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ABSTRACT

We describe an improvement to a heuristic introduced by Chaitin for use in graph coloring register
allocation. Our modified heuristic produces better colorings, with less spill code. It has similar
compile-time and implementation requirements. We present experimental data to compare the two
methods.

1. Introduction

As a part of the programming environment pro-
ject at Rice, we are building an optimizing com-
piler for FORTRAN [CCHK 87, CoKT 86]. Currently,
the compiler produces code for theIBM RT/PC, a
RISC-style processor with sixteen general purpose

registers and eight floating-point registers.1 We
expect that the compiler will be easy to retarget to
other architectures. Many aspects of our design
were influenced by thePL.8 compiler[AuHo 82]; in
particular, our front-end and optimizer rely on the
code generator doing a good job of global register
allocation.

We decided to use a Chaitin-style, graph
coloring register allocator for several reasons
[CACC 81, Chai 82]. The high quality code produced
by thePL.8 compiler was a convincing argument
by itself. Even more appealing was the concep-
tual elegance of the algorithm. After some experi-
ence with other, comparativelyad hocmethods of
register allocation, graph coloring appeared won-
derfully simple and clean.

1.1. An Implementation

A graph coloring register allocator is an interest-
ing implementation project. Our first effort, an
exploratory version, was finished in about two

weeks. The quality of the generated code was
good, but the register allocation time was high.
Even worse, the allocation time was growing non-
linearly in the size of the routine. Nevertheless, it
worked, so we turned our attention to other parts
of the compiler.

1.2. A Motivating Problem

As the compiler matured, we began compiling a
variety of programs to test the quality of our opti-
mizer and code generator. While most routines
needed some spill code, one example (a singular
value decomposition routine,SVD) needed an
exceptional amount.

At first, we believed the extra spill code was
related to the size of the routine. Our assumption
was that large routines need more registers. How-
ev er, when we examined the object code (while
looking for an unrelated bug), we found that the
register allocator had done an exceptionally poor
job in some portions of the routine. In particular,
the loop indices and limits of a small doubly-
nested loop had been spilled despite the fact that
there were several free registers available. After
some study, we were able to understand why the
register allocator over-spilled so badly and what
situations provoked this behavior.

This work has been supported by the National Science
Foundation through grants CCR 86-19893 and CCR 87-06229
and by IBM Corporation.

The floating-point registers are actually provided by a
co-processor; however, this is transparent to the code genera-
tor.



some initialization

DO I = 1,N

DO J = 1,M

A(I,J) = B(I,J)

ENDDO

ENDDO

DO

the bulk of the routine

ENDDO
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Figure 1 — the structure ofSVD

As illustrated in Figure 1, theSVD routine
consists of several loop nests. It begins with some
initialization code, followed by a small, doubly-
nested loop that implements a simple array copy.
The rest of the routine consists of three large,
complex loop nests that do the bulk of the work.
After optimization, there are about a dozen long
live ranges extending from the initialization por-
tion, through the array copy, and into the large
loop nests. During coloring, these dozen live
ranges restrict the graph so much that some regis-
ters must be spilled. Looking at the computed
spill costs, it appears cheaper to spill the loop
indices and limits for the array copy loop (vari-
ables I, J, M and N) than the longer live ranges.
Unfortunately, spilling them does not lower the
register pressure in the large loop nests, so more
live ranges must be spilled. After this has been
done, most of the longer live ranges have been
spilled and coloring proceeds. The final result:
the code has almost no register utilization in the
array copy loops.

1.3. A New Implementation

As a result of the poor code discovered inSVD, we
again focused our attention on the problem of reg-
ister allocation. While we could imagine methods
that might produce better code, we were con-
cerned about the allocator’s efficiency. These
concerns prompted a new implementation of the
register allocator (actually, of the entire code

generator). With a new, cleaner implementation,
we hoped to gain a better understanding of the
performance of a graph coloring register allocator.

In our new implementation, we were much
more careful, focusing both on the choice of effi-
cient data structures and algorithms and on the
low-level details of coding. In particular, we fol-
lowed the description ofIBM’s version much more
closely [CACC 81]. The results were gratifying.
Our new allocator was slightly smaller (though
more complex) and more than twice as fast on
small test cases. On larger test cases, the
improvement was even more dramatic. In addi-
tion, the new version produced better spill code
because of corrections and improvements made
during the rewrite.

So, we had a shiny new register allocator,
producing better code and running faster. Nev er-
theless,SVD still had the same problem. This was
not unexpected;SVD exposed a problem with the
coloring heuristic, not the implementation. How-
ev er, we had a good basis for experimentation.

2. Improving the Coloring

For a time, we considered exploring techniques
for live range splitting[Chow 83, ChHe 84, LaHi 86].
We were saved from yet another implementation
effort by the discovery of a simple improvement
to Chaitin’s heuristic[Chai 82].



2.1. Chaitin’s Heuristic

The fundamental idea behind Chaitin’s register
allocator is to use the routine’s interference graph
as a guide to allocating registers. Nodes in the
interference graph represent live ranges. Each
edge in the graph represents an interference
between two liv e ranges. Thus, if two liv e ranges
exist at a single point in the program, there is an

edge between their nodes.2 If a node hasn neigh-
bors, we say the node is ofdegree n. Chaitin’s
allocator attempts to color the graph ink colors,
wherek is the number of registers available. If it
cannot find ak-coloring, it spills one or more live
ranges in order to transform the graph into one
that has ak-coloring. This process is repeated
until it has ak-colorable graph.

There are many different ways to find a col-
oring of a graph. Chaitin’s heuristic has two par-
ticularly nice properties. First, it is fast, taking
time linear in the size of the graph. Second, in the
ev ent that it cannot color the graph, it provides
useful guidance about which live ranges in the
routine should be spilled. Since our method
derives from Chaitin’s, it is appropriate to begin
with a high-level overview of how his method
works.

There are three phases to Chaitin’s method.
The first phase builds an interference graph for the
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Figure 2 — a graph requiring three colors

2 The precise definition of interference is subtle. See
the original paper for the ‘‘ultimate’’ notion of interference
[CACC 81].

routine. The second phase simplifies the graph
and produces a stack of nodes to drive the third
phase. The third phase assigns colors to the nodes
of the simplified graph. Because the differences
between Chaitin’s technique and ours lie in the
simplification and coloring phases, they deserve
more explanation.

The simplification phase repeats the follow-
ing steps until the graph is empty.

1) If there exists a noden with
degree(n ) < k , removen and all of its
edges from the graph. Placen on
the stack for coloring.

2) Otherwise, choose a noden (live
range) to spill. Removen and all of
its edges from the graph. Markn to
be spilled.

If phase two marks any node for spilling, instruc-
tions are inserted into the intermediate text to spill
the live range; that is, the value is stored to mem-
ory after each definition and restored before each

use.3 Because inserting spill code involves some
register use, it may induce additional spilling.
The register allocator repeats the entire process of
building the interference graph, simplifying it, and
inserting spill code until no additional live ranges
must be spilled.

In (2), we must decide which of the remain-
ing nodes to spill. Chaitin recommends taking the
node with the lowest ratio ofspill cost to degree.
For a liv e range, the spill cost is the number addi-
tional cycles that would be required to save and
restore the live range. We estimate the spill cost
as the number of loads and stores that would have
to be inserted, weighted by the loop nesting depth
of each insertion point. These costs are precom-
puted. When the simplification phase reaches a
point where it must choose a node to spill, it
divides the precomputed spill cost by the node’s
current degree.

Once all the spill code has been inserted,
the actual coloring is handled by the third phase.
It is driven by the stack produced in phase two.
While the stack is non-empty, it performs the fol-
lowing steps:

3 See Chaitin’s paper for refinements of this simple
scheme[Chai 82].



1) Removen from the stack and rein-
sert it in the graph, along with all its
edges.

2) Assignn a color that differs from all
its neighbors.

This coloring process must succeed; the work
done in simplification ensures that fact.

Suppose we are trying to find a 3-coloring
for the graph shown in Figure 2 (that is, we have a
machine with three registers). Applying the sim-
plification phase will remove all the nodes, mark-
ing none for spilling. One possible sequence of
removals isa, c, b, d, e.

Next, the coloring phase reinserts nodes
into the graph, assigning colors. In our example,
the nodee is inserted first and can be given any
color, sayred. Next, the noded is added;d can
get any color exceptred. Running through the
entire stack might result in the assignment:e:red,
d:blue, b:green, c:red, anda:blue.

Chaitin’s heuristic is not guaranteed to find
the minimal coloring. For example, suppose we
want to find a 2-coloring of the simple graph
shown in Figure 3. Clearly, one exists; for exam-
ple w:red, x:blue, y:blue, andz:red. Howev er, the
simplification phase immediately runs into a prob-
lem; it finds that there are no nodes with degree
less than two. Thus, it must select a node to spill.
Assume for the example that all spill costs are
equal, so we can choose any of the nodes to spill;
for example,x. We removex from the graph and
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Figure 3 — asimple graph requiring two colors

mark it for spilling. Phase two will now remove
the remaining three nodes without further spilling.
Since we have a node marked to spill, we have to
insert spill code, rebuild the interference graph,
and try again.

This example shows that Chaitin’s heuristic
does not always find the minimal coloring, nor
can it be guaranteed to find ak-coloring, if one
exists. Despite this, Chaitin’s method produces
excellent results. It does this by generating good
allocations and using spill costs to guide the gen-
eration of spill code.

2.2. An Improvement

Studying the simple example in Figure 3 suggests
an improvement to Chaitin’s approach that is
based on an algorithm due to Matula and Beck
[MaBe 81]. Instead of removing any node that has a
degree less than or equal to the number of colors,
it is possible to remove, at each step, the node
with the lowest degree. This can be accomplished
using the following method.

1) Let N be an array, such thatN [i ] is
the first element of a linked list of
nodes that havei neighbors. If there
are no such nodes,N [i ] is null.

2) Let the interference graph be repre-
sented by nodes, each of which is on
some list inN , and edges, represent-
ed by an adjacency list.

3) At each stage, searchN from the be-
ginning until the first non-null cell
N [i ] is found. Remove from the
graph the element at the head of the
list beginning atN [i ], and move
each of its neighbors down one cell
in N , reflecting the fact that each of
them has one fewer neighbor in the
graph.

The critical observation, due to Matula and Beck,
is that each node is originally in a box indexed by
the number of edges incident upon it. Thus, the
search in (3) that removes a node will take no
more steps than the degree of the node removed.
The total cost of searching is, therefore, bounded
by the sum of the degrees of every node, which is
exactly equal to twice the number of edges in the
graph. Since ev ery other step in (3) can be done
in constant time, the total cost is linear in the size
of the interference graph. This is the same as the



asymptotic bound achieved by Chaitin’s algo-
rithm.

In fact, the search in (3) can be shortened
by the following observation. If we have just
removed noden from N [i ], i > 0, the search can
start atN [i −1] rather than atN [0]. Because we
removed a node with degreei , we know that there
were no nodes of lower degree available. In
removingn , we lowered the degree of each of its
neighbors by exactly one. This might have cre-
ated a node of degreei −1, but it cannot have cre-
ated a node of lower degree. Thus,N [ j ] must still
be empty, for0≤ j < i −1.

Once all the nodes have been removed, we
begin the coloring phase, in which we rebuild the
graph by inserting each node and its associated
edges in the reverse of the order of deletion. As
each node is inserted, it is colored with the first
color that does not appear in any of its neighbors.
If this procedure is applied to Figure 3, we are
able to color the graph with two colors, even
though Chaitin’s procedure failed.

Why does this work? When we insert a
node that hask or more neighbors, we may dis-
cover that some of its neighbors have been
assigned the same color. In that case, we still may
have an available color to assign it. Our method
will color such a node and go on. In Chaitin’s
method, the node would have already been
spilled.

However, one problem remains: what to do
when the coloring phase encounters a node that
already has neighbors with each of thek colors.
At that point, we must choose a live range to spill.
After all, not every graph can be colored ink col-
ors, no matter how powerful our coloring heuris-
tic.

Eventually, we arrived at the following
approach. Consider the third phase of the process,
where nodes are added back into the graph and
colors are selected. If, at some point, a node is
added and no color is available, we leave it uncol-
ored. Then, we continue reinserting the rest of the
nodes and giving them colors where possible.
After the entire graph has been rebuilt, we insert
spill code for the uncolored nodes, rebuild the
interference graph, and try again. Deferring the
spill decision opens up a second opportunity for
improvement. When we insert a node that hask
or more neighbors, some of them may be uncol-
ored (spilled), possibly leaving a color available.

This is exactly what happened inSVD.
Chaitin’s simplification phase chose the indices
and limits of the array copy loop as the first candi-
dates for spilling. Unfortunately, spilling them
doesn’t help the situation in the later loops; some
of the long live ranges must be spilled. By mov-
ing the spill decision to the third phase, we allow
the allocator to reconsider each spill decision, in
inverse order. Thus, it can avoid pointless spills,
like those we saw inSVD.

The overall flow of our register allocator is
similar to Chaitin’s (see Figure 4). The major dif-
ference is that the choice of live ranges to be
spilled is deferred until the coloring phase.

As a graph coloring technique, this method
is stronger than Chaitin’s method. If Chaitin’s
method colors the graph without inserting spill
code, our method will, too. If Chaitin’s method
introduces spill code, our method may need to
introduce spill code.

2.3. A Final Refinement

The problem with the method described in section
2.2 is that it does not take any notion of spill cost
into account. Since it only looks at the degree of
a node, it would be forced to make spill decisions
without any estimate of their run-time impact.
Such an allocator would produce arbitrary alloca-
tions — possibly terrible allocations.

One of the strength’s of Chaitin’s method is
that the simplification phase encodes information
about the spill costs associated into its ordering.
This ordering information, in turn, forces the col-
oring phase of the algorithm to assign more
expensive nodes first. We wanted to capture this
property of Chaitin’s work and incorporate it into
our allocator. To accomplish this, we modified
the simplification phase so that it carefully orders
the nodes based on cost in those areas where the
coloring phase may need to generate spill code.

To add this ordering information, we went
back to the notion underlying Chaitin’s ordering.
We remove the nodes with fewer thank neighbors
in arbitrary order. Whenever we discover that all
the remaining nodes havek or more neighbors, we
fall back on Chaitin’s estimator and find the node
with the minimum ratio ofspill cost to degree.
We remove that node from the graph and push it
on the stack. This has the effect of ordering the
nodes by Chaitin’s metric in the vicinity of any
node that his heuristic would have marked for
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Figure 4 — register allocator structure

spilling.

This ordering information helps us in two
ways. First, it determines the order in which the
coloring phase assigns colors in the neighborhood
of a possible spill. Second, if we are forced to
spill, it ensures that we spill the same live range

that Chaitin’s method would spill.4 Thus, either
we spill a subset of the live ranges that Chaitin
would spill or the same set.

This second observation is important. Our
method always does as well as Chaitin’s method.
In some cases, it does better.

3. Results

We applied our new coloring heuristic to theSVD

routine. The improvement was stunning. The
number of registers spilled was reduced by 51%;
the estimated spill costs were reduced by 22%.
What happened? As nodes were removed from
the graph, the nodes for those live ranges in the
smaller loop nests were removed relatively early.
However, this time all of the nodes were placed on
the stack. The simplification phase continued
removing nodes from the graph until it was empty.
Then, when inserting nodes back into the graph,
the coloring phase was forced to spill some of the
longer live ranges. When it reached the live
ranges in the smaller loop nests, it discovered that
it still had available registers, so it was able to
assign them to registers. In essence, our new

4 To the extent that either algorithm is consistent. If
they encounter two liv e ranges with the same spill cost, the
choice between them is made on some basis — often some-
thing as trivial as a symbol table index.

heuristic allowed the coloring phase of the alloca-
tor to clean up bad decisions made in the simplifi-
cation phase.

Overall, registers were used much more
effectively because the long live ranges were
spilled. This lowered the register pressure
throughout theSVD routine. The short live ranges,
like those for the loop indices and limits in the
array copy loop (see Figure 1), could now be allo-
cated registers. This also explains the difference
in improvement between the number of registers
spilled and the estimated cost of spilling them.
The values that get assigned registers under the
new heuristic tend to have shorter live ranges.
The improvement reflects the fact that the algo-
rithm is cleaning up small cases that can really be
assigned to registers, but get missed in Chaitin’s
method.

3.1. Numerical Programs

In general, the results from our new register allo-
cator have been encouraging. Figure 5 summa-
rizes the results we obtained from applying it to

five floating-point intensive programs.5 Some
explanation of these numbers is in order.

The table is organized by programs. Within

5 LINPACK is Dongarra’s famous double precision
benchmark[DBMS 82, Dong 83]. SVD is a version of the singu-
lar value decomposition from Forsythe, Malcom, and Moler
[FoMM 77]. SIMPLEX is a parallel optimization code that ex-
ecutes a multi-directional search along simplex edges[Torc 89].
EULER is a 1D simulation of shock wav e propagation. The
routines underCEDETA are part of the Celis-Dennis-Tapia
code for equality constrained minimization[CeDT 84]. Only a
few of the routines fromCEDETA are shown.



Object Live Registers Spilled Spill Cost Dynamic
Program Routine Size Ranges Old New Pct. Old New Pct. Pct.

SVD SVD 4,456 442 101 49 51 596,713 465,627 22 1.35

LINPACK EPSLON 136 37 0 0 0 0 0 0 1.05
DSCAL 184 42 0 0 0 0 0 0
IDAMAX 224 46 0 0 0 0 0 0
DDOT 272 50 2 2 0 22 22 0
DAXPY 296 51 3 3 0 33 33 0
MATGEN 360 57 3 3 0 34 34 0
DGEFA 592 71 18 16 11 3,611 3,331 8
DGESL 704 94 21 16 24 635 499 21
DMXPY 2,000 230 57 55 4 22,151 22,020 1

SIMPLEX VALUE 280 55 2 2 0 22 22 0 1.37
CONVERGE 304 58 1 1 0 11 11 0
CONSTRUCT 304 65 1 1 0 11 11 0
SIMPLEX 2,792 157 24 13 46 25,860 16,827 35

EULER SHOCK 184 43 0 0 0 0 0 0 0.19
DERIV 592 80 2 2 0 22 22 0
CODE 928 142 20 19 5 775 775 0
CHEB 976 137 7 7 0 310 310 0
FINDIF 1,064 131 18 13 28 10,878 10,658 2
FFTB 1,064 133 17 17 0 14,036 14,036 0
BNDRY 1,424 167 3 3 0 7 7 0
INPUT 2,056 178 12 6 50 432 342 21
DIFFR 2,528 237 38 28 26 7,141 6,546 8
DISSIP 2,936 366 52 16 69 33,664 32,766 3
INIT 4,328 479 41 38 7 3,792 3,780 0

CEDETA DQRDC 1,840 152 45 24 47 14,479 12,223 16 n/a
GRADNT 14,672 1,274 73 59 19 1,893 1,413 25
HSSIAN 16,376 1,552 135 91 33 2,870 2,503 13

Figure
5 —
regis-
ter al-
loca-
tion improvements

a program, individual subroutines are listed.6 The
object size column gives the number of bytes of
object code generated using our technique. The
numbers for spilling are reported by the allocator.
Spill costs are calculated as in Chaitin’s work

6 As of March, 1989, the compiler does not handle I/O
constructs. Routines containing I/O were compiled with the
vendor suppliedf77 compiler. Thus, for example, the driver
routines for each program are not listed.

(described in section 2.1). For each of the static
measurements, the table shows numbers for
Chaitin’s method (Old), our method (New), and
the percentage difference (Pct). The final column
gives the measured run-time performance
improvement for each program.

In general, it appears that large routines
show a greater percentage improvement in the
number of registers spilled than do small routines.
This is not surprising. Large routines tend to have
large and complex interference graphs. They also



tend to have both more live ranges and more long
live ranges. This produces more nodes with
degree greater thank, provoking more spilling.
The difference in the number of registers spilled
by the two methods highlights the frequency with
which a node of high degree has either neighbors
that were assigned the same color, or neighbors
that were spilled.

In more than half of these routines, we
show no static improvement. These routines tend
to be small. In these cases, both methods produce
the same code. As we noted in section 2.3, when
our method cannot improve onChaitin’s, it pro-
duces the same results.

The amount of dynamic improvement is
small. Recall that the data listed for registers
spilled and for spill costs are relative — the per-
centages show the reductions in the amount of
spilling. The static numbers say nothing about
how total spill-related cycles relate to total execu-
tion cycles. For the programs in Figure 5, floating
point instructions dominate the execution time, as
shown by the dynamic improvement numbers.
Thus, spill-related cycles are a small part of total
execution time. This is consistent with the results
reported by Larus and Hilfinger[LaHi 86]. For
example, inLINPACK, around 90% of the execu-
tion time is spent insideDAXPY, a routine that
spills only three live ranges, all integer values.

Finally, there are two large routines that
defy all the trends,INIT andDMXPY. The explana-
tion for INIT is simple. This routine initializes all
the data forEULER. It consists of a long series of
assignment statements and simply nested loops. It
generates a relatively simple interference graph
with low spill costs.

For DMXPY, the explanation is more com-
plex. DMXPY is a routine that multiples a matrix
by a vector and adds the result to another vector
— a fairly simple computation that can be imple-
mented with a loop that looks like:

DO J = 1,N2

DO I = 1,N1

Y(I) = Y(I) + X(J) * M(I,J)

ENDDO

ENDDO

It appears that this routine was actually imple-
mented by unrolling the J loop sixteen times and
combining the assignments to Y. Thus, the rou-
tine consists of the computation in the unrolled J
loop along with several auxiliary I loops to handle

cases where the number of columns in the matrix
is not evenly divisible by sixteen. The unrolled J
loop looks like:

DO J = JMIN, N2, 16

DO I = 1, N1

Y(I) = ((((((((((((((( (Y(I))

+ X(J-15)*M(I,J-15)) + X(J-14)*M(I,J-14))

+ X(J-13)*M(I,J-13)) + X(J-12)*M(I,J-12))

+ X(J-11)*M(I,J-11)) + X(J-10)*M(I,J-10))

+ X(J- 9)*M(I,J- 9)) + X(J- 8)*M(I,J- 8))

+ X(J- 7)*M(I,J- 7)) + X(J- 6)*M(I,J- 6))

+ X(J- 5)*M(I,J- 5)) + X(J- 4)*M(I,J- 4))

+ X(J- 3)*M(I,J- 3)) + X(J- 2)*M(I,J- 2))

+ X(J- 1)*M(I,J- 1)) + X(J) *M(I,J)

ENDDO

ENDDO

Notice the complexity of the assignment state-
ment. It is not surprising that our coloring algo-
rithm failed to significantly improve the amount
of spilling in this routine. DMXPY is simply an
example of how the decision to perform one rea-
sonable optimization can significantly reduce the
effectiveness of later optimizations.

3.2. An Integer Program

The emphasis of the project is to provide support
for scientific programs. Thus, most of our experi-
mentation has involved programs where floating
point operations are the dominant cost. To get a
better feeling for the impact of spill code, we
looked at a program with no floating point arith-

metic, a non-recursive quicksort routine.7 Using
sixteen registers, we found no difference in the
spill code generated by Chaitin’s method and
ours. In both cases, the code produced was quite
good (sorting an array of 200,000 integers in eight
seconds). To look at the effect of smaller register
sets, we modified both register allocators to use a
subset of the machine’s sixteen general purpose
registers. Figure 6 summarizes the results of com-
piling quicksort with each allocation method and

a variety of available registers.8

While a single routine comprises a very
small test set, the experimental results suggest

7 Quicksort is an implementation of the non-recursive
algorithm given by Wirth[Wirt 76]. It was implemented by
R.M. Lewis at Rice.

8 The RT/PC’s register usage conventions prevent mean-
ingful experimentation with less than 8 registers.



Number Registers Spilled Spill Cost Object Size Running Time
Registers Old New Pct. Old New Pct. Old New Pct. Old New Pct.

16 3 3 0  1,303 1,303 0 360 360 0 8.2 8.2 0

14 5 4 20 5,105 2,568 50 384 368 4 8.3 8.2 1

12 8 6 25 11,809 7,750 34 400 392 2 8.7 8.4 3

10 13 8 38 37,000 15,875 57 440 416 5 10.0 8.9 11

8 17 11 35 125,000 71,675 43 464 432 7 13.2 11.2 15

Fig-
ure 6
—
quick-
sort
study
results

several conclusions.

• The quality of spill code is impor-
tant, both dynamically and statically.

• Our method shows greater im-
provement over Chaitin’s method in
highly constrained situations.

• An adequate register set is impor-
tant; with ‘‘only’’ eight registers,
quicksort ran 27% slower and re-
quired 17% more code space.

We intend to collect more data on the effec-
tiveness of our allocator for smaller register sets.
Additionally, we would like to experiment with a
more diverse set of non-floating point programs.

3.3. Costs

In earlier sections, we argued that our coloring
procedure runs as quickly as Chaitin’s. The
whole truth is somewhat more complex. It is
important to distinguish between the time spent in
each of the phases shown in Figure 4, and the
overall time spent performing allocation.

The time spent in a single execution of the
graph building phase will be the same in either
method. We assume that the amount of time spent
generating spill code depends on the number of
live ranges spilled. It will vary somewhat,
depending on the number of individual loads and
stores that must be inserted for a live range. That
minor difference is factored out by the fact that

our method spills either the same set or a subset of
the live ranges spilled by Chaitin.

Consider the remaining parts of the alloca-
tor, simplification and coloring. In the event that
no spill code is needed, Chaitin’s method, Matula
and Beck’s method, and our method will all run in
time linear in the number of live ranges plus inter-
ferences. If the simplification phase reaches a
point where each remaining node hask or more
neighbors, this situation changes. Here, Matula
and Beck will retain their linear behavior — their
method simply removes the nodes of higher
degree, in ascending order. Both Chaitin’s
method and our method, however, must examine
spill costs at this point. In selecting the next node
to remove, they must find the node with minimum
estimated cost. A simple implementation would
search all the remaining nodes; a more clever
algorithm might use a heap to decrease the cost of
finding subsequent values. In either case, the
costs involved in making that selection are the
same in both Chaitin’s method and ours.

Given an understanding of the costs of the
individual parts of the allocator, we can now dis-
cuss the total allocation time. For any graph that
Chaitin’s procedure can color without inserting
spill code, our procedure has the same behavior.
Both will run in time linear in the size of the inter-
ference graph. In cases where Chaitin’s procedure
needs to insert spill code, two differences arise:



1) Both methods will spend the same
amount of time in the simplification
phase, but our method will run
through the coloring phase, where
Chaitin’s will not. Fortunately, the
time for the coloring phase is linear
in the number of live ranges, so the
asymptotic complexity of both
methods remains the same.

2) In those cases where we spill fewer
live ranges, we will spend slightly
less time generating that spill code.
The experimental evidence suggests
that this happens about half of the
time; the relevant number in the
table is the number of registers
spilled. We nev er spill more live
ranges than Chaitin.

Thus, if no spill code is necessary, both allocators
run in time linear in the size of the interference
graph. If spill code must be generated, the results
will vary from case to case, but the asymptotic
complexity of the two methods will be the same.

The dominant factor in allocation time is
not the execution speed of the individual phases,
but rather the number of times that the Build-
Simplify-Color cycle must be repeated. When a
coloring cannot be found, spill code must be
inserted and the entire cycle must be re-executed
(recall Figure 4). In some cases, the allocator
makes several passes through the cycle. An intu-
itive explanation is that spilling a live range does
not entirely remove it; it simply divides that live
range into several shorter live ranges, one for each
definition or use. These shorter live ranges must
also be colored; this may provoke further spilling.
Fortunately, the process seems to converge very
rapidly; a typical large routine might spill fifty
live ranges during the first pass, but only two liv e
ranges during the second pass (see Figure 7).

For any giv en routine, the two algorithms
may require a different number of passes. For
example, onDMXPY from Figure 5, our method
requires three passes where Chaitin’s requires
only two. On the other hand, there are examples
(like Figure 3) where our method avoids spilling
completely, but Chaitin’s technique must insert
spill code; that forces his method to take at least
one additional pass. In our experience, the two

algorithms typically require the same number of
passes. We hav e never observed either method
needing more than three passes.

We hav e collected some measurements of
the CPU-time required by various phases of the
register allocator; these result are presented in
Figure 7. The times shown are inCPU-seconds,
measured with a 60 hertz clock. The parenthe-
sized numbers in thespill row indicate the number
of registers being spilled. Thebuild row entries
are unfortunately somewhat distorted for the
larger routines. The build phase actually has three
major parts: finding and renumbering distinct live
ranges, repeatedly building the graph and coalesc-
ing registers, and calculating spill costs. In the
current implementation, the build phase is domi-
nated by the time required to calculate spill costs
— a situation that we hope to remedy.

It is immediately apparent how inexpensive
the simplification and coloring phases are; in the
largest example, they take less than three seconds
total. The extra passes through the coloring phase
required by our method increase the total alloca-
tion time only slightly. Note that the spill times
and later build times slightly favor our method —
a consequence of processing fewer spill instruc-
tions. Overall, the time required for the two meth-
ods appears to be quite similar.

Also of interest is the behavior of the sim-
plification phase as allocation progresses. The
speedup between first and second invocations is
due to the amount of time spent handling nodes of
high degree. Recall that whenever the simplifier
has only nodes of degree≥ k, it must search
through the remaining nodes, comparing the ratios
of spill cost to degree. During the second (and
third) invocations, the number of such searches is
much smaller.

4. Conclusions

For appropriate target machines, a register alloca-
tor based on graph coloring is a good choice. The
compile-time performance is good, and the result-
ing code is excellent. Further, the luxury of good
global register allocation simplifies the design of
the rest of the compiler.

Since finding a minimal coloring is NP-
Complete, work in this area has turned to heuristic
methods. These techniques sacrifice precision for
speed. The difficulty is in finding a heuristic that:



Phase DQRDC SVD GRADNT HSSIAN

Old New Old New Old New Old New

Build 1.75 1.75 6.40 6.40 16.40 16.40 21.50 21.50
Simplify .10 .10 .74 .74 .72 .72 1.83 1.83
Color .03 .10 .18 .23

Spill (45) .14 (24) .13 (101) .67 (49) .62 (73) 4.02 (59) 4.00 (135) 6.33 (91) 6.29

Build 1.70 1.51 8.49 6.85 20.35 20.10 27.58 27.36
Simplify .02 .02 .06 .04 .13 .12 .15 .17
Color .03 .03 .06 .06 .17 .18

Spill (4) 4.15 (4) 4.12 (8) 6.87 (6) 6.83

Build 17.78 17.75 24.30 24.38
Simplify .12 .12 .13 .13
Color .18 .17 .18 .18

Total 3.74 3.57 16.42 14.81 63.85 63.85 88.87 89.08

Figure 7 -
CPU time
for alloca-
tor phases

• is computationally inexpensive, both asymp-
totically and practically,

• performs well on the graphs arising from real
programs, and

• provides useful direction when spill code must
be introduced.

Both Chaitin’s method and our own meet these
criteria.

Our results, to date, are encouraging. Our
heuristic either produces the same allocation as
Chaitin’s heuristic, or it produces a better alloca-
tion. The costs, both in implementation effort and
compile time, are comparable.

We intend to continue studying the perfor-
mance of our allocator, including analyses of
larger programs. TheCPU-time measurements in
Figure 7 suggest that we should investigate
improved techniques for calculating spill costs.
We may also explore live range splitting as a
means for improving the overall allocation.
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