionally, without
forward propagation into loops, the compiler would have
to cycle between reassociation and PRE to ensure best
results with deeply-nested loops. Finally, forward prop-
agation avoids a subtle problem in PRE that arises from
the distinction between variable names and expression
names (see Section 5.1). As a matter of correctness, the
last reason seems to require forward propagation.

We propagate each expression and subexpression as
far forward as possible, effectively building expression

trees for φ-node inputs, values used to control program
flow, parameters passed to other routines, and values
returned from the current routine. In practice, we first
remove each φ-node x← φ(y, z) by inserting the copies
x ← y and x ← z at the end of the appropriate pre-
decessor blocks, then trace from each copy back along
the SSA graph to construct the expression trees. (If
necessary, the entering edges are split and appropriate
predecessor blocks are created.)

Continuing our example, Figure 5 shows how φ-nodes
are eliminated by inserting copies. New blocks were
required to hold the copies. Figure 6 shows the effect of
forward propagation.

It is interesting to note that forward propagation
eliminates partially-dead expressions [15, 19]. An ex-
pression is live at its definition point if its result is used
on some path to an exit. Alternatively, an expression
is dead if its result will never be used on any path. By
copying expressions to their use points, forward propa-
gation trivially ensures that every expression is used on
every path to an exit. Subsequent application of PRE

will preserve this invariant, since PRE will never place
an expression on a path where it is partially dead.

On the other hand, forward propagation is not really
an optimization. Since it duplicates code, it can expand
the size of the routine (see Section 4.3). Furthermore, it
can move code into loops, substantially increasing path
lengths. However, recall that our plan is to transform
the code so that later application of PRE will achieve
greater optimization. We expect that PRE will be able
to reverse the negative effects of forward propagation
and achieve significantly improved code as a result of
the opportunities afforded by forward propagation.

enter(r0, r1)
r2 ← 0
r3 ← r0 + r1
if r3 > 100 branch

?
r4 ← r3
r5 ← r2

� -

r4 ← r8
r5 ← r7

?
r6 ← r5 + 1
r7 ← r6 + r3
r8 ← r4 + 1
if r8 ≤ 100 branch

� �

�
?

r9 ← r7

� -

�

?
r9 ← r2

?
return r9

Figure 5: After Inserting Copies



enter(r0, r1)
r3 ← r0 + r1
if r3 > 100 branch

?
r2 ← 0
r3 ← r0 + r1
r4 ← r3
r5 ← r2

� -

r7 ← 1 + r0 + r1 + r5
r8 ← r4 + 1
r4 ← r8
r5 ← r7

?
r8 ← r4 + 1
if r8 ≤ 100 branch

� �

�
?

r7 ← 1 + r0 + r1 + r5
r9 ← r7

� -

�

?
r2 ← 0
r9 ← r2

?
return r9

Figure 6: After Forward Propagation

Sorting Expressions Given ranks and expression
trees, we are almost ready to reassociate expressions.
First, though, we rewrite certain operations to expose
more opportunities for reassociation. As suggested by
Frailey [17], we rewrite expressions of the form x−y+z
as x + (−y) + z, since addition is associative and sub-
traction is not. We also perform similar transformations
for Boolean operations. On the other hand, we avoid
rewriting x/y as x× 1/y to avoid introducing precision
problems. We rely on a later pass, a form of global peep-
hole optimization, to reconstruct the original operations
when profitable.

To reassociate, we traverse each expression, sorting
the operands of each associative operation by rank so
that the low-ranked operands are placed together. This
allows PRE to hoist the maximum number of subex-
pressions the maximum distance. Furthermore, since
constants are given rank 0, all the constant operands in
a sum will be sorted together. For example, the expres-
sion 1+rx+2 becomes 1+2+rx. Constant propagation
cannot improve the original form; it can easily turn the
reordered expression into 3 + rx.

Figure 7 shows the result of reassociation. Notice
that the low-ranked expressions, 1, r0, and r1, have been
sorted to the beginning of the sums.

After sorting expressions, we look for opportunities
to distribute multiplication over addition; that is, we
rewrite expressions of the form w × (x + y + z) as
w × x + w × y + w × z. This distribution is not al-
ways profitable, so we again use ranks as a guide. In
our current implementation, we distribute a low-ranked
multiplier over a higher-ranked sum. For example, if we
have an expression a+ b× ((c+ d) + e)), where a, b, c,
and d have rank 1 and e has rank 2, we would distribute

partially, giving a+b×(c+d)+b×e. This allows PRE to
hoist a+b×(c+d) even if b×e cannot be hoisted. Note
that a complete distribution would result in extra multi-
plications without allowing any additional code motion.
It is important to re-sort sums after distribution.

3.2 Global Renaming

To address the naming problems, we use a global re-
naming scheme based on Alpern, Wegman, and Zadeck’s
algorithm for determining when two variables have the
same value [2]. We refer to their technique as “partition-
based global value numbering”. Instead of building up
complex equality relationships from simpler ones, as in
traditional value numbering, their technique works from
the “optimistic” assumption that all variables are equiv-
alent and uses the individual statements in the code to
disprove equivalences.

We use a straightforward version of their algorithm
to discover when two names have the same value and
then rename all values to reflect these equivalences. Re-
naming encodes the value equivalences into the name
space; this exposes new opportunities to PRE. It also
constructs the name space required by PRE (recall Sec-
tion 2.2). Each lexically-identical expression will have
the same name; copies inserted during reassociation will
only target variable names. Of course, the “variables”
named at this point do not necessarily correspond to
source variables; instead, they correspond to the φ-
nodes introduced during conversion to SSA form. The
names are the only things changed during this phase;
no instructions are added, deleted, or moved.

enter(r0, r1)
r3 ← r0 + r1
if r3 > 100 branch

?
r2 ← 0
r3 ← r0 + r1
r4 ← r3
r5 ← r2

� -

ra ← r0 + 1
rb ← ra + r1
r7 ← rb + r5
r8 ← r4 + 1
r4 ← r8
r5 ← r7

?
r8 ← r4 + 1
if r8 ≤ 100 branch

� �

�
?

rc ← r0 + 1
rd ← rc + r1
r7 ← rd + r5
r9 ← r7

� -

�

?
r2 ← 0
r9 ← r2

?
return r9

Figure 7: After Reassociation



enter(r0, r1)
r3 ← r0 + r1
if r3 > 100 branch

?
r2 ← 0
r3 ← r0 + r1
r4 ← r3
r5 ← r2

� -

r6 ← r0 + 1
r7 ← r6 + r1
r8 ← r7 + r5
r9 ← r4 + 1
r4 ← r9
r5 ← r8

?
r9 ← r4 + 1
if r9 ≤ 100 branch

� �

�
?

r6 ← r0 + 1
r7 ← r6 + r1
r8 ← r7 + r5
r10 ← r8

� -

�

?
r2 ← 0
r10 ← r2

?
return r10

Figure 8: After Value Numbering

Figure 8 shows a naming that might be discovered by
global value numbering. In this case, none of the ex-
posed redundancies are particularly surprising, since we
created them during forward propagation. However, it
is important to note that the code now conforms with
the naming requirements stated in Section 2.2. Expres-
sions are named uniquely by r0, r1, r2, r3, r6, r7, r8, and
r9. The remaining names, r4, r5, and r10, are defined
exclusively by copies and serve as variable names.

Finishing the Example Applying partial redun-
dancy elimination to the code in Figure 8 produces the
code in Figure 9. The invariant expressions r6 and r7

have been hoisted from the loop and the redundant com-
putations of r3, r6, and r7 have been removed. Finally,
the coalescing phase of a Chaitin-style global register al-
locator will remove unnecessary copy instructions [6]. In
this example, coalescing is able to remove all the copies
(as shown in Figure 10), though this will not always be
possible.

Taken together, the sequence of transformations re-
duced the length of the loop by 1 operation without
increasing the length of any path through the routine.
However, it is worth noting that the final code is not
optimal. If the expressions r6 and r7 had been arranged
differently, we would have been able to take advantage
of the fact that r0 + r1 had already been computed. As
noted in Section 2.2, finding the optimal solution would
require examination of a combinatorial number of cases.
We use a fast heuristic that produces good, though not
optimal, results.

enter(r0, r1)
r3 ← r0 + r1
if r3 > 100 branch

?
r2 ← 0
r4 ← r3
r5 ← r2
r6 ← r0 + 1
r7 ← r6 + r1

� -

r8 ← r7 + r5
r4 ← r9
r5 ← r8

?
r9 ← r4 + 1
if r9 ≤ 100 branch

� �

�
?

r8 ← r7 + r5
r10 ← r8

� -

�

?
r2 ← 0
r10 ← r2

?
return r10

Figure 9: After Partial Redundancy Elimination

enter(r0, r1)
r4 ← r0 + r1
if r4 > 100 branch

?
r5 ← 0
r6 ← r0 + 1
r7 ← r6 + r1

� -

r5 ← r7 + r5

?
r4 ← r4 + 1
if r4 ≤ 100 branch

� �

�
?

r10 ← r7 + r5

� -

�

?
r10 ← 0

?
return r10

Figure 10: After Coalescing



4 Experimental Study

To test the effectiveness of our techniques, we have im-
plemented versions of global reassociation, global value
numbering, and partial redundancy elimination in the
context of an experimental FORTRAN compiler. The
compiler is structured as a front end that consumes
FORTRAN and produces ILOC (our intermediate lan-
guage), an optimizer that consumes and produces ILOC,
and a back end that consumes ILOC and produces C.
The generated C code is instrumented to accumulate
dynamic counts of ILOC operations. Thus, we are able
to compile individual FORTRAN routines, perhaps se-
lected from a large program, and test the effectiveness
of different optimizations on the routine in the context
of its complete program.

The optimizer is structured as a sequence of passes,
where each pass is a Unix filter that consumes and pro-
duces ILOC. Each pass performs a single optimiza-
tion, including all the required control-flow and data-
flow analyses. While this approach is not suitable for
production compilers, its flexibility makes it ideal for
experimentation.

Our implementation of PRE uses a variation described
by Drechsler and Stadel [14]. Their formulation sup-
ports edge placement for enhanced optimization and
simplifies the data-flow equations that must be solved,
avoiding the bidirectional equations typical of some
other approaches [13]. Our implementation of global
value numbering uses the simplest variation described
by Alpern, Wegman, and Zadeck, possibly missing some
opportunities discovered by their more powerful ap-
proaches [2, Sections 3 and 4].

4.1 Results

We ran several versions of the optimizer on a suite of
test routines. Each version adds new passes to the pre-
vious one. Our test suite consists of 50 routines, drawn
from the Spec benchmark suite and from Forsythe, Mal-
colm, and Moler’s book on numerical methods [16]. The
results are given in Table 1. We report results for four
different levels of optimization:

baseline This column provides the dynamic operation
count, including branches, for each routine when
optimized using a sequence of global constant prop-
agation [26], global peephole optimization, global
dead code elimination [11, Section 7.1], coalescing,
and a final pass to eliminate empty basic blocks.1

partial The left column gives the operation counts for
routines optimized with PRE, followed by the se-
quence of optimizations used to establish the base-
line. The right column gives the percentage im-
provement over the baseline.

1The sizes of the test cases for matrix300 and tomcatv have been
reduced to ease testing.

reassociation The left column provides the operation
counts for routines optimized using global reasso-
ciation (without distribution of multiplication over
addition) and global value numbering before PRE

and the other optimizations. The right column
gives the percentage improvements over partial.

distribution The left column gives the operation counts
for routines optimized using global reassociation
(including distribution of multiplication over addi-
tion) and global value numbering before PRE and
the other optimizations. The right column gives
the percentage improvements over reassociation.

The total column gives the percentage improvements
achieved over the baseline by the entire set of optimiza-
tions, while the new column gives the improvement over
partial contributed by the combination of reassociation
and distribution with global value numbering.

Empty entries indicate no improvement, whereas en-
tries of 0% and −0% indicate very small improvements
and degradations.

Limitations of the Optimizer Our optimizer is not
complete. In particular, we are currently missing passes
for strength reduction and hash-based value numbering.
Nevertheless, we believe our results are still valid indi-
cations of the importance of reassociation. Indeed, it
may be that our results understate the eventual ben-
efits – strength reduction should reduce non-essential
overhead and hash-based value numbering should also
benefit from reassociation.

4.2 Code Degradation

The results in Table 1 reveal several cases where our
“improvements” slowed down the code. Since we are us-
ing heuristic approaches to difficult problems, we should
not be surprised by occasional losses, annoying as they
are. Examination of the code revealed three sources of
difficulty; each is discussed in the sections below.

Reassociation Sometimes reassociation can disguise
common subexpressions. Recall our example from Fig-
ures 2 though 10. The final arrangement of the code,

r4 ← r0 + r1

and

r6 ← r0 + 1
r7 ← r6 + r1

hid the fact that r0 + r1 was being recomputed. We
found that this sort of problem occurred quite often in
the routines of our test suite. Fortunately, the effect
is usually dominated by the improved motion of loop
invariants.



routine baseline partial reassociation distribution new total

fmin 4,817 3,807 20% 1,908 49% 1,908 49% 60%

gamgen 462,285 180,260 61% 143,065 20% 107,031 25% 40% 76%

fmtset 705 538 23% 460 14% 397 13% 26% 43%

rkf45 62 62 58 6% 46 20% 25% 25%

sgemv 1,496 1,341 10% 1,241 7% 1,003 19% 25% 32%

saxpy 867 667 23% 667 525 21% 21% 39%

iniset 75,289 56,912 24% 56,766 0% 47,426 16% 16% 37%

spline 1,659 961 42% 885 7% 802 9% 16% 51%

tomcatv 858,364,988 250,343,458 70% 251,509,201 −0% 213,985,244 14% 14% 75%

debico 6,645 3,234 51% 2,946 8% 2,802 4% 13% 57%

seval 105 98 6% 87 11% 86 1% 12% 18%

sgemm 1,393 1,095 21% 1,096 −0% 954 12% 12% 31%

cardeb 1,716 989 42% 999 −1% 889 11% 10% 48%

hmoy 47 28 40% 27 3% 25 7% 10% 46%

orgpar 188 135 28% 135 121 10% 10% 35%

repvid 4,270 3,042 28% 3,038 0% 2,762 9% 9% 35%

drepvi 409 321 21% 303 5% 294 2% 8% 28%

heat 229 201 12% 190 5% 184 3% 8% 19%

svd 6,834 4,555 33% 4,523 0% 4,234 6% 7% 38%

x21y21 403 258 35% 258 239 7% 7% 40%

inideb 1,733 888 48% 954 −7% 829 13% 6% 52%

pastem 6,353 4,070 35% 3,941 3% 3,821 3% 6% 39%

si 206 176 14% 177 −0% 165 6% 6% 19%

deseco 33,873 14,430 57% 13,864 3% 13,707 1% 5% 59%

fmtgen 236 207 12% 202 2% 195 3% 5% 17%

fpppp 7,767 5,838 24% 5,514 5% 5,514 5% 29%

yeh 160 139 13% 132 5% 132 5% 17%

paroi 7,489 3,724 50% 3,677 1% 3,571 2% 4% 52%

twldrv 122,220,766 90,895,146 25% 86,945,328 4% 87,122,050 −0% 4% 28%

debflu 8,066 5,170 35% 5,156 0% 4,965 3% 3% 38%

colbur 152 126 17% 121 3% 123 −1% 2% 19%

decomp 876 635 27% 641 −0% 617 3% 2% 29%

inithx 5,918 3,086 47% 3,067 0% 3,018 1% 2% 49%

coeray 117 105 10% 104 0% 104 0% 11%

rkfs 456 298 34% 297 0% 297 0% 34%

integr 5,803 2,424 58% 2,436 −0% 2,447 −0% −0% 57%

subb 704 632 10% 636 −0% 636 −0% 9%

supp 906 813 10% 814 −0% 814 −0% 10%

urand 221 220 0% 221 −0% 222 −0% −0% −0%

zeroin 1,020 739 27% 743 −0% 743 −0% 27%

fehl 785 510 35% 510 517 −1% −1% 34%

ihbtr 513 453 11% 452 0% 458 −1% −1% 10%

saturr 322 318 1% 323 −1% 323 −1% −0%

solve 223 169 24% 168 0% 172 −2% −1% 22%

ddeflu 1,127 827 26% 854 −3% 845 1% −2% 25%

dcoera 182 160 12% 165 −3% 165 −3% 9%

bilan 10,188 3,355 67% 3,447 −2% 3,509 −1% −4% 65%

drigl 161 113 29% 126 −11% 125 0% −10% 22%

prophy 15,541 3,904 74% 4,016 −2% 4,351 −8% −11% 72%

efill 226 205 9% 230 −12% 230 −12% −1%

routine baseline partial reassociation distribution new total

Table 1: Experimental Results



Distribution Similarly, distribution of multiplication
over addition can cause problems in some cases. Con-
sider the following pair of expressions arising from a pair
of array accesses, one to a single-precision array and the
other to a double-precision array:

4× (ri − 1)
8× (ri − 1)

Distribution of the multiplies would yield:

4× ri − 4× 1
8× ri − 8× 1

and eventually, via constant folding:

4× ri − 4
8× ri − 8

Unfortunately, this version is slightly worse than the
original code since the original allowed commoning of
the subexpression ri − 1. Despite disappointments of
this sort, it is clear from the results in Table 1 that dis-
tribution is quite important. We believe that some of
the problems of distribution can be avoided by employ-
ing a slightly more sophisticated approach, though this
is a topic for further study.

Forward Propagation Earlier, we mentioned that
forward propagation eliminates partially-dead expres-
sions. However, forward propagation can also result in
code degradation if expressions are moved into loops
where they will be invariant but PRE will be unable to
hoist them. For an example, consider the (simplified)
code below, where the left and right fragments show the
same code before and after forward propagation:

n← j + k
i← 0

?
i← i+ 1
if i = m branch

?
i← i+ n

?
i← i+ 1
if i < 100 branch

�

��

� �

�

i← 0

?
i← i+ 1
if i = m branch

?
n← j + k
i← i+ n

?
i← i+ 1
if i < 100 branch

�

��

� �

�
In this case, the computation of n ← j + k has been
pushed into the loop, potentially shortening some paths
through the program. However, since we expect the
loop to execute many times, the code on the right is
potentially much slower (of course, the actual tradeoff is
undecidable, as it depends on the values of j, k, and m).
Recalling from Section 2 that PRE will never lengthen
a path through the code, we realize that PRE will not
be able to hoist the evaluation of j + k out of the loop
without lengthing the path around the use of n.

4.3 Code Expansion

The speed and space requirements of our approach are
primarily dependent on the amount of code expansion
introduced by forward propagation. In the worst case,
this expansion can be exponential in the size of the rou-
tine. To see how bad the expansion is likely to be in
practice, we measured the the effect of forward propa-
gation on the routines in our test suite. Table 2 shows
the results of these tests. The entries in the before and
after columns represent static counts of the number of
ILOC operations in each routine. The column labeled
expansion indicates the code growth factor due to for-
ward propagation.

5 Discussion

In implementing these techniques, we encountered sev-
eral issues that merit further attention.

5.1 Forward Propagation and Correctness

If an expression name is live across a basic block bound-
ary, PRE will sometimes hoist an expression past a use
of its name. Consider the example below:

r10 ← sqrt(r9)
if p branch

�-

�
?

r9 ← r1000

r20 ← r10

r10 ← sqrt(r9)
r30 ← r10

?

before PRE

r10 ← sqrt(r9)
if p branch

�-

�
?

r9 ← r1000

r10 ← sqrt(r9)

r20 ← r10

r30 ← r10

?

after PRE

The problem is that the fragment on the left violates
a requirement for correct behavior of PRE; namely, an
expression defined in one basic block may not be ref-
erenced in another basic block.2 Forward propaga-
tion satisfies this rule by moving the computation of
r10← sqrt(r9) directly before its use, relying on the re-
naming introduced by SSA to preserve the correct ver-
sion of r9. We note that Chow also mentions using for-
ward propagation [8]; we conjecture that it helped him
avoid the same difficulty with PRE.

An alternative approach to ensuring that no expres-
sion name is live across a basic block boundary is to in-
sert copies to newly created variable names and rewrite
later references so that they refer to the variable name
rather than the expression name. While it is possible
that this approach could be used to avoid some of the
negative effects of forward propagation, it may detract
from the effectiveness of reassociation. This remains a
topic for future research.

2We have never seen this requirement stated in the literature and
believe it to be a source of confusion in the community.



routine before after expansion

bilan 2,000 2,357 1.179

cardeb 916 1,024 1.118

coeray 280 397 1.418

colbur 659 1,155 1.753

dcoera 422 1,050 2.488

ddeflu 4,040 7,089 1.755

debflu 3,767 4,822 1.280

debico 2,728 2,984 1.094

decomp 941 1,144 1.216

deseco 11,545 13,537 1.173

drepvi 1,750 2,262 1.293

drigl 565 667 1.181

efill 1,257 1,996 1.588

fehl 552 581 1.053

fmin 372 661 1.777

fmtgen 588 696 1.184

fmtset 551 600 1.089

fpppp 20,147 27,358 1.358

gamgen 842 1,070 1.271

heat 925 1,817 1.964

hmoy 153 168 1.098

ihbtr 772 790 1.023

inideb 1,064 1,200 1.128

iniset 6,566 6,747 1.028

inithx 2,378 2,539 1.068

integr 812 967 1.191

orgpar 1,352 1,641 1.214

paroi 4,300 4,921 1.144

pastem 2,567 2,794 1.088

prophy 2,695 3,473 1.289

repvid 1,584 1,922 1.213

rkf45 164 228 1.390

rkfs 881 1,180 1.339

saturr 1,524 2,131 1.398

saxpy 95 102 1.074

seval 167 190 1.138

sgemm 677 976 1.442

sgemv 293 340 1.160

si 178 202 1.135

solve 319 375 1.176

spline 1,173 1,220 1.040

subb 1,199 1,199 1.000

supp 1,589 2,075 1.306

svd 2,563 3,984 1.554

tomcatv 2,645 3,610 1.365

twldrv 13,405 15,870 1.184

urand 189 212 1.122

x21y21 70 75 1.071

yeh 929 1,628 1.752

zeroin 276 400 1.449

totals 107,475 136,377 1.269

Table 2: Code Expansion from Forward Propagation

5.2 Interaction with Other Optimizations

Some optimizations interact poorly with our technique.
For example, many compilers replace an integer mul-
tiply with one constant argument by a series of shifts,
adds, and subtracts [4]. Since shifts are not associative,
this optimization should not be performed until after
global reassociation. For example, if ((x× y)× 2)× z is
prematurely converted into ((x×y) � 1)×z, we lose the
opportunity to group z with either x or y. This effect
is measurable; indeed, we have accidentally measured it
more than once.

We expect that strength reduction will improve the
code beyond the results shown in this paper. Reassoci-
ation should let strength reduction introduce fewer dis-
tinct induction variables, particularly in code with com-
plex subscripts like that produced by cache and register
blocking [5, 27]. Of course, some particularly sophisti-
cated approaches to strength reduction include a form
of reassociation [20]; we believe that a separate pass of
reassociation will significantly simplify the implementa-
tion of strength reduction. Additionally, implementing
global reassociation as a separate pass provides benefits
to other optimizations, even in loop-free code.

5.3 Common Subexpression Elimination

The experiments described in Section 4 show that PRE

is a powerful component of an optimizing compiler. A
natural question is: “How does it compare to other ap-
proaches?” To answer this, we will consider three differ-
ent approaches. Assume for each that we have used the
techniques described in Sections 3.1 and 3.2 to encode
value equivalence into the name space.

1. Alpern, Wegman, and Zadeck suggest the following
scheme: If a value x is computed at two points, p
and q, and p dominates q, then the computation at
q is redundant and may be deleted [2, page 2].

2. The classic approach to global common subexpres-
sion elimination is to calculate the set of expressions
available at each point in a routine. If x is available
on every path reaching p, then any computation of
x at p is redundant and may be deleted.

3. Partial redundancy elimination, as described in
Section 2.

These methods form a hierarchy. The first method re-
moves only a subset of the redundancies in the code.
For instance, it cannot remove the redundancy shown
in the first example of Section 2 where x + y occurs in
each clause of an if-then-else and again in the block that
follows. The second method, based on available expres-
sions, will handle this case; it removes all redundancies.
PRE is stronger yet – it removes all redundancies and
many partial redundancies as well.



6 Related Work

While there have been many papers discussing par-
tial redundancy elimination (e.g., [21, 14, 12, 18]),
none mention the deficiencies discussed in Sections 2.2
and 2.3. Rosen et al. recognize the naming problem and
propose a complex alternative to PRE; however, they do
not consider reordering complex expressions [23].

The idea of exploiting associativity and distributivity
to rearrange expressions is well known [17, 1]; however,
early work concentrated on simplifying individual ex-
pressions. We know of two prior approaches to reasso-
ciation with the goal of exposing loop-invariant expres-
sions, both discovered within IBM and published the
same year. Scarborough and Kolsky describe a front-
end discipline for generating an array address expression
as a sum of products and associating the sum to expose
the loop-invariant parts [25]. Cocke and Markstein also
mention the idea of reassociation, this time within the
optimizer instead of the front end [9].

In a chapter for an upcoming book, Markstein et al.
describe a sophisticated algorithm for strength reduc-
tion that includes a form of reassociation [20]. Their
algorithm attacks the problem on a loop-by-loop basis,
working from inner to outer loops. In each loop, they
perform some forward propagation and sort subexpres-
sions into loop-variant and loop-invariant parts, hoist-
ing the invariant parts. We presume their approach is
a development of earlier work within IBM. Other work
by O’Brien et al. and Santhanam briefly describe what
are apparently further developments of the Cocke and
Markstein approach [22, 24].

It is difficult to compare our approach directly to
these earlier methods. We were motivated by a desire to
separate concerns. We already had solutions to hoist-
ing loop invariants and strength reduction; therefore,
we looked for a way to reassociate expressions. We also
prefer our global approach to loop-by-loop alternatives
since it can make improvements in loop-free code and
may admit simpler implementation.

Recent work by Feigen et al. and by Knoop et al.
describe alternative approaches to the problem of elim-
inating partially-dead expressions [15, 19]. While an
adequate comparison of the alternatives would require
trial implementations and empirical measurements, it
is clear that they solve a similar class of problems in
radically different ways. In our case, the elimination of
some partially-dead expressions is an unexpected bene-
fit of forward propagation.

7 Summary

In this paper, we show how to use global reassociation
and global value numbering to reshape code in a way
that improves the effectiveness and applicability of par-
tial redundancy elimination. The effect of these trans-

formations is to expose new opportunities for optimiza-
tion. In particular, more expressions are shown to be
redundant or loop-invariant; partial redundancy elimi-
nation optimizes these newly exposed cases. Addition-
ally, some partially-dead expressions are eliminated.

We showed experimental results that demonstrate the
effectiveness of partial redundancy elimination. The
data also shows that applying our transformations be-
fore partial redundancy elimination can produce signif-
icant further improvements.

We introduced an algorithm for global reassociation.
It efficiently reorders the operands of associative opera-
tions to expose loop-invariant expressions. Its simplicity
should make it easy to add to an existing compiler.

Acknowledgements

We owe a debt of gratitude to our colleagues on the
compiler project: Tim Harvey, Rob Shillingsburg, Tay-
lor Simpson, Lisa Thomas, and Linda Torczon. With-
out their support and implementation efforts, this work
would have been impossible. We also appreciate the
thorough reviews provided by the program committee;
they significantly improved both the form and content
of this paper.

References

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.
Compilers, Principles, Techniques and Tools. Addison-
Wesley, Reading, MA, 1986.

[2] Bowen Alpern, Mark N. Wegman, and F. Kenneth
Zadeck. Detecting equality of variables in programs. In
Conference Record of the Fifteenth Annual ACM Sym-
posium on Principles of Programming Languages, pages
1–11, San Diego, California, January 1988.

[3] Marc A. Auslander and Martin E. Hopkins. An
overview of the PL.8 compiler. SIGPLAN Notices,
17(6):22–31, June 1982. Proceedings of the ACM SIG-
PLAN ’82 Symposium on Compiler Construction.

[4] Robert L. Bernstein. Multiplication by integer con-
stants. Software – Practice and Experience, 16(7):641–
652, July 1986.

[5] Steve Carr and Ken Kennedy. Blocking linear algebra
codes for memory hierarchies. In Jack Dongarra, Paul
Messina, Danny C. Sorensen, and Robert G. Voight,
editors, Proceedings of the Fourth SIAM Conference
on Parallel Processing for Scientific Computing, pages
400–405, 1990.

[6] Gregory J. Chaitin, Marc A. Auslander, Ashok K.
Chandra, John Cocke, Martin E. Hopkins, and Pe-
ter W. Markstein. Register allocation via coloring.
Computer Languages, 6:47–57, January 1981.

[7] Jong-Deok Choi, Ron Cytron, and Jeanne Ferrante.
Automatic construction of sparse data flow evaluation
graphs. In Conference Record of the Eighteenth Annual
ACM Symposium on Principles of Programming Lan-
guages, pages 55–66, Orlando, Florida, January 1991.



[8] Fred C. Chow. A Portable Machine-Independent Global
Optimizer – Design and Measurements. PhD thesis,
Stanford University, December 1983.

[9] John Cocke and Peter W. Markstein. Measurement of
program improvement algorithms. In Proceedings of
Information Processing 80. North Holland Publishing
Company, 1980.

[10] John Cocke and Jacob T. Schwartz. Programming lan-
guages and their compilers: Preliminary notes. Techni-
cal report, Courant Institute of Mathematical Sciences,
New York University, 1970.

[11] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N.
Wegman, and F. Kenneth Zadeck. Efficiently comput-
ing static single assignment form and the control de-
pendence graph. ACM Transactions on Programming
Languages and Systems, 13(4):451–490, October 1991.

[12] Dhananjay M. Dhamdhere. Practical adaptation of
the global optimization algorithm of Morel and Ren-
voise. ACM Transactions on Programming Languages
and Systems, 13(2):291–294, April 1991.

[13] Dhananjay M. Dhamdhere and Uday P. Khedker. Com-
plexity of bidirectional data flow analysis. In Confer-
ence Record of the Twentieth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming
Languages, pages 397–408, Charleston, South Carolina,
January 1993.

[14] Karl-Heinz Drechsler and Manfred P. Stadel. A solution
to a problem with Morel and Renvoise’s “Global opti-
mization by suppression of partial redundancies”. ACM
Transactions on Programming Languages and Systems,
10(4):635–640, October 1988.

[15] Lawrence Feigen, David Klappholz, Robert Casazza,
and Xing Xue. The revival transformation. In Con-
ference Record of POPL ’94: 21st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming
Languages, pages 421–434, Portland, Oregon, January
1994.

[16] George E. Forsythe, Michael A. Malcolm, and Cleve B.
Moler. Computer Methods for Mathematical Compu-
tations. Prentice-Hall, Englewood Cliffs, New Jersey,
1977.

[17] Dennis J. Frailey. Expression optimization using unary
complement operators. SIGPLAN Notices, 5(7):67–85,
July 1970. Proceedings of a Symposium on Compiler
Optimization.

[18] Jens Knoop, Oliver Rüthing, and Bernhard Steffen.
Lazy code motion. SIGPLAN Notices, 27(7):224–234,
July 1992. Proceedings of the ACM SIGPLAN ’92 Con-
ference on Programming Language Design and Imple-
mentation.

[19] Jens Knoop, Oliver Rüthing, and Bernhard Steffen.
Partial dead code elimination. SIGPLAN Notices,
29(6), June 1994. Proceedings of the ACM SIGPLAN
’94 Conference on Programming Language Design and
Implementation.

[20] Peter W. Markstein, Victoria Markstein, and F. Ken-
neth Zadeck. Reassociation and strength reduction. In
Optimization in Compilers. ACM Press, to appear.

[21] Etienne Morel and Claude Renvoise. Global optimiza-
tion by suppression of partial redundancies. Communi-
cations of the ACM, 22(2):96–103, February 1979.

[22] Kevin O’Brien, Bill Hay, Joanne Minish, Hartmann
Schaffer, Bob Schloss, Arvin Shepherd, and Matthew
Zaleski. Advanced compiler technology for the RISC

System/6000 architecture. In IBM RISC System/6000
Technology. IBM Corporation, Armonk, New York,
1990.

[23] Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck. Global value numbers and redundant compu-
tations. In Conference Record of the Fifteenth Annual
ACM Symposium on Principles of Programming Lan-
guages, pages 12–27, San Diego, California, January
1988.

[24] Vatsa Santhanam. Register reassociation in PA-RISC

compilers. Hewlett-Packard Journal, pages 33–38, June
1992.

[25] Randolph G. Scarborough and Harwood G. Kolsky.
Improved optimization of FORTRAN object programs.
IBM Journal of Research and Development, pages 660–
676, November 1980.

[26] Mark N. Wegman and F. Kenneth Zadeck. Con-
stant propagation with conditional branches. ACM
Transactions on Programming Languages and Systems,
13(2):181–210, April 1991.

[27] Michael E. Wolf and Monica S. Lam. A data local-
ity optimizing algorithm. SIGPLAN Notices, 26(6):30–
44, June 1991. Proceedings of the ACM SIGPLAN ’91
Conference on Programming Language Design and Im-
plementation.


