
Coloring Register Pairs 1

Preston Briggs, Keith D. Cooper, and Linda Torczon

Department of Computer Science
Rice University
Houston, Texas 77251–1892

Many architectures require that a program use pairs of adjacent registers to hold double-precision floating-
point values. Register allocators based on Chaitin’s graph-coloring technique have trouble with programs
that contain both single-register values and values that require adjacent pairs of registers. In particular,
Chaitin’s algorithm often produces excessive spilling on such programs. This results in underuse of the
register set; the extra loads and stores inserted into the program for spilling also slow execution.

An allocator based on an optimistic coloring scheme naturally avoids this problem. Such allocators delay
the decision to spill a value until late in the allocation process. This eliminates the over-spilling provoked
by adjacent register pairs in Chaitin’s scheme.

This paper discusses the representation of register pairs in a graph coloring allocator. It explains the
problems that arise with Chaitin’s allocator and shows how the optimistic allocator avoids them. It provides
a rationale for determining how to add larger aggregates to the interference graph.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors – compilers, optimiza-
tion

General Terms: Languages

Additional Keywords and Phrases: graph coloring, register allocation, shipbuilding problem

1 Introduction

Register allocation is an important problem that arises in the back end of a compiler. The register allocator

selects the set of values that reside in registers at each point in the routine. The goal of allocation is

to choose the set of values in a way that minimizes execution time. Unfortunately, optimal allocation is

NP-complete [13]. Thus, compilers use heuristic techniques to attack the problem.

In recent years, the graph coloring paradigm has emerged as one of the techniques of choice for allocation.

The first coloring allocator was built by Chaitin and his colleagues at IBM for the PL.8 compiler [3, 4]. Chow

and Hennessy describe a different approach to allocation via graph coloring [5, 6]. A Chaitin-style allocator

assumes that the pre-allocation code uses an unlimited number of registers – we call these virtual registers.

It works by constructing an interference graph that models conflicts between the virtual registers. Next,

the allocator tries to find a k-coloring for the graph, where k is the number of machine registers. If it

succeeds, the colors can be mapped onto machine registers. If a k-coloring cannot be found, one or more

values are spilled; that is, load and store instructions are inserted around each reference to the value. Then,

the allocator repeats the entire process on the modified code, building a new interference graph and trying

to color it.

In general, Chaitin-style allocators produce good allocations; however, they have a tendency to over-spill

in some situations. This problem has prompted at least two published improvements that reduce the amount

of spilling [1, 2]. When the program includes operations that require pairs of adjacent registers, this over-

spilling is exaggerated. The reason for this is simple – introducing pairs of registers requires that we either

1This work was supported by the IBM Corporation and by DARPA through ONR Contract N00014-91-J-1989.
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modify the interference graph or change the way that the allocator interprets it. In Chaitin’s scheme, such

modification distorts the allocation – the allocator consistently overestimates the demand for registers. This

causes it to spill values in many cases where registers are available to hold them.

Previous descriptions of this problem in the literature have been rather limited. In 1986, Hopkins de-

scribed a method to handle the register pair constraints that arise in the shift instructions on the ROMP

microprocessor – the engine in RT/PC workstations [10]. In 1990, Nickerson published a method for allocat-

ing structures into an aggregate set of adjacent registers. He observed that an allocator based on our 1989

paper produced good allocations under his scheme [2, 12]. This paper explores the issues that arise when a

Chaitin-style allocator encounters code that uses both single registers and register pairs. It explores various

ways to represent register pairs in the interference graph. It shows why Chaitin’s algorithm over-estimates

demand for registers and how a variation on Chaitin’s scheme, the optimistic allocator, naturally avoids

this problem. Finally, it provides a simple rationale for deciding how many edges are required to correctly

represent an interference between a single register and an aggregate set of registers.

2 Background

Throughout this paper, we assume that the allocator works on low-level intermediate code or assembly code.

Rather than map virtual registers directly onto physical registers, the allocator discovers the distinct live

ranges in a procedure and allocates them to physical registers. A single virtual register can have several

distinct values that are interesting in different parts of the program – each of these values will become a

separate live range. Figure 1 illustrates a Chaitin-style allocator. It has seven phases.

Renumber finds the live ranges and gives them unique names. It creates a new live range for each definition
point. It then unions together the live ranges that reach each use point.

Build constructs the interference graph. The nodes in the graph represent live ranges. The edges correspond
to “interferences” between live ranges. Two live ranges interfere if they are simultaneously live and
cannot reside in a single register.

Coalesce attempts to combine live ranges. Two live ranges li and lj are combined if the initial definition of
lj is a copy from li and li and lj do not otherwise interfere. This has two beneficial effects: it shrinks
the number of live ranges that the allocator must consider in later passes and it eliminates the copy
instruction that connects them.

Spill Costs estimates the cost associated with spilling each live range. The spill cost is simply the number
of loads and stores that must be inserted if a live range is spilled, with each operation weighted by a
factor of 10d where d is the operation’s loop nesting depth.

renumber build coalesce spill costs simplify select

spill code
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Figure 1: Chaitin’s Allocator
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Simplify constructs an ordering of the nodes. It initializes a stack of nodes to empty and then repeats the
following steps until the graph is empty:

1. If there exists a node li with fewer than k neighbors, remove li and all of its edges from the graph.
Place li on the stack for coloring.

2. Otherwise, use a spill metric to choose a node li to spill. Remove li and all of its edges from the
graph. Mark li to be spilled.

If any node is marked for spilling, the allocator inserts spill code and repeats the allocation process. If
no spilling is required, it proceeds to select.

Select assigns colors to the nodes of the graph in the order determined by simplify. It repeats the following
steps until the stack is empty:

1. Pop a live range li from the stack.
2. Insert li into G.
3. Give li a color distinct from its neighbors.

Every node receives a color in step 3 because of the way that simplify constructed the stack. When
each node was placed on the stack, it had fewer than k neighbors. Thus, it must have fewer than k
neighbors when it is moved back into G.

Spill code is invoked if simplify decides to spill a node. Each spilled live range is converted into a collection
of tiny live ranges by inserting a load or store at each use or definition.

The spill metric plays a crucial role in the decision making process. When simplify reaches a point where

every node left in the graph has at least k neighbors, it selects a value to be spilled. Chaitin’s allocator

spills the live range with the smallest ratio of spill cost
current degree

. This metric reflects a preference for spilling live

ranges with low spill cost and high degree – the latter is important because each removed edge decreases the

degree of one of the remaining nodes.

3 Register Pairs

Register pairs are a fundamental part of many machine architectures. For example, many machines use pairs

of registers to represent double-precision floating-point values. The two most common constraints imposed

on register pairs are requiring that the registers be adjacent (named with consecutive integers), and requiring

that an adjacent pair be aligned (typically requiring the first register to have an even number).

To help in the discussion, we will use the following simple example to illustrate our points. Imagine four

live ranges, a, b, c, and d; where a and b are single-precision values and c and d are double-precision values.

Assume that b interferes with a and c and that c also interferes with d. The interference graph for this

example looks like:

a b
c d

We have drawn the nodes for c and d larger than those for a and b as a reminder that they require pairs;

this reflects a fundamental fact that the allocator must handle. Such a graph can be viewed as a weighted

graph; each node has an integer weight associated with it. In our problem, the weights correspond to the

number of colors (or registers) needed for each node.
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From a graph coloring perspective, a weighted graph is fundamentally harder to color than an unweighted

graph. For example, consider the interference graphs that result from straight-line code. They have a

particularly simple structure; they are interval graphs. A minimal coloring for an unweighted interval graph

can be found in linear time [9, page 14]. In contrast, the problem of finding a minimal coloring for a

weighted interval graph has been shown to be NP-complete even when the weights are constrained to be

either 1 or 2 [9, page 204].2 In any case, a global register allocator must be prepared to handle procedures

that have interesting control flow.3

Fabri explored variations of this problem in the context of packing arrays in memory [7, 8]. While the

work is interesting, it is not directly applicable to our problem. For example, her problem has no analog

for the problems of spill choice and spill placement. Thus, for the purposes of register allocation, we have

continued to work with allocators styled after Chaitin’s work.

3.1 Unconstrained Pairs

Initially, consider the simplest case. Assume that the target machine places no adjacency or alignment

restrictions on pairs. In this case, the graph shown previously overconstrains the coloring; instead, we can

simply handle the two halves of each register pair separately. This yields the following graph:

a b c

c′

d

d′

HHHH
HHHH��

��

This simple graph suffices because the machine places no restrictions on a register pair beyond the obvious

requirement that the two halves of the pair occupy different registers. (The edges from c to c′ and from d

to d′ embody this constraint.) Because the simple constraints can be encoded directly into the interference

graph without any additional interpretation, this graph can be colored directly with Chaitin’s algorithm. It

may over-spill, but the over-spilling will be limited to the kind found in programs that contain no register

pairs. Chaitin’s method will always find a four-coloring for the example graph.

3.2 Adjacent Pairs

Extensions to handle adjacent register pairs correctly are more difficult. For the moment, assume that the

target machine requires that pairs be allocated to aligned adjacent registers. The problem arises during

color selection; the allocator must coordinate the colors for two nodes that appear unrelated. If it assigns

a color to one and cannot assign an adjacent color to the other node, it must either reconsider the colors

that it has already assigned or report complete failure. Neither of these is a good alternative. For select

to reconsider colors will require backtracking, which can take exponential time. Reporting failure seems

unhelpful; it provides no clear direction for recovery.

The best alternative appears to be changing our representation for pairs; we should consider treating the

pairs as indivisible units and assigning the pair two colors in select. This gives us the following graph (more

accurately multigraph):

2Coloring a weighted interval graph is identical to the shipbuilding problem.
3In fact, Chaitin et al. showed that any arbitrary interference graph can be generated by some procedure [4].
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a b
c dHHHH

It resembles our original graph from Section 3, with additional edges to represent necessary interferences.

The simplicity of this representation is appealing. Intuitively, the extra edge between b and c reflects the

additional constraint placed on b. Similarly, the extra edge between c and d balances their extra width.

Multigraph Representation

So, why have we moved to a multigraph representation, besides the intuitive appeal of the pictures? For

stronger justification, we must consider the role that edges play in the coloring process. First, edges represent

interferences – they are critical to the correctness of the resulting allocation. Second, they trigger spilling in

simplify.

Recall that simplify examines the graph and repeatedly removes nodes with less than k neighbors, where

k is the number of available colors. A node that has fewer than k neighbors will always receive a color – a

color is available for it independent of context. If, during the simplification process, a node always has k or

more neighbors, then simplify marks it for spilling. The number of neighbors is the node’s degree. Thus, for

the allocator to work correctly, a node’s degree should accurately reflect its colorability. For register pairs,

we must add enough edges to ensure proper behavior. Too few edges lead to a situation where simplify fails

to reserve enough registers; too many edges leads to excessive spilling.

The graph shown above correctly models the colorability of each of node. Any interference that involves

a value stored in a pair of registers adds two edges to the graph. Thus, the interference between b and c

creates a pair of edges, as does the interference between c and d.

This rule makes sense. On a four-register machine, two single registers that interfere with a register pair

raise the pair’s degree to four. Placed correctly, the singles could block allocation of registers to the pair.

Similarly, three register pairs that all mutually interfere create a situation where all three have a degree of

four. This reflects that fact that three register pairs cannot fit into four registers.

Sometimes it is convenient to introduce an interference between a single register and one half of a pair.

Often, one half of a register pair may be used as the source or destination of an operation. For example, the

real half of a complex pair might be copied to another register. In this case, the target of the copy should

interfere only with the imaginary half of the complex pair. An interference between the target register and

the real half of the pair would prevent coalesce from combining them and eliminating the copy.

A Problem

Unfortunately, Chaitin’s allocator performs poorly on graphs of this form. The graph is more constrained

because of the pairs of edges between pairs and their neighbors; this triggers earlier application of the spill

mechanism. To elucidate this problem requires a somewhat more complex example. Consider a machine

with eight single-precision floating-point registers that requires double-precision values to be allocated to

adjacent pairs of registers. If we have a double-precision value, four single-precision values are sufficient to

force a spill with Chaitin’s allocator. The following picture shows why.
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Assume that w, x, y, and z each have at least six other interferences. Faced with this situation, Chaitin’s al-

gorithm invokes the spill metric to choose a value for spilling. It selects the node that minimizes spill cost
current degree

and spills it. Of course, many of the possible assignments would leave space for all five values; for example,

placing w, x, y, and z in the first four registers leaves the last four to hold d. Unfortunately, the early

decision on spilling prevents the allocator from finding such an allocation.

Why does this happen? There exist colorings of w, x, y, and z, like the one suggested above, that can

preclude d’s allocation. The “extra” edges in the interference graph, the second edge from d to each of the

other nodes, account for this possibility. In Chaitin’s scheme, simplify constructs an order on which select

is guaranteed to succeed. Such an order does not exist for the example, so simplify spills one of the values.

Thus, in any region where there is strong competition for registers and a mixture of single registers and

register pairs, the allocator will consistently overestimate the demand for registers and spill values for which

registers are available.

4 Another Coloring Algorithm

Originally, we thought that this problem was endemic to all coloring allocators. Fortunately, a colleague at

IBM asked us a question that caused us to reconsider the problem of adjacent pairs in the context of another

allocator. In 1989, we published a simple modification to Chaitin’s allocator that improved its behavior on

a wide variety of programs [2]. Figure 2 shows the layout of that allocator. It differs from the allocator

depicted in Figure 1 in the placement of the edge leading to spill code. The revised control flow reflects two

fundamental changes.

1. Simplify constructs an ordering of the nodes by removing them from the graph and placing them on
a stack. It removes nodes with degree less than k and pushes them on the stack. When no such node

renumber build coalesce spill costs simplify select

spill code

- - - - - - -
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Figure 2: Optimistic Allocator
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remains, it selects a node (the same node that Chaitin’s allocator would select). Rather than spill that
node, our allocator pushes it on the stack and continues.

2. Select tries to color the nodes on the stack. The change in simplify means that select can be invoked
on a stack that does not color – it may encounter a node for which there is no remaining color. If
this happens, it leaves that node uncolored and continues. If all nodes receive colors, the allocator has
succeeded. If one or more nodes remain uncolored, it invokes spill code to spill those live ranges; it
then begins the allocation process again, starting with renumber.

We call this an optimistic heuristic; in contrast, Chaitin’s method is pessimistic.

The optimistic allocator behaves very differently than the pessimistic allocator with respect to spilling

adjacent pairs. Because it defers spill decisions into select, it only spills a node when it discovers that it

cannot color the node. With adjacent pairs, the behavior is the same; it only spills a pair when it discovers

that no adjacent pair is available.

This change eliminates the over-spilling that arises in Chaitin’s method. To see this more clearly, recon-

sider the graph that caused problems in Section 3.2.

0 1 2 3 4 5 6 7

w x y z

d

l
l
l
l
ll

b
b
b
b
bb

bb

D
D
D
DD

\
\
\
\\

�
�
�
��

�
�
�
��

,
,

,
,

,,

"
"

"
"

""
""

The pessimistic allocator would spill because the single-precision values w, x, y, and z might be assigned

to registers in a way that precludes successful coloring of d. The optimistic allocator would simply push a

node, say d, on the stack, because the actual coloring of w, x, y, and z may leave a pair available for d. This

can happen in many ways; for example, w and x might be assigned the same color, y might be spilled, or

y and z might be assigned to consecutive registers. In fact, the only way that d could be blocked is by an

even spacing of the sort suggested by the figure.

The optimistic allocator often succeeds on graphs where the pessimistic allocator fails. Simplify deter-

mines an order for assigning colors; it treats single nodes and pairs identically. (The difference between

them is encoded in the number of edges.) Select makes the actual spill decisions; it spills a node only after

discovering that it cannot find the needed color(s).

5 Unaligned Pairs

A few architectures allow the use of unaligned adjacent pairs of registers. The interference graph required for

this situation is slightly more complex than for the aligned case. For our continuing example, the following

interference graph captures all of the needed properties:

a b
c dHHHH
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The extra edge (between c and d) is required to correctly trigger the selection of a spill candidate in simplify.

The next two graphs help show why this third edge is necessary between unaligned pairs.

Note that three pairs (x, y, and z) can be colored so that there is no adjacent pair of colors for d. The

fact that d has nine edges will trigger the spill heuristic in simplify, causing it to select a spill candidate. Of

course, the candidate will not necessarily be spilled – this is the key difference between the optimistic and

pessimistic approaches.
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Even two pairs and a single may be placed so that d cannot be colored, as shown below. Again, d’s eight

edges are sufficient to warn that d may have to be spilled during select.
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Finally, we note that requiring four edges between each interfering pair would be too conservative. This

would suggest that only two pairs (say x and y) would suffice to preclude coloring d.

These examples show that the extra flexibility offered by eliminating alignment restrictions complicates

the allocation process by enlarging the graph. Furthermore, because of the additional constraints that it

adds, it can actually lead to worse allocations.

6 Using Pairs for Memory Access

In some cases, it is desirable to use adjacent registers for loads and stores. For example, complex numbers are

often represented in storage as a pair of adjacent single-precision floating-point numbers. On some machines,

it is advantageous to load these values into an adjacent register pair using a double-precision floating-point

load. Unfortunately, tying all subsequent uses of the component parts of the complex number to the adjacent

registers restricts the allocator’s freedom. Our compiler handles this issue by carefully shaping the code before

the allocator sees it. It generates a double-precision load into an adjacent pair of virtual registers, and then

immediately copies the component values into single registers. This allows the allocator to keep the values

in adjacent registers at points where they are loaded and stored, while offering it the chance to keep them in
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non-adjacent registers during the rest of their lifetimes. It decides between these choices during coalescing,

based on the structure of the interference graph. The allocator is the proper place to make this decision –

it relies on information that cannot be made available earlier in compilation.

These ideas may become more significant in the future. Architects can make more memory bandwidth

accessible through the use of wider load and store instructions. For example, on Intel’s i860 XP, the quad-

word, floating-point load fld.q loads four registers at a time, allowing a program to move twice as much data

as the double-word version fld.d and four times as much as the single-word version fld.l [11]. Naturally,

any appreciable use of this feature ties down a large number of registers and allocating them carefully

becomes very important.

Previous work by Nickerson focuses on allocating aggregate data structures to adjacent sets of regis-

ters [12]. Nickerson assumes that the data items must remain adjacent throughout their lifetimes and that

the components of the aggregate can have different lifetimes. In our work, we handle cases where the com-

ponents of an aggregate have different lifetimes by enforcing adjacency only at those instructions where it

is required. Pairs are used at instructions that require them; when a component is used for some different

lifetime, we separate out that non-adjacent use. This can be accomplished by copying the component into

another register; this lets coalesce, simplify, and select determine whether or not to preserve adjacency. Note

that this is only interesting on values that have components with different lifetimes.

7 Conclusions

This paper examined the problem of dealing with register pairs in a graph coloring register allocator. To

work with register pairs, the allocator needs a way to represent them in the interference graph; this entails

either changing the interference graph or its interpretation. We have shown how to represent different sets of

constraints: unconstrained pairs, adjacent pairs, and unaligned adjacent pairs. The key issue is determining

the number of edges to add between an aggregate node and each of its neighbors. Our scheme extends in a

straightforward way to larger aggregate register groupings.

Unfortunately, when presented with a multigraph, Chaitin’s allocator consistently over-estimates the

demand for registers. This results in allocations that underuse the register set, spilling values even when

registers are available to hold them. This is true using any of the well known spill metrics [4, 1]. An optimistic

allocator avoids such over-spilling. This allows the compiler-designer to use a simple representation for

adjacent register pairs without provoking underuse of the register set. Previous work has shown that the

optimistic scheme produces better allocations than earlier pessimistic schemes [2]; this paper shows that

optimism also improves the treatment of register pairs.
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