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1 Introduction

In recent years, many articles dealing with issues of interprocedural analysis and interprocedural optimization
have appeared in the literature [1, 2,5, 6,7, 10, 12, 14, 17, 18, 19, 20, 21]. Several of these articles have at-
tempted to assess the practical value of interprocedural data-flow information or of specific cross-procedural
transformations. Ganapathi and Richardson point out that inline substitution can be viewed as an upper
limit on the improvement available through use of interprocedural data-flow information [17]. Put succinctly,
their point is that inlining splits off copies of nodes along some path through the call graph. This, in turn,
allows interprocedural data-flow analysis to derive a sharper image of the program’s real behavior because it
eliminates points of confluence — places where the data-flow analyzer must merge sets from different paths.
At the merge points, the analyzer can only assume the set of facts that occur along all entering paths. This
set is often weaker than the individual sets that enter the merge.

We recently completed a study of the effectiveness of inline substitution in commercial FORTRAN op-
timizing compilers [9]. During the course of the study, we came across an example that demonstrates the
kind of problems that can arise in the use of interprocedural transformations like inlining. Similar problems
will arise in a compiler that bases optimization on the results of interprocedural data-flow analysis. Our
experience suggests that compilers that use interprocedural transformations or interprocedural data-flow
information will require stronger intraprocedural analysis than would be needed otherwise.

2 The Example

The famous Dongarra benchmark of numerical linear algebra operations, linpackd, was one of the eight
programs used in our inlining study. Linpackd consists of ten routines containing four hundred seventeen
non-comment lines of code. Figure 1 shows its call graph. Each arrow represents one or more call sites.

As part of the study, we selected a set of call sites in 1inpackd for inlining and applied a source-to-source
inliner to create a transformed version of the source. Next, we compiled and ran both the original and
inlined versions of the code on several machines. We inlined forty-four percent of the call sites, measured
statically. This reduced the number of dynamically executed calls by roughly ninety-eight percent. This
includes over ninety-nine percent of the calls that correspond to subroutine calls in the source code; most of
the calls that remained in the executable invoke run-time support routines. Thus, we eliminated almost all



Figure 1

call graph for linpackd

of the procedure call overhead that occurred in the original program. Despite this, the running time on the
MIPS R2000 increased by eight and one-half percent after inlining. We did not expect this behavior.!

Clearly, second-order effects in the compilation and optimization of linpackd overcame the reduction
in procedure call overhead. Initially, we suspected that the problem was increased register pressure in the
critical loop of the code — after all, linpackd spends the majority of its time inside a single loop. To
investigate this behavior in more detail, we used pixie and pixstats — the instruction level execution
analysis tools provided with the MIPS machine — to look at detailed performance data. Figure 2 shows
several of the important statistics.

Several things stand out in the performance data. First, both loads and stores decreased slightly. This
suggests a decrease in register spills. Second, the number of call instructions executed dropped dramatically.
Almost all the calls to source code routines went away; most of the remaining call instructions invoke run-
time support routines. Third, the number of nops executed nearly doubled. Finally, there was a significant
rise in the number of floating-point interlocks — stall cycles introduced by the hardware to allow completion
of a pipelined floating-point operation. The ratio of interlocks to floating-point operations rose from 0.62 to
1.1 after inlining. Nearly all these interlocks were data interlocks — stalls on loads and stores.

Since linpackd executed almost twenty million floating-point operations, the rise in interlocks was signif-
icant. The inlined code hit an additional nine million floating-point data interlocks — a seventy-six percent
increase. Interlocks on floating-point adds doubled, to sixty two hundred. An additional forty six thousand

Original After Percent

Measurement Source Inlining | Change
loads 38,758,879 | 37,523,134 -3
stores 20,422,975 | 19,610,724 -4
calls 141,788 2,705 -98
nops 2,564,767 | 4,398,835 72
data interlocks 12,177,775 | 21,379,822 76
add interlocks 3,100 6,200 100
multiply interlocks 124,800 124,803 0
other fp interlocks 102 46,414 45503

Figure 2 Selected data from pixie

LA common perception is that increased executable size often leads to increased page faults or instruction cache faults. We
assumed that this would not be significant with linpackd because of its size. The inlined code had 2.37 times as many source
code statements, but the executable produced by the MIPS compiler was nine percent smaller than the original executable.
Both our study and Holler’s study suggest that inlining rarely leads to thrashing or instruction cache overflow [9, 13].



subroutine daxpy (n,da,dx,incx, dy, incy)

c
double precision dx(1),dy(1),da
integer i,incx,incy,ix,iy,m,mpl,n
do 30 i = 1,n
dy(i) = dy(i) + da * dx(i)
30 continue
return
end

Figure 3 abstracted code for daxpy

other floating-point interlocks occurred during execution of the inlined code. All of these numbers suggest
that the instruction scheduler was less effective on the inlined program than on the original program. In the
original, it was able to mask these idle cycles with useful computation. The additional nop instructions are
a symptom of the same problem.

Seeking to understand the increase in floating-point interlocks, we looked more closely at the source code.
Most of the floating-point operations that occur in linpackd take place inside the routine daxpy. Daxpy is
part of the BLAS library, the basic linear algebra subroutine library. It computes y = ax + y, for vectors
x and y and scalar a. Thus, we began our search by examining the three call sites that invoke daxpy.
One is in dgefa; there are two in dgesl. The call in dgefa passes two regions of the array A as actual
parameters. The two actuals specify different starting locations inside A and a careful analysis shows that
the two regions cannot overlap in any invocation of daxpy. Unfortunately, the level of analysis required to
detect this separation is beyond what is typically performed in a compiler for a scalar machine.

Figure 3 shows an abstracted version of daxpy — the details that are relevant to 1inpackd’s performance.
After inlining the call site in dgefa, the critical loop takes on the following form.

temp = n-k

do 31 1 =1, temp
A(i+k,j) = A(i+k,j) + t *x A(i+k,k)
31 continue

The more complex subscript expressions arise from inlining; the array references must be expressed in terms
of variables known in the calling procedure.

Now, the single statement in the loop body both reads and writes locations in the array A. Unless the
compiler can prove that the subscripts are always disjoint, it will be forced to generate code that allows the
write of A(i+k,j) to clear memory before the read of A(i+k,k) for the next iteration can proceed. This
requires moderately sophisticated subscript analysis — deeper analysis than most scalar compilers perform.
Without such analysis, the compiler is forced to schedule the loads and stores of A so that their executions
cannot overlap. This limits the freedom of the scheduler to such a degree that it can no longer hide memory
and pipeline latency. The result is increased time for each iteration of the loop.

The program linpackd contains two other calls to daxpy. They both occur inside the routine dgesl.
Both of them pass unique arguments to daxpy’s parameters dx and dy. Thus, inlining them does not
introduce the same problems that occur at the call from dgefa. The compiler can generate good code for
the post-inlining code — that is, code that is not artificially constrained by memory accesses. Unfortunately,
these two call sites account for just 5,174 of the calls to daxpy; the call site in dgefa accounts for 128,700
calls.



3 Interpretation

The question remains, why doesn’t the same problem arise in the original code? Certainly, the sequence of
array references made by the two versions of linpackd are identical. How can the compiler generate faster
code for the original version of the program? The answer lies in the idiosyncrasies of the FORTRAN 77
standard.

Whenever a program can reference a single memory location using more than one variable name, those
names are said to be aliases. Aliases can be introduced to a program in several ways. A call site can pass
a single variable in multiple parameter positions. A call site can pass a global variable as a parameter. In
languages that provide pointer variables, they can usually be manipulated to create multiple access paths to
a single location.

The FORTRAN 77 standard allows the compiler to assume that no aliasing occurs at call sites. A program
that generates an alias is not standard conforming; the behavior of the resulting code is not defined. In
practice, aliases do occur, often as a by-product of FORTRAN’s lack of dynamic allocation. Programmers
declare work arrays high in the call graph and then pass them down through the call graph. The remaining
aliases fall into two categories: (1) carefully considered uses where the programmer understands that no
sharing occurs, and (2) unintended sharing. The call to daxpy from dgefa falls in the first category. No
aliasing really occurs; the authors can argue that the program conforms to the standard’s requirements.

Common practice in the field is to rely on the standard’s restriction. This lets the compiler assume
that no aliases exist and generate code that runs faster but produces unexpected results if aliases do exist.
For example, IBM’s VS FORTRAN and FORTRAN H compilers, and the FORTRAN compilers from Cray
Research, MIPS Computer, and Stardent Computer all do this. Other compilers, like DEC’s VMS FORTRAN
compiler and our own research compiler, ignore the standard’s restriction and compile code that will produce
the expected results in the case when variables actually are aliased. This results in more predictable behavior
when aliasing does occur.

In previous papers, we have suggested that the compiler should perform interprocedural alias analysis
and use that information to provide the friendliness of the VMS FORTRAN compiler with the additional
speed that results from understanding which parameters are not aliased [8]. Assuming that aliasing happens
infrequently, the cost of providing consistent behavior in this way is small. The Convex Application Compiler
performs alias analysis and has a compile-time flag that lets the user dictate how to handle the issue.

In trying to understand the slowdown in linpackd described in Section 2, we asked ourselves the question:
could interprocedural alias analysis have helped the situation? The answer provides some interesting, albeit
anecdotal, insight into the relative power of different types of analysis.

This discussion has implications for languages other than FORTRAN. The standard’s prohibition on
aliasing allows the compiler to generate good code for procedures that access both call-by-reference formal
parameters and global variables. Without the restriction, the compiler would be forced to generate slower
code. In the example, this introduced many wasted cycles in the form of interlocks and nops. Thus, compilers
for languages that use call-by-reference for array and structure variables could profit from knowledge about
aliasing that involves their formal parameters.

3.1 Classical Alias Analysis

Classical interprocedural alias analysis deals with arrays as homogeneous objects [8]. A reference to any
element of an array is treated as a reference to the whole array. Thus, a classical analysis of 1inpackd
would show that dx and dy can be aliases on entry to daxpy. Because of the flow-insensitive nature of
the information, all that the compiler can assume is that there exists a path to daxpy that results in an
invocation where dx and dy refer to the same base array. It does not assert that the path generating the
alias is necessarily executable; neither does it assert that any references to dx and dy necessarily overlap in
storage.

Given this aliasing information, a compiler implementing the scheme suggested earlier — computing
interprocedural information and using it to determine where conservative code is needed — would generate
the slower code for all the executions of daxpy. Thus, it would create a single copy of daxpy. That instance
would contain the code necessary to ensure that reads and writes to dx and dy in the loop bodies had
sufficient time to clear through memory. This would simply slow down the 5,174 calls that ran quickly in
the inlined version in our example.



3.2 Cloning

To regain the speed on the calls from dgesl, the compiler could generate two copies of daxpy’s body. If it
examined the contribution that each call site made to the alias set for daxpy, it would determine that two of
the calls involved no aliases while the third produced the alias between dx and dy. This information suggests
compiling two copies of daxpy and connecting the call sites appropriately — a transformation known as
cloning [8].

With this strategy, the calls in dges1 would invoke a copy of daxpy that was compiled with the assumption
that no aliases occur. The call in dgefa would invoke a copy that assumed an alias between dx and dy. This
strategy would produce roughly the same code that the MIPS compiler produced from the inlined version of
linpackd.? Thus, interprocedural alias analysis coupled with cloning could get us back to the point where
inlining got us. It would not, however, get back the cycles that we lost from the original code, compiled with
the FORTRAN 77 standard’s restriction on aliasing.

3.3 More Complex Analysis

In the original code for 1inpackd, the call site boundary between dgefa and daxpy serves two purposes.
First, it provides the modularity intended by the designers of the BLAS routines [11]. Second, by virtue of the
FORTRAN 77 standard’s prohibition on aliasing, the call site acts as an assertion that all of the parameters
at the call site occupy disjoint storage.

Introducing classical interprocedural aliasing information tells the compiler that the two parameters, dx
and dy, may actually be aliases. Can the compiler, through deeper analysis, derive equivalent information
that will allow it to conclude that no aliasing exists? To understand this issue, we will examine two possible
techniques: regular section analysis and dependence analysis.

Regular Section Analysis

Classical interprocedural summary and alias analysis provides a superficial treatment of arrays. If any
element of an array is modified, the analysis reports that the array has been modified. Similarly, if two

subroutine dgefa(a,lda,n,ipvt,info)
integer lda,n,ipvt(1),info
double precision a(lda,1)

C
ml =1 - 1
do 60 k = 1, nml
kpl =k + 1
do 30 j = kpl, n
call daxpy(n-k, t, aCk+1,k), 1, aCk+l,j), 1)
30 continue
60 con.t.i.nue

end

Figure 4 abstracted code for dgefa

2The codes would differ in that the cloned version would have the overhead associated with the individual calls while the
inlined version would avoid it. Furthermore, the codes might well differ in the code generated for the inner loops as a result of
inlining — for example, the amount of register pressure seen in the inner loop in the inlined and cloned versions might differ
substantially.



disjoint subsections of an array are passed as arguments at the same call site, classical alias analysis will
report that the corresponding formal parameters are potential aliases.

Regular section analysis is a technique that provides more precise information about the portions of
an array involved in some interprocedural effect [4, 12]. In the case of side-effect information, the single
bit representing modification or reference is replaced with a value taken from a finite lattice of reference
patterns—the lattice of regular sections. To make this discussion more concrete, consider the regular sections
actually produced for the call from dgefa to daxpy by the PFC system [12]. Figure 4 shows the context that
surrounds the call site.

PFC computes two kinds of regular section information for the call, a MOD set that describes possible
modifications to variables and a REF set that describes possible references to variables. The MOD set
contains a single descriptor, A[(k+1) :n,j]. This indicates that a call to daxpy may modify elements k+1
through n of the j** column of A. The REF set contains two descriptors, A[(k+1):n,j] and A[(k+1) :n,k].
These indicate that columns j and k can be referenced by daxpy, both in positions from k+1 to n.

Given this information, could the compiler have determined that the two subranges of A are disjoint? To
show independence, it needs to realize that j is always strictly greater than k and that n is smaller than the
column length of A. Both of these statements are true. A compiler that performed interprocedural regular
section analysis and incorporated a strong test for intersecting regular sections could determine that the two
subscript expressions never take on the same value.

Dependence Analysis

To avoid the disastrous problems with interlocks introduced by the appearance of an alias in the inlined
code, the compiler must show that the two sets of references in the critical loop are disjoint. In the previ-
ous subsection, we showed that this is equivalent to showing that the regular sections A[(k+1):n,j] and
A[(k+1):n,k] don’t intersect. This problem arises regularly in compilers that restructure programs for
parallel or vector execution. Such compilers rely on a technique known as dependence analysis to show the
independence of pairs of array references [15]. Dependence analysis, as discussed here, is an intraprocedural
technique that can be applied to the inlined program. In our example, the loop nest that causes problems is
wholly contained in a single procedure.

The critical loop nest describes a triangular iteration space. To prove independence, the analyzer must
perform some symbolic analysis and a triangular form of one of the dependence tests. While this sounds
complex, a quick survey showed that, in the fall of 1990, KAP from Kuck and Associates, the Convex
FORTRAN compiler, the Stardent FORTRAN compiler, and the PFC system from Rice all were able to prove
independence in this case. Thus, the necessary analysis is clearly both understood and implementable.

With this kind of dependence analysis, the compiler could have generated code for the inlined version of
linpackd that was as good as the code for the original program. Unfortunately, it appears that it will take
this much work to undo the damage done by inlining the call from dgefa to daxpy.

3.4 Optimization Histories

A final option is available. Several colleagues have suggested that the compiler “remember” the original
shape of the code — that is, the compiler should mark source statements that result from inlining. Using
these marks, the compiler could assert independence of specific references based on the implicit assertion
represented by the original call site.

Several commercial compilers use this strategy. In particular, both the Cray and Convex compilers
retain enough information to remember that the original program asserted independence for its parameters.
Unfortunately, this tactic may have relatively limited application. The more general solution, implementing
the necessary dependence analysis, will both cure the idiosyncratic FORTRAN problem and allow the compiler
to generate good code for other languages where call-by-reference parameter passing of aggregate structures
introduces potential aliases.

4 Conclusions

In this paper, we presented a problem that arose from inlining in a FORTRAN program. We examined
several analytical techniques to determine if they could have given the compiler enough information to



allow it to avoid the problem. Three of the techniques would have worked: regular section alias analysis
coupled with an appropriate intersection test, dependence analysis, and keeping appropriate information
in an optimization history. Of the three, dependence analysis may be the most attractive. While regular
sections and optimization histories would have solved the problem we encountered, dependence analysis has
more general utility. It serves as a basis for many other optimizations [3, 16]. Furthermore, implementing
the intersection test for regular sections is equivalent to implementing a dependence test.

The linpackd benchmark is only a single program. Nonetheless, we feel that it sheds light on several
issues that arise when interprocedural transformations are used. The problem that we encountered relied on
an idiosyncracy in the FORTRAN standard. In practice, the structure of a program encodes important infor-
mation in subtle ways. For example, inlining a call site often takes a complex name (e.g., an array element
or a base-offset pair for a global variable in some data area) and forward substitutes it into the procedure
body. If the formal parameter is a scalar variable (a single register name), this replaces the inexpensive name
with the more complex name, increasing the competition for registers and, perhaps, replicating some com-
putation. As another example, a call site constitutes the broadest possible hint to the register allocator —
it tells the allocator to break all caller-saved live ranges and spill them. Any transformation that eliminates
the call site, like inlining, takes that hint away from the allocator.

A compiler that employs interprocedural transformations may need more powerful analysis methods, like
regular section analysis, dependence analysis, or optimization histories, to ensure that the compiler does not
generate worse code than it would have produced for the original program, and to ensure that the compiler
can capitalize fully on the opportunities exposed by the interprocedural technique.
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