
Interprocedural Side-Effect Analysis in Linear Time

Keith D. Cooper
Ken Kennedy

Department of Computer Science†

Rice University
Houston, Texas 77251-1892

Abstract

We present a new method for solving Banning’s alias-free flow-insensitive side-effect analysis
problem. The algorithm employs a new data structure, called thebinding multi-graph, along with
depth-first search to achieve a running time that is linear in the size of the call multi-graph of the
program. This method can be extended to produce fast algorithms for data-flow problems with
more complex lattice structures.

1. Introduction

Interprocedural analysis of the side effects
of subroutine invocation has been widely dis-
cussed in the literature[Spil 71, Alle 74, Bart 78,

Bann 79, Rose 79, Myer 80, CoKe 84, Burk 84, BuCy 86,

CaRy 86]. Banning has identified the important
component problem of alias-free flow-insensitive
side-effect analysis[Bann 79]. The fastest previous
technique for solving this problem, which we call
theswift algorithm, requiresO(NEα (E, N)) opera-
tions for instances of the problem with reducible
call graphs[Coop 83, CoKe 84, CoKe 87a]. Here,E is
the number of call sites,N is the number of proce-
dures, andα is the functional inverse of Acker-
mann’s function. The fundamental insight under-
lying the swift algorithm is that the problem can
be subdivided into two subproblems: the side
effects to parameters passed by reference and the
side effects to variables passed as global variables.
Each of these subproblems can then be solved
using algorithms adapted from single-procedure

data-flow analysis.1

In this paper we improve onthe swift algo-
rithm by presenting new algorithms for each of
the two subproblems.

a) To solve for side effects to reference parame-
ters, we use a graph of the parameter binding

structure in a program, called thebinding
multi-graph. This approach yields a simple
algorithm that takesO(N + E) time in the
worst case, assuming that the average number
of parameters at procedures and call sites is
bounded from above by asmall constant.

b) Side effects to global variables can be deter-
mined by an algorithm that employs depth-
first search to produce an answer inO(N + E)
bit-vector steps. It should be noted that bit
vectors for interprocedural analysis will be
exceedingly long. In fact, it is reasonable to
assume that the number of global variables
will grow linearly with the size of the pro-
gram. Hence, the overall complexity of the
resulting algorithm isO(N2 + NE), although
bit vectors can be used to speed up the analy-
sis by a constant factor.

This paper divides into five major sections.
Section 2 introduces the problem of interprocedu-
ral side-effect analysis and describes the partition-
ing. Section 3 introduces the binding multi-graph
and shows how it can be used in an efficient algo-
rithm for side-effect analysis. Section 4 describes
the linear-time algorithm for analysis of side
effects to global variables. Section 5 explains

† This work has been supported by the NSF and IBM.
1 The formulation of the decomposition presented in

Cooper’s dissertation and ourSIGPLAN ‘84 paper contains a
significant error. Howev er, there are several corrections that
both fix the problem and retain the time bound[Carr 87, CoKe 87a,

CoKe 87b, Ryde 87]. The decomposition presented here is based
on our own correction and revision of theSIGPLAN ‘84 paper
[CoKe 87a, CoKe 87b].

how to combine the results of the two problems to
produce a solution for the original problem.
Finally, section 6 shows how to extend this algo-
rithm to handle the analysis of side effects to sub-
sections of array variables. Throughout the paper,
we will use theMOD problem as our example.
TheUSEproblem has an analogous solution.

2. The Problem

To determine the safety of applying an opti-
mizing transformation, compilers examine the
flow of values inside a procedure. Calls to exter-
nal procedures present a difficulty for this type of
analysis; if the compiler has no knowledge about
the called procedure, it must assume that the
called procedure both uses and modifies the value
of every variable it can see. In practice, the called
procedure typically modifies only a fraction of
these variables. In a language likeFORTRAN,
where programmers use large numbers of global
variables, the difference between assumption and
reality is important. Thus, many authors have
proposed that the compiler collect and use more
precise information about the actual side effects of
procedure calls. This sort of information should
lead to improved optimization.

Specifically, the compiler should determine,
for each call site, which variables can have their
values modified by its execution and which vari-
ables can have their values used by its execution.
To represent this information concisely, we anno-
tate each call sites in the program with two sets,
MOD(s) andUSE(s), defined as follows. For a call
sites and a variablev:

v ∈ MOD(s) ←→ executings might change the value ofv
v ∈ USE(s) ←→ executings might use the value ofv

We are interested in solvingflow-insensitivever-
sions of these problems. A flow-insensitive analy-
sis concludes that a procedure call has a side
effect, likev ∈ MOD(s), if that side effect can occur
on somepath through the called procedure or any
procedure that it, in turn, invokes. In other words,
it ignores intraprocedural control structures. By
contrast, aflow-sensitiveanalysis would conclude
that the call has the side effect if and only if the
analyzer can determine that the side effect occurs
on everypath through the called procedure and all
procedures that it, in turn, calls.

A classical formulation of the flow-
insensitive MOD problem, along the lines of

Banning’s work, makes an excellent detailed

introduction to the problem[Bann 79].2 Rather than
computeMOD sets directly, Banning breaks the
problem down into component parts. Aliasing is
ignored until late in the computation; the method
assumes that simple sets of alias pairs are avail-
able for each procedure. Next, define:

DMOD The computation ofMOD(s) is complicated
by aliasing effects. The treatment can be
simplified by first computingDMOD(s), the
set of variables that may be modified by
execution of s, ignoring any aliasing
effects in the procedure containings, and
factoring aliasing in later. In other words,
MOD(s) can be computed by adding to
DMOD(s) any variable that may be aliased
to a member of DMOD(s). We call
DMOD(s) thedirectly modified setfor s.

GMOD The problem can be further simplified by
observing that computingDMOD for any
call site is easy once we determine, for
each procedurep in the program, a set
GMOD(p) that contains all variables that
may be modified as the result of an invoca-
tion of p. We call GMOD(p) the general-

ized modification setfor p.3 Once it is
computed, DMOD for any call site that
invokes p can be computed by identifying
the variables known at the call site that are
bound by the call to variables inGMOD(p).

The virtue of these observations is thatGMOD(p)
can be formulated as the solution to a system of
data-flow equations on the call graph. To intro-
duce this formulation, we need some more defini-
tions.

2 This formulation is based on Banning’s, but with dif-
ferent notation.

3 In Banning’s formulation, theGMOD set for the main
program is empty by definition, since it cannot be invoked at a
call site. We consider this an implementation detail and allow
GMOD for the main program to be non-empty because it makes
the formulation more natural.

LOCAL For a procedurep, LOCAL(p)
contains the names of all vari-
ables declared inp.

LMOD For a statements, LMOD(s) con-
tains those variables that might
be modified by an execution of
s, exclusive of any procedure
calls in s. We call LMOD(s) the
locally modified setfor s.

IMOD For a procedurep, IMOD(p) con-
tains those variables that might
be modified by an execution of
p, exclusive of any procedure
calls in p. We call IMOD(p) the
initially modified setfor p. Note
that

IMOD(p) =
s∈p
∪ LMOD(s).

We are now ready to introduce the system of
equations forGMOD(p).

(1)GMOD(p) = IMOD(p) ∪ [
e=(p,q)
∪ be(GMOD(q))]

Here,be is a function that maps names fromq into
names fromp according to the name scoping and
parameter binding that happens at the call site
e = (p, q). We call be(x) the projection ofx under
the binding ofe. It should be noted thatbe factors
out all variables that are local toq and maps the
formal parameters ofq to the actual parameters at
the call site. A similar system of equations can be
used to define theUSEcomputation.

Once GMOD(p) is known for eachp, the
DMOD set for a statements can be computed by
the following formula.

(2)DMOD(s) = LMOD(s) ∪ [
e=(p,q)∈s

∪ be(GMOD(q))]

DMOD(s) contains those variables that are modi-
fied locally in s plus any variables that are modi-
fied as a result of executing any procedure calls
contained ins. Thus, ifs doesn’t contain any pro-
cedure calls,DMOD(s) is identical toLMOD(s). If
it does contain procedure calls, each such call
contributes some projection of theGMOD set of
the called procedure.

These equations are sufficiently complex
that data-flow frameworks for their direct solution
will not achieve the fast time bounds with any of
the standard algorithms from global data-flow
analysis [CoKe 87b]. To improve on the time

bound, theswift algorithm relies on one central
insight — we can decompose the problem into
two subproblems: solving for effects due to refer-
ence parameter passing and solving for effects due
to global variables.

Let us defineIMOD+(p) to be the set of all
variables that are either directly modified inp or
passed by reference to another procedure and
modified as a side effect of the invocation of that
procedure. In other words,IMOD+(p) contains
IMOD(p) along with all variables modified inp
through side effects to reference parameters. If
we can computeIMOD+(p) for each procedurep in
the program, then we can reduce the problem of
computingGMOD(p) to the solution of a system of
equations analogous to equation (1).

(3)GMOD(p) = IMOD+(p) ∪ [
e=(p,q)
∪ be(GMOD(q))]

However, since we now hav e already solved for
the effects of reference formal parameters, the
functionbe takes on a particularly simple form. If
procedurep calls procedureq, be needs to model
modifications to variables that are extant afterq
returns. Clearly this means everything that is not
local to q, because all of the local variables ofq

are deallocated on return4. Hence, equation (3)
reduces to

(4)GMOD(p) = IMOD+(p) ∪ [
e=(p,q)
∪ (GMOD(q) ∩ LOCAL(q))].

This system is triviallyrapid, so that both the iter-
ative algorithm and the Graham-Wegman algo-
rithm will achieve their fast time bounds on an
instance of the problem[KaUl 76, GrWe 76].

Thus, we have reduced the problem to the
computation ofIMOD+. To do this, we further
decompose the problem by introducing a new set
RMOD(p) that contains all formal parameters top
that are modified as a side effect of invokingp. If
we can compute this set for each procedure in the
program, thenIMOD+(p) can be computed by the
following equation:

4 In a block structured language like Pascal, all of the
variables that are not local toq or some procedure defined inq
are visible from withinp. Howev er, in Fortran a global vari-
able modified byq may not be visible inp; nev ertheless, it
should be included inGMOD(p).

(5)IMOD+(p) = IMOD(p) ∪ [
e=(p,q)
∪ be(RMOD(q))]

where the functionbe is restricted to mappings
arising from actual-to-formal parameter bindings.
The problem, then, becomes one of computing

RMOD(p) efficiently.5

In our previous work, we showed how to
reduce the reference formal parameter problem to
a single source path expression problemthat can
be solved using Tarjan’s algorithm[Tarj 81a,

Tarj 81b]. If we definecP to be the maximum num-
ber of formal parameters in any single procedure
and assume thatcP is independent of program
size, then this algorithm requiresO(Eα(E,N)) bit
vector steps for reducible call graphs. We note
that the analysis of side effects to global variables
can also be performed inO(Eα(E,N)) bit vector
steps using the same algorithm, although the bit
vectors are much longer.

This paper presents linear-time algorithms
for each of the two subproblems. Neither algo-
rithm relies on the assumption of reducibility.

3. Reference Formal Parameter Problem

To solve theMOD problem for reference for-
mal parameters, the swift algorithm solved a for-
ward problem over the program’s call multi-graph
to compute summaries of parameter binding rela-
tionships and then used these summaries to pro-
duceMOD information. To simplify the reference
formal parameter subproblem, we need to intro-
duce a slightly different graph, thebinding multi-
graph. This is a simplification of the graph used
in our algorithms for interprocedural constant
propagation[CCKT 86, Torc 85].

3.1. The Binding Multi-Graph

The program’s binding multi-graph,β =
(Nβ , Eβ), represents interactions between formal
parameters. The nodes ofβ uniquely represent
the formal parameters of the various procedures in
the program. We denote them by the name of the
procedure and the specific parameter’s ordinal
position, so that the third formal parameter for
procedurep is written fp3

p. Edges inEβ represent

individual binding events. If p calls q from some
call site s and fp3

p gets bound tofp1
q at s, then

5 The decomposition and its correctness are discussed in
a pair of papers[CoKe 87a, CoKe 87b].

there is an edge(fp3
p, fp1

q) ∈ Eβ .6 Thus, a call site
that passes only local variables as actual parame-
ters generates no edges inEβ. Sincep can callq

several times, bindingfp3
p to fp1

q at each call site,
β may be a multi-graph. Becauseβ reflects the
pattern of binding chains in the program, it will
almost certainly consist of a number of disjoint
components.

How large isβ? Since the complexity of
data-flow algorithms is usually stated in terms of
the size of the underlying graph, this issue is cru-
cial to our later complexity analysis. The impor-
tant comparison is to the program’s call multi-
graph,C = (N

C
, E

C
). C contains a node for each

procedure and an edge for each call site. Letµ
f
be

the average number of formal parameters, taken
over all procedures in the program, andµ

a
be the

av erage number of actual parameters, taken over
all call sites in the program. Now, we can clearly
relate the size ofC andβ: Nβ ≤ µ

f
N

C
andEβ ≤ µ

a
E

C
.

It is reasonable to assume that bothµ
a

andµ
f
are

independent of the growth in the program’s size.
In practice, programmers don’t write ever longer
parameter lists as the program grows — most of
these interfaces are fixed at design time. Thus, we
may assume that these quantities are bounded
from above by a small constantk, so that
k ≥ max(µ

f
, µ

a
), thenβ is only larger thanC by a

factor ofk. Note thatk ≤ cP .

The binding multi-graph can be constructed
in time linearly proportional to its size by simply
visiting each of the call sites in the original call
graph. The construction need not represent a
node unless it is the endpoint of an edge inEβ .
Thus,2Eβ ≥ Nβ , ev erywhere.

Practically, we expectk to be small. While
there may exist individual procedures with large
numbers of parameters, the averagesµ

a
and µ

f
,

taken across the whole program, should remain
reasonably small. Furthermore, the fact that the
graph need only represent those nodes that have at
least one edge associated with them will have a
moderating effect onβ’s size.

6 We use fpi
p interchangeably to name both the formal

parameter and the node inN
β

representing it. Similarly, we use

set names likeN
β

to name both the set and its cardinality. In

all cases, the meaning should be clear from the context.

3.2. Usingβ to find RMOD

To solve the reference parameter problem,
we must compute, for each procedurep, a set
RMOD(p) that contains thosefpi

p’s that may be
modified by an execution ofp. RMOD(p) is the
contribution ofp’s reference formal parameters to
GMOD(p). We can compute these sets directly,
using β. With each nodefpi

p ∈Nβ, we associate
two values that are the analogs, onβ, of sets asso-
ciated with the nodes inC. The first,IMOD(fpi

p),
gets the valuetrue if and only if fpi

p is modified
locally in p. That is,IMOD(fpi

p) is true if and only
if fpi

p ∈ IMOD(p). Otherwise, it gets the value
false. The second,RMOD(fpi

p), gets initialized to
false, ∀ fpi

p ∈ Nβ . Now, theRMOD problem can be
posed as the solution to the following system of
data-flow equations:

(6)RMOD(m) = IMOD(m) (
e=(m,n)∈E

β

RMOD(n))

where is thelogical or operator. This set of equa-
tions has the interesting property that its solution
is identical at every node within a strongly con-
nected region. To solve this set of equations, we
can use the simple algorithm shown in Figure 1.
Since each of the steps in this algorithm takes no
more thanO(Nβ + Eβ) time, the whole process has
that time bound.

To understand the effectiveness of this
method, it is important to compare it to the swift
algorithm. The time bound for the swift algo-
rithm is in terms of bit vector operations, where

(1) Find the strongly connected components
(SCC’s) of β.

(2) Replace eachSCC with a representer node
n, settingIMOD(n) to the logical or of all
the IMOD sets of the nodes in theSCC. Set
RMOD(n) to false.

(3) Traverse the derived graph from leaves to
roots, applying equation (6).

(4) For eachSCC, set theRMOD set for each
node in theSCC to the value of theRMOD

set for its representer node.

Figure 1 — Solving forRMOD

each bit vector is as long as the total number of
reference formal parameters in the program, orNβ
bits. In data-flow analysis of a single procedure, it
is commonly assumed that the bit-vector length
does not grow appreciably with the size of the
procedure. In interprocedural analysis, however,
we expect bit-vectors to grow linearly as the size
of the program, since programs are typically built
by adding more procedures (hence, more parame-
ters), rather than by increasing the size of each
procedure. Since the swift algorithm requires
O(E

C
α (E

C
, N

C
)) bit-vector operations, its complex-

ity is O(Nβ E
C

α (E
C

, N
C
)) under this assumption.

By comparison, the method based on the
binding multi-graph takesO(Eβ) = O(kE

C
) simple

logical steps, wherek is the constant upper bound
on theaveragenumber of parameters, as defined
in Section 3.1. Typically, this will be a small con-
stant (less than 20), no matter how large the pro-
gram grows. Hence, the new algorithm can be
said to be an order of magnitude faster than the
swift algorithm.

The new method might be viewed as the
analog for interprocedural analysis of Zadeck’s
PVT algorithm applied to a backward data-flow
problem in a single procedure[Zade 84]. Howev er,
in Zadeck’s method the algorithm is applied once
for each variable or cluster of variables; for our
method, a single application toβ suffices. We
have gained significant leverage by changing
graphs.

3.3. Lexical Scoping

This method handles the two-level name
scoping of C orFORTRAN. Howev er, languages
like Pascal, which permit nested declaration of
procedures, present a special problem because the
method determines effects to global variables
after it determines effects to formal parameters.
In a language with nested procedure declarations,
a local variable for one routine is global to proce-
dures declared within the body of that routine.
Thus, nesting can affect the computation ofRMOD

in two ways:

1) IMOD(p) must reflect modifications to a local
variable v that happen inside a nested proce-
dure, wherev is a global variable.

2) One ofp’s formal parameters may be used as
an actual parameter at a call site within some
nested procedureq. This binding must be
reflected in the construction ofβ.

Fortunately, both these problems are easily
solved. Assume that every procedure in the pro-
gram is reachable by some call chain. If this is
not the case, a linear-time algorithm that elimi-
nates unreachable procedures can be invoked.
Now any procedureq nested within procedurep is
reachable by a call chain starting atp because no
procedure outside ofp can invokeq directly, since
it is not visible outside ofp. Hence, ifq is reach-
able, it is reachable fromp. This means that ifp
is invoked, we must assume thatq may be
invoked.

Given these observations and the flow-
insensitive nature of the computation, the first
problem above issolved by treating the bodies of
procedures nested inp as extensions of the body
of p. This is no different than assuming that each
branch at a conditional statement is possible.

We extend theIMOD(p) sets to include vari-
ables that are visible withinp (global or local to
p) and are directly modified within the body ofp
or passed as globals to some procedure whose
declaration is nested withinp and directly modi-
fied there. If we letNest(p) be the set of proce-
dures declared inp, we can formulate the follow-
ing definition forIMOD(p).

IMOD(p) =
s∈p
∪ LMOD(s) ∪ [

q∈Nest(p)
∪ (IMOD(q) ∩ LOCAL(q))]

The IMOD sets can then be computed in a bottom
up fashion — first for the most deeply-nested pro-
cedures and then for the procedures containing
those. This computation is linear in the size of the
program. The redefinition ofIMOD leads to a cor-
responding redefinition ofIMOD+.

The second problem, a formal parameter of
p used as an actual parameter at some call site
inside a nested procedureq, is easy to handle.
Whenever the graph constructor encounters a for-
mal parameter ofp being passed as an actual
parameter at some call site inq, whereq is lexi-
cally nested withinp, it must add the appropriate
edge from p’s formal parameter to the corre-
sponding formal of the called procedure. A care-
ful initialization of the basic data structures used
to constructβ will ensure this.

4. Global Variable Problem

Equation (4) is a particularly simple system
of equations. However, it becomes even simpler
if we are dealing with a language, like C orFOR-

TRAN, where all variables are partitioned into two

classes: global and local. In that case, the deter-
mination of which variables are local and which
are global is independent of the procedure being
invoked. In other words,GMOD for a particular
procedure p is simply IMOD+(p) augmented by
those global variables that are modified in some
procedure reachable by a call chain fromp. This
suggests that we might view the problem as a gen-
eralization of the reachability problem and adapt
depth-first search to produce a solution.

Figure 2 presents the algorithm for comput-
ing GMOD sets from theIMOD+ sets. The algo-
rithm is adapted directly from Tarjan’s strongly-
connected components algorithm[Tarj 72]. The
basic idea is to compute an initial approximation
to GMOD[p] that includes all variables that may be
modified as a side effect of call chains that include
tree edges, forward edges, or cross edges to nodes
that are in different strongly-connected compo-
nents of the depth-first search tree for the call
graph. Whenever the root of a strongly-connected
component is found, itsGMOD set represents all
side effects that can occur in procedures within
the strongly-connected component, since all pro-
cedures in such a component are reachable from
the root by tree edges. Thus, it is correct to aug-
ment the GMOD set for each member of the
strongly-connected component by the set of vari-
ables inGMOD[root] that are not local to the root.

The remainder of the section presents a for-
mal proof of the correctness of this algorithm.
The proof is based upon the proof of Tarjan’s
algorithm. In fact, the only substantive additions
to that algorithm are lines 8, 17 and 22, which
represent partial applications of equation (4). We
need only show that these applications have the
effect of correctly computingGMOD for each
node.

We say that a strongly-connected compo-
nent isclosedwhen, in line 19, itsroot, or mem-
ber with lowest depth-first number, is found and
all its members are popped off the stack. We will
show that whenever a strongly-connected compo-
nent is closed, theGMOD sets for each of its mem-
bers is correctly computed. Tarjan adopted the
convention that each vertex could reach itself by
the empty path, so even if some vertex is cannot
reach itself by an explicit sequence of edges, it is
still a member of the strongly-connected compo-
nent containing only itself. Hence, proving this
result will establish correctness of the algorithm.

1 procedure findgmod;

2 integer dfn[N], lowlink[N], nextdfn, p, q, d, l ,

3 GMOD[N], IMOD+[N], LOCAL[N];

4 integer stack Stack;

5 procedure search(p);

6 integer p, q;

7 dfn[p] : = nextdfn; nextdfn: = nextdfn+ 1;

8 GMOD[p] : = IMOD+[p];
9 lowlink[p] : = dfn[p];

10 pushp on Stack;

11 foreach q adjacent top do begin

12 if dfn[q] = 0 then begin/* tree edge */
13 search(q);
14 lowlink[p] : = min (lowlink[p], lowlink[q]);
15 end;

14 if dfn[q] < dfn[p] and q∈Stackthen /* cross or back edge, same scc */
15 lowlink[p] : = min (dfn[q], lowlink[p]);

16 else/* apply equation (4) */
17 GMOD[p] : = GMOD[p] ∪ (GMOD[q] ∩ LOCAL[q]);

18 end;

/* test for the root of a strong component */
19 if lowlink[p] = dfn[p] then begin

/* adjustGMOD sets for each member of the scc */
20 repeat begin
21 popu from Stack;
22 GMOD[u] : = GMOD[u] ∪ (GMOD[p] ∩ LOCAL[p]);
23 end
24 until u = p;

25 end

26 end /* search /* ;

/* assume thatIMOD+ andLOCAL have been initialized */
27 nextdfn: = 1; dfn[*] : = 0; Stack: = ∅;

28 search(1); /* root = 1 */

29 end /* findgmod */

Figure 2 — One-level global side effect algorithm

We begin by establishing some preliminary
properties of the algorithm.

Lemma 1. If there is an edgee = (p, q) from a
memberp of strongly-connected componentc1 to
a member q of a second strongly-connected

componentc2, thenc2 must be closed beforec1.

Proof. Suppose this is not the case — that
is, suppose thatc1 is closed beforec2. There are
two cases to consider.

1) The root ofc2 is put on the stack after the root
of c1. If this happens, it must be the case that
c1 is closed before the root ofc2 is stacked,
since the algorithm dictates that if two roots
are on the stack at the same time, the compo-
nent corresponding to the shallower root will
be closed first. Butc1 cannot be closed until
all the nodes ofc2 are visited because of the
edge betweenp ∈ c1 and q ∈ c2. Depth-first
search will explore all paths fromp, including
the path intoc2, before it returns. Hence the
root of c2 must be visited and closed before
the search returns top and this must take
place beforec1 can be closed.

2) The root ofc2 is put on the stack before the
root of c1. Since it must remain on the stack
until c2 is closed, it must still be on the stack
when c1 is closed, because we have assumed
that c1 is closed beforec2. It is a fundamental
property of depth first search that there is a
path from any giv en node on the stack to all
nodes that are stacked on top of it. Thus, there
must be a path from the root ofc2 to every
node inc1. In particular, there must be a path
from the root ofc2 to p, from which there is
an edge toq ∈ c2. Since,c2 is strongly con-
nected, there is a path fromq to every node of
c2, including the root. We conclude, therefore,
that c1 and c2 must be the same strongly-
connected component, a contradiction.
Q.E.D.

Now consider the value ofGMOD[p] on exit
from the loop in lines 11-18. It is an initial
approximation toGMOD[p] that is a subset of the
correct GMOD, since lines 8 and 17 implement
equation (4). The following lemma establishes an
important property of that approximation.

Lemma 2. If q can be reached fromp by a possi-
bly empty path consisting exclusively of tree
edges, then

(7)GMOD[p] ⊇ GMOD[q] ∩ LOCAL[q].

Proof. The proof is by induction on the
order of visits by depth-first search. First, note
that if GLOBAL is the set of all global variables in
the program, then

(8)GMOD[q] ∩ LOCAL[q] = GMOD[q] ∩ GLOBAL

since the only local variables that can be modified
as a side effect of the invocation of a procedureq
are its own. If there are no tree edges out ofp
then equation (7) holds vacuously, since the only

possibleq is p itself. In particular, it holds for the
node with the greatest depth-first number. Sup-
pose that the lemma holds for all nodes with a
greater depth-first number thanp. Let x be a vari-
able modified in someq reachable fromp by tree
edges. Ifq = p, equation (7) holds trivially, so
assume there is at least one edge in the path toq
and let (p, u) be the first edge. Sinceu has a
greater depth first number thanp, we hav e by the
induction hypothesis

GMOD[u] ⊇ GMOD[q] ∩ LOCAL[q] = GMOD[q] ∩ GLOBAL.

By line 17, we conclude

GMOD[p] ⊇ GMOD[u] ∩ LOCAL[u] = GMOD[u] ∩ GLOBAL

⊇ GMOD[q] ∩ GLOBAL = GMOD[q] ∩ LOCAL[q],

the desired result.Q.E.D.

Theorem 1. Given that theIMOD+ sets are prop-
erly initialized, algorithm findgmod correctly
computesGMOD(p) for each procedurep.

Proof. The proof of the theorem is by
induction on the order in which components are
closed. We assume as an induction hypothesis
that GMOD sets have been correctly computed for
each strongly-connected component closed before
the current one, which we callc. This hypothesis
is vacuously true whenc is the first component to
be closed.

We claim that when the rootr of c is
reached in statement 19,GMOD[r] is the correct
GMOD set forr — that is, it contains all the global
variables that can be modified, either directly or as
a side effect to a reference formal parameter,
within any procedure reachable fromr . Suppose
there exists a global variablex, not a member of
GMOD[r], for which there is a (possibly empty)
path fromr to a procedure in whichx is modified.
If x is modified inr itself, it will be reflected in
GMOD[r] by virtue of the initialization of that set to
IMOD+[r] in line 8. So assume there is a non-empty
path fromr to a procedure in whichx is modified.
If the path contains only tree edges,x must be in
GMOD[r] by equations (7) and (8). If the path con-
tains forward edges,x will still be in GMOD[r],
since anyq reachable fromr by a path containing
only tree edges and forward edges can be reached
from r by a path containing only tree edges.

Thus, we must assume that the path con-
tains a cross edge to a different strongly-
connected component. The component must be

different, because there is a path consisting exclu-
sively of tree edges fromr to every member ofc.
Let (p, q) be the first such edge. By Lemma 1, the
component containingq must already be closed,
so the induction hypothesis applies and we must
have x ∈ GMOD[q]. But this means that
x ∈ GMOD[p] since every global member of
GMOD[q] is added toGMOD[p] when line 17 is
executed for(p, q). Sincep is reachable fromr by
tree edges, we have by Lemma 2 and equation (8)

x ∈ GMOD[p] ∩ GLOBAL = GMOD[p] ∩ LOCAL[p] ⊆ GMOD[r].

The contradiction establishes the correctness of
GMOD[r].

The theorem now follows from the observa-
tion that the set of global variables modified at
any member of a strongly-connected component
must be the same as the set of such variables mod-
ified at the root. In other words, for each member
q of the component with rootr ,

GMOD[q] ∩ GLOBAL = GMOD[r] ∩ GLOBAL

= GMOD[r] ∩ LOCAL[r]

by equation (8). Hence, line 22 correctly adjusts
the GMOD set for each member to include all
global variables inGMOD for the root.Q.E.D.

Theorem 2. If sets are represented as bit vectors,
algorithm findgmod requires O(EC + NC) bit-
vector steps.

Proof. Line 17 is executed no more than
once for each edge and line 22 is executed no
more than once for each vertex.Q.E.D..

The technique can be extended to languages
in which procedures can be declared at multiple
nesting levels by the simple device of simultane-
ously solving the problem for each nesting level.
That is, suppose we number the procedure decla-
ration nesting levels 0 throughdP, where level 0 is
the nesting level of the main program anddP is
the maximum level at which any procedure in the
program is declared. IfdP = 1, the problem
reduces to the simple global-local problem dis-
cussed above.

When dP > 1, we can simultaneously
develop the solutions to problems numbered 1
through dP, where the solution to problemi
includes effects to global variables for call chains
that never inv oke a procedure at a nesting level
shallower thani. That is, the i th problem is
defined on a graph in which all edges representing

calls to procedures declared at levels shallower
thani are ignored.

It is easy to solve all these problems in
O(dP(EC + NC)) bit-vector steps by simply repeat-
ing the algorithm from figure 2 for each leveli on
the associated graph. However, by maintaining a
vector of lowlink values, one for each problem,
we can eliminatedP as a multiplier ofEC. The
key insight is that a strongly-connected region that
includes no procedure at a nesting level shallower
than i will be a proper subset of the maximal
strongly-connected region that includes all the
same nodes but may include procedures at a
higher nesting level. This means that thelowlink
vectors will be ordered in value, with thelowlink
for the problem at leveli less than or equal to the
lowlink for the problem at leveli + 1. Thus, in the
loop at line 11 in Figure 2, the algorithm can sim-
ply adjust thelowlink corresponding to the nesting
level of the called procedure. After exiting the
loop, but before testing for a strongly-connected
region, thelowlink vector must be corrected by
insuring that values from lower nesting levels are
propagated to higher nesting levels where appro-
priate, a step that takes time proportional todP. If
we maintain parallel stacks, the lines between 19
and 25 are executed at most once for each nesting
level, so the time required is proportional todPNC.

The result is an algorithm that solves alldP

problems and computes the union of these solu-
tions in O(EC + dPNC) bit vector steps. SincedP

is likely to be bounded by a small constant inde-
pendent of program size, this is effectively
O(EC + NC) bit vector steps. Assuming that the
bit vectors are of lengthO(NC), the total time
required by the global analysis phase is
O(EC NC + N2

C).

5. Computing MOD

GivenGMOD for each procedure, computing
MOD sets for the call sites is a two-step process.

(1) For each call sites, computeDMOD(s) by
applying equation (2).

(2) To obtainMOD(s) from DMOD(s), extend
DMOD(s) to account for aliases. That is, if
we have a setALIAS(p) containing the
alias pairs that can hold on entry top, s ∈
p, then

∀ x ∈DMOD(s), if ∃ < x, y > ∈ALIAS(p), addy to
MOD(s).

Step (1) takesO(N
C
E

C
) time. Step (2) takes time

linear in the size ofDMOD(s) andALIAS(p). While
ALIAS(p) can grow to be large, programs with
complex aliasing patterns are difficult to write and
understand. Any algorithm that computes sum-
mary information must deal with the aliases; it
will require at least time linear in the number of

aliases, as we do.7 In the absence of aliasing, the

entire process requiresO(N
C
(E

C
+ N

C
)) time.8

When a large number of aliases exist, our method,
like any other method, will require time propor-
tional to the size of theALIAS sets.

6. Regular Section Analysis

Our experience with using interprocedural
summary information in a working system for
detecting parallelism has shown that the granular-
ity of conventional summary information is too

A(I,J) A(K,J) A(K,L)

A(*,J) A(K,*)

A(*,*)

Figure 3 — Simple regular section lattice

7 The stated time bound for the swift algorithm and oth-
er algorithms for this problem ignore the term for aliases. We
will continue this practice.

8 Recall that the sizes ofC andβ are related by a small
constantk.

coarse to allow effective detection of parallelism
in loops that contain call sites[CaKe 87]. The prob-
lem lies with the treatment of whole arrays. The
standard framework for interprocedural analysis
treats formal parameters as unitary objects.
Hence, if the formal parameter is an array, side
effects that are restricted to a portion of the array
will be reported as having affected the whole
array. In other words, these methods are able to
determine whether an array is modified some-
where, but not whether it is modified in only a sin-
gle column or row. This limitation is disastrous
for parallelization because the most effective way
to parallelize a loop is through data decomposi-
tion, in which each parallel processor works on a
different subsection of a given array.

Callahan and Kennedy have proposed a
technique, calledregular section analysis, to solve

this problem [CaKe 87].9 The basic idea is to
replace the single-bit representation of side effects
with a richer lattice that permits the representation
of subregions. Aregular sectionis a subregion of
an array that has an exact representation in the
given lattice.

Perhaps the best way to illustrate this idea is
by an example. Figure 3 displays a lattice of ref-
erence patterns to array A in which the regular
sections are single elements, whole rows, whole
columns and the whole array. Note that I, J, and
K are arbitrary symbolic input parameters to the
call.

Callahan and Kennedy point out that a vari-
ety of algorithms can be accommodated in the
regular section framework—these algorithms
would differ only in the cost of the representation
of lattice elements, the cost of determining
whether two lattice elements represent an inter-
secting subsection (used for dependence testing),
the expense of themeetoperation and the depth of
the lattice. They also claim that most standard
bit-vector algorithms can be extended naturally to
deal with regular sections, although it is not
immediately clear how to do this with the swift
algorithm.

The approach proposed in this paper
extends very naturally to lattice elements.
Clearly, the bit vector technique for solving the
global variable problem can be directly extended
to vectors of lattice elements. Extending the algo-
rithm for the reference formal parameter problem
is not so straightforward, however. The principle
complication is that formal parameter arrays are
often bound tosubsectionsof actual parameter
arrays. The implication is that, during the analy-
sis, the regular section describing access to afor-
mal parameter must be mapped to a regular sec-
tion describing access to theactualparameter by a
function that may not be the identity function.
Hence, the simple trick to handle cycles in the
binding multi-graph will no longer work.

Formally, each edgee in the binding multi-
graph must be annotated with a functionge that
can be used to map a regular section at its sink to
one at its source. Before we can discuss the

9 Callahan and Kennedy discuss regular section analysis
in more depth, as well as other methods proposed by Burke
and Cytron, and by Triolet, Irgoin, and Feautrier[BuCy 86,

TrIF 86].

impact that this has on the underlying algorithms,
we need to describe reasonable properties for the
functionsg.

• First, the functions can be extended to func-
tions on paths by using composition. In other
words, if p = e1e2

. . .en, thengp = ge1
ge2

. . .gen
.

• The functions can be extended to sets of paths
by using the lattice meet operation. That is,
for a regular section x,
gp1∪p2

(x) = gp1
(x)〈gp2

(x).

• Because of the nature of parameter passing in
most languages, it is almost always the case
that subsectionsof the actual parameter are

passed to the formal parameter10. This means
that, around a cycle of the binding multi-
graph, the effect of the propagation functions
is to restrict the portion of the array that is
involved in a side effect. More formally, ifp
is a cyclic path leading from a formal parame-
ter back to itself through a sequence of calls,
thengp(x)x = x.

This last observation is critical because, if we
assume it as a restriction, we can view the regular
section problem as a data-flow framework with
the following system of equations.

rsd(fp1) = lrsd(fp1)
e=(fp1, fp2)∈Eβ

ge(rsd(fp2))

Here, rsd(x) is the regular section descriptor for
the side effect to parameterx and lrsd(x) is the
regular section descriptor for the side effect due to
local effects within the procedure wherex is
declared as a formal parameter (computable by
local examination of a procedure). This frame-
work is fast in the sense of Kam and Ullman
[KaUl 76] and rapid in the sense of Graham and
We gman[GrWe 76]. Furthermore, it can be formu-
lated as apath problem[Tarj 81a], so any of the effi-
cient elimination techniques can be used to find a
least fixed point.

For the sake of complexity analysis, let us
consider using the most efficient known data-flow
analysis method to solve this problem—Tarjan’s
fast elimination method based on path compres-
sion [Tarj 81b]. If the binding multi-graph is
reducible, this approach takes time

10 FORTRAN can be an exception, but we view those cases
as pathological even forFORTRAN.

O(Eβ α (Eβ, Nβ)) . Here, the time is roughly propor-
tional to the number of meet operations. SinceEβ
andNβ are at most a small constant factork larger

than E
C

and N
C
, the complexity is

O(E
C

α(E
C
,N

C
)). This is the same asymptotic

complexity as the swift algorithm, although the
meet operations may be more expensive.

One surprising fact about this algorithm is
that the complexity does not depend on the depth
of the lattice, a byproduct of the third assumption
above. In a sense, one can view the third assump-
tion as recognizing that most recursive algorithms
that pass a parameter over a recursive call cycle to
the same position are using a form of divide-and-
conquer.

7. Conclusions

We hav e introduced a new approach to deal-
ing with interprocedural side effects to reference
parameters — through the use of the binding
multi-graph. This technique permits solution of
the parameter side effect problem in linear time.
The remaining problem of analyzing side effects
to global variables in a language with no reference
parameters has been shown to be solvable by an
adaptation of Tarjan’s strongly connected compo-
nents algorithm. These techniques are also useful
for analyzing more complex side effects, such as
those to subsections of arrays. In each case, the
time bound achieved is asymptotically the fastest
known. We also expect these algorithms to be
extremely fast in practice.

8. Acknowledgements

Throughout our work on this problem, we
have benefitted from discussions with David
Callahan, Linda Torczon, and Barbara Ryder.
Fran Allen, Corky Cartwright, and Guy Steele all
contributed with informed criticism and com-
ments. To these people go our heartfelt thanks.

References

[Alle 74] F.E. Allen, ‘‘Interprocedural data flow
analysis’’, Proc. of the 1974 IFIPS
Congress, 1974.

[Bann 79] J.P. Banning, ‘‘An efficient way to find
the side effects of procedure calls and
the aliases of variables’’,Proc. of the
Sixth POPL, Jan., 1979.

[Bart 78] J.M. Barth, ‘‘A practical interprocedural
data flow analysis algorithm’’,CACM
21(9), Sept., 1978.

[Burk 84] M. Burke, ‘‘An interval analysis
approach toward interprocedural data
flow’’, Report RC 10640, IBM T.J. Wat-
son Research Center, Yorktown Heights,
N.Y., July, 1984.

[BuCy 86] M. Burke and R. Cytron, ‘‘Interproce-
dural dependence analysis and paral-
lelization’’, Proc. of the SIGPLAN 86
Symposium on Compiler Construction,
SIGPLANNotices, 21(7), July, 1986.

[CCKT 86] D. Callahan, K.D. Cooper, K. Kennedy,
and L. Torczon, ‘‘Interprocedural con-
stant propagation’’,Proc. of theSIGPLAN

86 Symposium on Compiler Construc-
tion, SIGPLANNotices, 21(7), July, 1986.

[CaKe 87] D. Callahan and K. Kennedy, ‘‘Analysis
of interprocedural side effects in a par-
allel programming environment’’,Proc.
of First Int’l Conference on Supercom-
puting, Athens, Greece, June, 1987.

[CaRy 86] M.D. Carroll and B.G. Ryder, ‘‘An
incremental algorithm for software anal-
ysis’’, Proc. of the SIGSOFT/SIGPLAN

Software Engineering Symposium on
Practical Software Development Envi-
ronments,SIGPLAN Notices22(1), Jan.,
1987.

[Carr 87] M.D. Carroll, ‘‘Dataflow update via
attribute and dominator update,’’ Ph.D.
Dissertation, Rutgers University, 1987.

[Coop 83] K.D. Cooper, ‘‘Interprocedural data
flow analysis in a programming envi-
ronment’’, Ph.D. dissertation, Depart-
ment of Mathematical Sciences, Rice
University, April, 1983.

[CoKe 84] K.D. Cooper and K. Kennedy, ‘‘Effi-
cient computation of flow insensitive
interprocedural summary information’’,
Proc. of theSIGPLAN84 Symposium on
Compiler Construction,SIGPLANNotices
19(6), June, 1984.

[CoKe 87a]K.D. Cooper and K. Kennedy, ‘‘Effi-
cient computation of flow-insensitive
interprocedural summary information
— a correction’’, TR87-60, Department
of Computer Science, Rice University,
Oct., 1987.

[CoKe 87b]K.D. Cooper and K. Kennedy, ‘‘Com-
plexity of interprocedural side-effect
analysis’’, TR87-61, Department of
Computer Science, Rice University,
Oct., 1987.

[GrWe 76] S. Graham and M. Wegman, ‘‘A fast
and usually linear algorithm for global
flow analysis’’,JA CM, Jan., 1976.

[KaUl 76] J. Kam and J. Ullman, ‘‘Global data
flow analysis and iterative algorithms’’,
JA CM, Jan., 1976.

[Myer 80] E. Myers, ‘‘A precise and efficient algo-
rithm for determining existential sum-
mary data flow information’’, Technical
Report CU-CS-175-80, Department of
Computer Science, University of Col-
orado, March, 1980.

[Rose 79] B. Rosen, ‘‘Data flow analysis for pro-
cedural languages’’,JA CM26(2), April,
1979.

[Ryde 87] B. Ryder, private communication, July
31, 1987.

[Spil 71] T.C. Spillman, ‘‘Exposing side-effects
in a PL/I optimizing compiler’’,Proc. of
the 1971 IFIPS Congress, 1971.

[Tarj 72] R.E. Tarjan, ‘‘Depth-first search and lin-
ear graph algorithms’’,SIAM J. Com-
puting1(2), 1972.

[Tarj 81a] R.E. Tarjan, ‘‘A unified approach to
path problems’’, JA CM 28(3), July,
1981.

[Tarj 81b] R.E. Tarjan, ‘‘Fast algorithms for solv-
ing path problems’’,JA CM 28(3), July,
1981.

[TrIF 86] R. Triolet, F. Irgoin, and P. Feautrier,
‘‘Direct parallelization of call state-
ments’’,Proc. of theSIGPLAN86 Sympo-
sium on Compiler Construction,SIG-

PLANNotices, 21(7), July, 1986.

[Torc 85] L. Torczon, ‘‘Compilation dependences
in an ambitious optimizing compiler’’,
Ph.D. dissertation, Department of Com-
puter Science, Rice University, May,
1985.

[Zade 84] F.K. Zadeck, ‘‘Incremental data flow
analysis in a structured program edi-
tor’’, Proc. of theSIGPLAN ‘84 Sympo-
sium on Compiler Construction, SIG-

PLAN Notices, 19(6), June 1984.

