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1. Introduction

It now seems clear that almost every new supercomputer design will employ some form of paral-

lelism, because it offers the promise of higher execution speeds at reasonable costs. However, the burden of

achieving that promise has been shifted to the programmer, who must decompose his problem into pieces

that can be executed in parallel and ensure that the parallel processors assigned to these pieces are properly

synchronized to produce a correct answer deterministically. This is not an easy task, because it requires not

only an understanding of the problem being solved, but also of the underlying computer architecture and of

the data-flow patterns in the program used to solve the problem. Clearly, sophisticated programming sup-

port tools are needed to assist in this process.

Typically, the process of parallel programming maps into four distinct tasks.

• Decomposition. The programmer must decompose the application problem into parallel tasks. This is

most effectively done when the programmer can deal with the problem at a high level of abstraction.

• Implementation. The programmer must convert the abstract decomposition into a parallel program in

some computer language. This task tends to be highly error-prone because it is fairly difficult to pro-

duce a program that precisely implements the vision of the parallel decomposition without making

clerical errors.

• Compilation. The program must be translated into a machine-language version that can be executed

on a parallel processor. This is typically the responsibility of the compiling system, although the

sophistication of the compiler determines the extent to which the computer language can hide the

details of parallel programming from the user.

• Debugging. The programmer, with the help of any available tools, must eliminate any logic errors that

are discovered while testing the program. Parallel programming has given rise to a new class of bug:

theschedule-dependenterror. Schedule-dependent errors are difficult to locate because they are mani-

fested only when certain schedules are employed in the parallel region. Frequently, the error disap-

pears during debugging only to reappear when the program is put into production.

If we are to make parallel programming tractable, we must develop better tools in each of these areas.

ParaScope is a parallel programming environment under development at Rice University. It is

designed to support the implementation, compilation and debugging phases in an integrated support system.

In addition, it will also provide limited support for decomposition. When complete, it will consist of a col-

lection of tools for elaborating a parallel program in an extended dialect ofFORTRAN. The tools will

include a sophisticated editor forFORTRAN source, an editor for defining whole programs, a powerful



compilation system that attempts to enhance the parallelism in theFORTRAN program through sophisticated

transformation techniques, and an execution monitor that supports powerful techniques for debugging par-

allel programs. In addition, the source editor will have facilities to assist the programmer in decomposing a

program for parallelism and to find clerical errors in a proposed decomposition.

ParaScope is the logical outgrowth of our research on scientific programming environments and our

investigation of techniques for automatic detection of parallelism. Over the past four years, the IRn project

at Rice University has been constructing a sophisticated programming environment forFORTRAN [HoKe 85,

CoKT 86c, ChHo 87]. The current system consists of an integrated collection of tools to aid programming

teams in entering and testingFORTRAN programs. It provides sophisticated facilities for managing all the

code in the various components of the program. These tools provide the environment with enough control

over the source of a program to attempt significant program optimizations that are not possible within a

conventional compiler[CoKe 84, Coop 85, CCKT 86, CoKT 86b].

At the same time, thePFCproject has been exploring methods for vectorization and automatic detec-

tion of parallelism[AlKe 84, AlKe 85, AlCK 87]. A significant subproject has developedPTOOL, a sophisticated

browser that helps the user find parallelism inherent in an existing program[ABKP 86].

By combining technology developed in these projects, we expect to synthesize a useful tool for paral-

lel programming. The central theme of this work is to develop ParaScope into an environment that runs on

a high-performance workstation and assists in the preparation of programs intended for execution on a par-

allel-vector supercomputer like the IBM 3090 with vector feature.

The paper begins in Section 2 with a description of our past research on programming environments

and automatic detection of parallelism. Section 3 describes our plans for ParaScope, including the six main

research areas:

• incremental dependence analysis in a structure editor,

• improvements to the existing interprocedural analysis,

• techniques for debugging parallel programs,

• whole program planning for parallelization,

• code generation for parallel machines, and

• the display of complex program annotations.

Finally, Section 4 contains some concluding remarks.

2. Background

2.1. The IRn
FORTRAN Programming Environment

The IRn programming environment is an integrated collection of tools designed to assist programmers

building numerical software systems inFORTRAN [HoKe 85, CoKT 86c]. The environment provides balanced

support for the programming process, incorporating tools to aid in the construction of whole programs as

well as individual modules. Along these lines, it provides editors for the source code of a single routine,

called amodule, and for the structural description of a program, called acomposition. It has two compilers,

a module compilerthat deals with intraprocedural optimization and code generation and aprogram com-

piler that deals with interprocedural issues. The IRn execution monitorsupports execution of hybrid pro-

grams in which some modules are interpreted and others are executed from compiled code. All of the tools

interact with the user under the control of a window-basedmonitor. Information is passed among the vari-

ous tools by saving it in a central database. A brief description of the principal components follows:



Module Editor
The module editor combines a knowledge ofFORTRAN with access to the database to help the user
construct syntactically correct programs. It provides a convenient blend of structure editing and text
editing, allowing the user to shift freely between these two paradigms. A module is defined by a set
of entry point specifications; the different versions of a module all implement the same entry points.
The editor directly constructs anabstract syntax treerepresentation of the module; this internal form
for the program is used throughout the environment.

Composition Editor
In IRn, both programs and composite modules are represented by their structural descriptions, called
compositions[CKTW 86]. Compositions have hierarchical structure; they contain individual modules
and other compositions. Import and export lists associated with each level of the composition pro-
vide a scoping and renaming facility. In essence, the IRn notion of a composition is itself a module
interconnection language, albeit one with a screen-oriented concrete syntax. The user creates and
modifies these descriptions with the composition editor, a structure editor for this interconnection
language. The editor checks the program for consistency and completeness. It also ensures that
entry point specifications match the call sites to which they are bound.

Program Compiler
The program compiler’s task is to construct an executable image of a program that is both consistent
with the current state of the source code for its components and fully optimized. When invoked on a
specific program, it checks the records updated by the module editor and the composition editor to
determine what changes have occurred since the last compilation. It uses this information to update
the interprocedural summary, aliasing, and constant propagation information available for the pro-
gram. Next, it performs a recompilation analysis to construct a complete list of procedures that must
be recompiled. Finally, it looks at the set of procedures being recompiled to determine where inter-
procedural optimizations like linkage tailoring are likely to be profitable. Given all this information,
it then invokes the module compiler to perform the needed recompilations[CoKT 86a, CKTW 86].

Module Compiler
The module compiler’s task is to translate one or more modules into optimized code for the target
machine, using interprocedural information and optimization directives provided by the module com-
piler. Essentially, the module compiler is an optimizing code generator that makes use of the infor-
mation collected in the program compiler. It has been carefully structured to allow experimentation
with different optimization and recompilation strategies.

Execution Monitor
The execution monitor allows the programmer to execute a program constructed by the environment.
It provides the user with a range of instrumentation levels, including execution of hybrid programs in
which some modules are run from compiled, optimized code and other modules are run interpretively
[ChHo 87]. Instrumentation levels are dynamic; the programmer can change them whenever execution
is paused at a breakpoint. Breakpoints can be specified in terms of either the program’s composition
or the source code for a specific module. We plan to support reversible execution; efficient imple-
mentation of this feature will rely on using the flow-insensitive interprocedural summary information

computed by the rest of the environment.1

The IRn programming environment has grown to approximately 105,000 lines of C and has itself

become a significant experimental resource. It is designed in a modular fashion to permit rapid prototyping

of experimental tools by providing them with a layer of environment services such as screen and database

1 This information is used when an interpreted subroutine makes a call to compiled code. Without the side-effect information,
the interpreter would need to checkpoint the entire memory state accessible outside the calling routine both before and after the call
and then compare the two images to determine what variables were changed by the call. With the information, it need only examine
those variables contained in the interproceduralMOD set for the call site, a much less formidable task.



management. We expect to distribute an experimental version of the environment in late 1987.

2.2. PFC and PTOOL

Since 1978, Rice has been conducting an active program of research in software for vector and paral-

lel supercomputers.PFC (the ParallelFORTRAN Converter) is a system that automatically vectorizesFOR-

TRAN programs by performing a sophisticated analysis ofdependences. A dependence exists between two

statements if one statement can store into a location that is later accessed by the second statement.

Although most optimizing compilers analyze dependences in a program, they use a particularly naive treat-

ment of arrays. Vectorization systems employ a much more powerful analysis that is fairly effective in

dealing with subscripted references in loops[Kuck 78, KKLW 80, AlKe 86]. Research onPFC has concentrated

on finding vectorization algorithms efficient enough for use in a compiler. An indication of its success is

thatPFCserved as the prototype for theIBM VS FORTRAN Version 2 vectorizing compiler for the 3090 Vector

Feature[ScKo 86], which achieves excellent results while remaining reasonably efficient.2

Since completion of the originalPFCin 1982, research has continued in three areas. First, algorithms

to perform interprocedural analysis on whole programs have been added. The approach used is based upon

results from the batch version of the algorithm developed for IRn. The aim of this work is to determine the

impact of global program knowledge on vectorization and parallelization. Currently,PFC analyzes side

effects of procedure calls, aliasing patterns, and constants propagated across procedure boundaries.

Second, we have been examining the use ofPFC’s analysis phase in parallel programming tools. Our

first effort, calledPTOOL, is an interactive adviser designed to assist in the prevention of errors arising from

unintentional data sharing or unforeseen load-store orders for shared data in parallel programs[ABKP 86].

PTOOL is really a sophisticated browser for a database of interstatement dependences created byPFC. It per-

mits the user to select a loop in a sequentialFORTRAN program and ask whether or not the iterations may be

run in parallel. If the answer is ‘‘no’’,PTOOLwill display all the dependences that prevent parallelization.

While PTOOL is extremely helpful for identifying loops that can be parallelized, it provides no assis-

tance in the generation of parallel code. A third project is investigating automatic generation of code for

multiprocessors. This has led to another derivative ofPFC, calledPFC Plus, that not only recognizes loops

whose iterations can be run in parallel but also performs sophisticated transformations, such as loop inter-

change, loop alignment, and code replication to enhance the parallelism available[AlKe 85].

PFC now contains approximately 95,000 lines of PL/I code and runs on an IBM 4341.PTOOL is

already in use at Los Alamos National Laboratory and is scheduled to be installed at Livermore and

Argonne. BothPTOOL andPFC Pluswill be installed on the Cornell Theory Center’s IBM 3090 supercom-

puter system. These systems represent a significant research resource because they are relatively easy to

modify. This makes it possible to add and evaluate new transformation methods rapidly. In addition,

PTOOL has value as an educational tool. It is now used to teach compiler students about dependences in

programs.

3. ParaScope

2Although the IBM compiler is based on an early version of thePFC system, it is quite effective at vectorization and runs only
25% slower than the scalar VS FORTRAN compiler with optimization.



It is the goal of the ParaScope project to produce a programming environment that will assist in the

formulation, implementation, and debugging of parallelFORTRAN programs. In the environment we envi-

sion, a programmer will prepare aFORTRAN program (containing only standardFORTRAN constructs) using

the environment’s tools. The program might consist entirely of new code or it might incorporate packaged

source modules. When the programmer is ready to consider the implications of parallelism, the system will

bring to bear the analytical tools from the compiling system, reporting back on its successes and failures.

For those regions of the program that the compiler cannot run in parallel, the programmer can then

examine the dependence information to see if a simple revision might permit more parallelism. At each

step, the system will report success or failure and permit further investigation of dependences. When the

programmer is satisfied, he can instruct the environment to generate code for the target machine and run the

program.

Under this approach, program development is a cooperative effort by both the programmer and the

system, exploiting the strengths of each. The system performs the tedious analysis of dependences, freeing

the programmer to develop more highly parallel algorithms. Given feedback from the system, the program-

mer should be able to experiment with innovative approaches.

If successful, this project will produce a sophisticated programming system that not only helps the

programmer produce correct, well organized code, but also assists him in tailoring that code to achieve high

performance on parallel architectures. The following sections present details on the six subprojects we

envision.

3.1. Dependence Analysis in a Structure Editor

In the automatic detection of parallelism, the key analytical information used by a compiler is a

dependence graph[KKLW 80, Kenn 80, KKLP 81, Alle 83]for the procedure. To create a responsive tool for par-

allel programming, we will need to perform dependence analysis on the procedure as it is modified in the

environment’s structure editor forFORTRAN. While structure editing systems that incrementally update

semantic information are reasonably common, we are aware of no system that maintains a consistent

dependence graph of sufficient complexity to support the transformations required for parallel code genera-

tion.

Our experience with thePTOOL system has convinced us of the value of presenting dependence based

information to programmers trying to understand why particular loops will not run in parallel. Unfortu-

nately, becausePTOOL relies on a batch analysis of the program, users have found the delay between typing

a proposed change into the source and getting feedback about its impact to be frustrating. Constructing a

useful, on-line parallel programming advisor will require a method for rapidly updating the dependence

information for a procedure in response to one or more editing changes.

Given the need for incremental dependence analysis, a natural starting point for the research is to

consider application of a general technique like an attribute grammar framework[Reps 82]or one of the

existing incremental data-flow analysis frameworks[Zade 84, Ryde 83, CaRy 86]. Unfortunately, the computa-

tion of dependence analysis appears to be sufficiently complex to make re-casting it in an attribute grammar

framework unbearably inefficient. Similarly, there appears to be no natural way to cast the problem in a

data-flow analysis framework. Certainly, the resulting framework would be so complex that the standard

algorithms from global data-flow analysis would not achieve their fast time bounds.

We believe that the speed of incremental updates to this information is critical to the responsiveness

of the overall parallelism advisor. To achieve the goals of this project, we intend to develop efficient incre-

mental updating techniques to deal with both factual and structural changes.



3.2. Improvements to Interprocedural Analysis

Our experience with interprocedural data-flow analysis in both IRn and PFC has convinced us that

improvements are needed in both the theory and the implementation. Tw o particular problems present

themselves: the need for more precise treatment of arrays and the need for incremental updating techniques.

The next two subsections provide more detail on these problems.

3.2.1. Regular Section Analysis

Our experience with using interprocedural summary information in a working system for detecting

parallelism has shown that the granularity of conventional summary information is too coarse to allow

effective detection of parallelism in loops that contain call sites. The problem is that the current analysis

treats whole arrays as single units. Thus, it is able to determine whether an array is modified somewhere,

but not whether it is modified in only a single column or row. This limitation is disastrous for paralleliza-

tion because the most effective way to parallelize a loop is through data decomposition, in which each par-

allel iteration works on a different subsection of a given array.

Hence, some mechanism for determining the subsections actually affected by interprocedural side

effects is needed. Triolet has proposed a method that finds the convex hull of the set of array locations

affected as a side effect of a procedure call[TrIF 86]. Unfortunately, this method is too expensive to use in a

compiler. Therefore, we seek to achieve a more limited goal: to recognize some important special cases of

array side effects. For example, it would be extremely useful if we were simply able to recognize when the

modification of an array by a procedure call is limited to a single column or row of the array.

Fortunately, a generalization of the approach currently used to solve interprocedural data-flow analy-

sis problems can be used to develop more precise information about side effects. Although it may not be

immediately clear from perusing the published papers[CoKe 84, CoKT 86c], the Cooper-Kennedy algorithm

for summary problems can be extended to work on lattices. Consider the example lattice of reference pat-

terns to the array A shown in Figure 1. Note that I, J, and K are arbitrary symbolic input parameters to the

call. To incorporate a more accurate treatment of arrays, we must extend the side effect analysis to use

A(I,J) A(K,J) A(K,L)

A(*,J) A(K,*)

A(*,*)

Figure 1. Simple side-effect lattice.



more general vectors of lattice elements rather than simple bit vectors.

Our technique for computing summary information is particularly well suited to this type of analysis

because it divides the computation of interprocedural information between a step that traces the impact of

chains of parameter binding and a step that uses this binding map to transform local information into the

desired interprocedural information[CoKe 84]. Applying the method to a more complex domain of interpro-

cedural facts doesn’t change the first part of the analysis; only the second step requires modification. Since

the first step requires time that is nearly linear in the size of the program, the cost of performing the meet

operations in the second step may dominate the cost of the entire analysis. This makes choosing an appro-

priate lattice important, not only from the perspective of modeling facts that aid in the parallelization, but

also because the lattice will directly impact the cost of performing the analysis.

In his dissertation, Callahan proposes several regular section lattices[Call 87]. As part of this research

project, we will implement a version of the interprocedural summary algorithm that can operate on such lat-

tices and use this to determine the efficacy of his various models. We believe that this type of analysis will

significantly enhance our ability to detect parallelism.

3.2.2. Incremental Update Techniques

The current version of the IRn environment completely recomputes interprocedural information each

time a program is compiled. The analysis is sufficiently fast that this has not been a major problem in the

past. However, we expect that regular section analysis will require substantially more computing resources

than the current techniques. This will increase the desirability of incremental methods for updating inter-

procedural information in response to a program change. We hav e identified several promising approaches

for these updates[Coop 83, CoKe 84]. In implementing an update technique, we must examine not only our

own work, but also the ongoing research into incremental updating techniques both at Rice and elsewhere

[Reps 82, Zade 84, CaRy 86]. We plan to pick the most promising technique emerging from ongoing research on

incremental analysis, implement it in ParaScope, and evaluate its efficacy. In performing this research, it

will be important to evaluate the tradeoff between incremental and parallel evaluation methods. It seems

likely that batch style algorithms may be more amenable than incremental techniques to parallel execution

3.3. Parallel Debugging

Currently, the IRn execution monitor (ExMon) supports debugging a sequential program on the local

machine. In ParaScope, we will enhance it to support debugging programs executing on remote machines

and to support debugging parallel programs. These extensions divide into two fundamentally different

tasks: providing the mechanisms to control a process on a remote machine and examine or change its inter-

nal state, and developing paradigms to allow the programmer to relate source code constructs to the execu-

tion state of the parallel program. Both of these are necessary before a practical IRn-style execution monitor

can be constructed for parallel programs.

3.3.1. Implementing Remote Debugging

Fortunately, the implementation of ExMon was designed in a manner that should facilitate extending

it to deal with processes on remote machines. It is implemented as two UNIX processes. The debugger

itself, as well as all interpretive execution, runs in a foreground process. Whenever, compiled code is run-

ning, it runs in a separate process, with its own address space, in the background. Consistency of data val-

ues is insured by always keeping the correct values in the address space of the compiled process, using the

UNIX system callptrace.



To implement a version of ExMon that supports remote debugging will require implementation of a

remote debugging kernelthat supports the following operations:

• a combination offork(2) andexecve(2)
The kernel must be able to start execution of a given file on the remote machine.

• ptrace(2)
In order to read and write in the address space of the target program and to set breakpoints there, the
remote kernel must provide a function equivalent to theUNIX ptracesystem call.

• pause process
The kernel needs some mechanism that will allow the debugger to pause a running target program.

• wait(2), wait3(2)
In order to determine when the target program has stopped at a breakpoint, the remote kernel must
support something similar to theUNIX wait andwait3 calls. To avoid polling, the remote machine
should asynchronously advise the debugger of a change of state in the child.

• get symbol table from executable
In order to determine the location of various identifiers in the target program, the remote kernel must
support reading the target program’s symbol table.

• stack abstraction
The kernel must provide operations that permit the run-time stack to be manipulated abstractly. This
includes routines for addressing the various storage classes of identifiers as well as routines for push-
ing and popping stack frames.

• redirection ofstdin, stdout, stderr
In order to enter input data from the debugger’s machine and to get the target program’s output on it,
the remote kernel must support some form of redirection of standard I/O.

An implementation ofNFS on both the local and remote machine would simplify several problems, notably

reading files on the remote machine and examining the target program’s symbol table. Parallel programs

involving multiple processes can be handled by allowing the debugger to manage more than one back-

ground process. Thus, with a remote debugging kernel supporting these operations via a remote procedure

call mechanism, we expect to use ExMon running on a workstation to debug programs running on a remote

supercomputer.

3.3.2. Relating State to Source

Most manufacturers are extending their sequential source debuggers to parallel systems by permitting

the user to halt processes and single-step each process. Unfortunately, this approach doesn’t provide a

practical tool for debugging complex parallel programs. We intend to attack two of the problems that arise

in dealing with the execution state of a parallel program: relating that state back to the user’s source code in

a meaningful way and providing tools to help the programmer cope with the nondeterministic nature of

execution.

The first problem arises regularly in attempts to understand optimized code. The problem is made

more acute by the radical transformations that a compiler attempts to discover additional parallelism.

ParaScope will help the programmer understand the relationship between source and machine code by pro-

ducing compiler generated annotations that can be examined in the source editor using the facilities dis-

cussed in Section 3.6. One possible form for the annotations would be a transformed version of the source,

in a pseudo-language that exposes constructs hidden in the originalFORTRAN source. Other techniques will

surely suggest themselves as the work on the display of annotations matures.



The second problem may well be the most difficult problem in debugging code for shared memory

multiprocessors. Simply put, it is very hard to recreate with a debugger the sequence of events that leads to

an error of unintentional data sharing. Although techniques based upon non-intrusive tracing show great

promise[GeHo 83], the hardware is not yet efficient enough to routinely support this approach. In ParaS-

cope, we will use the information discovered during analysis and compilation to provide clues to the loca-

tion of errors at run time.

For example, if an incorrect value is detected in a parallel program at a point where the sequentially

scheduled version produced the correct value, the debugging system would be invoked. It could trace back

along dependence edges to locations inside parallel regions that are potential sources of the problem. Then,

it could useadversary scheduling, a technique that employs dependence analysis to pick schedules likely to

lead to errors, to locate the error. If the computation inside the parallel region was involved in a depen-

dence that the compiler ignored under the programmer’s direction, the system could generate a processor

schedule that caused the dependence to be violated. In other words, the debugger would step the processors

in an order that is most likely to give rise to the value-passing pattern that caused static analysis to suggest

that the sequential and parallel semantics differed.

3.4. Whole Program Planning

In a system for automatically decomposing a large program for parallel execution, optimizing trans-

formations should be planned from a global perspective. For example, when choosing the loop to run in

parallel from among several possibilities, it is desirable to select the outermost loop in order to generate less

frequent synchronizations. However, if the program consists of many separately-compiled subroutines, the

compiler will have trouble determining if a given loop is actually the outermost loop. Suppose that it con-

fronts a loop within a subroutine and that the version of ParallelFORTRAN does not allow nested parallel

DO’s. In this case, the compiler should only select the loop if the subroutine is not called from within a

parallel loop in some other routine. Determining when this is the case requires information about the whole

program.

As a second example, consider inline substitution. When properly used, it can uncover parallelism

that is very hard to see when subroutines are examined separately. Furthermore, it permits code from the

substituted procedure to be tailored to the situation at the point of call, making more optimizations possible.

This combination of effects can be extremely beneficial. However, unrestricted use of inline substitution

can lead to an explosion in code size.

To make appropriate use of inline substitution, the compiling system must plan the optimizing trans-

formations, including parallelization, for the whole program. The approach we envision constructs the call

graph, gathers information about each procedure (including information for the inline substitution phase),

computes interprocedural data-flow information and performs inline substitution. It then determines the

important environmental information, like whether or not a call to the routine is contained in a parallel loop,

to pass to the compiler for each individual compilation. Finally, it inv okes compilations of the individual

modules, passing the environmental data to the compiler.

The implications of whole program planning in a programming environment are extremely complex.

In ParaScope, planning will be the responsibility of the program compiler. To make the system work effi-

ciently, we will need to develop incremental methods for revising plans in response to change, similar to the

methods we developed for limiting recompilation[CoKT 86b, Torc 85]. An important preliminary step to such

algorithms is to implement recompilation limitation and gain experience with it.



The program planning scheme also appears to provide a natural place to identify larger granularity

parallelism. It seems likely that looking for large grain parallelism on a whole program basis can lead to

more effective use of a multiple processor machine by a singleFORTRAN program. By identifying individ-

ual routines or groups of routines whose executions can be run in parallel, the program compiler should be

able to assign these tasks to separate processors.

An important application of this research is to develop techniques for planning the optimizations of

whole programs that are being prepared for execution on background supercomputers. ParaScope will

include a powerful new program compiler that will manage programs on a background mainframe. The

enhanced techniques should permit program compilation and module compilation to take place on the

mainframe itself. Implementing this scheme will require cooperation with the mainframeFORTRAN com-

piler to achieve highly optimized whole programs.

3.5. Parallel Code Generation

To complete the task of preparing a program for execution in ParaScope, there must be a compiler

that handles all the details of generating code for the supercomputer. To this end, the IRn optimizing mod-

ule compiler, currently in prototype form, will be completed and extended to support generation of code for

parallel supercomputers. Since the necessary dependence analysis will be performed in the editor and

results stored in the database, the compiler can use this information in transforming and optimizing the pro-

gram without directly paying the price for the analysis. This project would build upon our work on opti-

mization and transformation of programs for parallel execution inPFC [AlKe 85, AlCK 87].

The optimizing compiler will benefit in a number of ways from the use of dependences, because they

are more precise in their handling of subscripted variables than traditional data-flow information. Cytron

has discussed a variety of interesting applications for such dependences[Cytr 86]. Allen and Kennedy

[AlKe 86] have already shown that memory traffic for scalar computations can be reduced significantly by

use of register allocation techniques based upon dependence. We also expect several other new scalar opti-

mizations to present themselves.

The main problem to be attacked is the generation of parallel code for a supercomputer. UnlikePFC,

this work would be in the context of a compiler. Hence, a number of machine-dependent issues can be

explored. For example, what is the correct tradeoff between vector and parallel execution? Also, how can

memory traffic be minimized for highest performance on a machine with a complex memory hierarchy?

If we attempt to isolate the transformations in one section of the compiler, we should also be able to

produce a version of the compiler that generatesFORTRAN annotated with parallel execution primitives.

This would permit the resulting program to be compiled by theVS FORTRANcompiler for execution on the

IBM 3090. If done properly, this goal would require that IBM make extensions toVS FORTRAN to accept

the parallel primitives along with the interprocedural information produced by the program compiler.

The ParaScope optimizing module compiler should provide an ideal laboratory for investigating these

and other issues related to compilation for parallel supercomputers.

3.6. Display of Complex Program Annotations

Designing a good user interface for ParaScope’s sophisticated program analysis and transformation

capabilities is a major challenge. IRn produces and consumes many kinds of information aboutFORTRAN

programs in addition to source code; that information is voluminous, diverse in structure, and highly inter-

related. Parallel programming features will add to this information considerably. The current version of

IRn uses a graphical window system to display each kind of information in a separate window, with few



provisions for displaying inter-relationships. Up to now, the study of user interface issues has not been an

explicit goal of the IRn project.

If ParaScope is to become a useful tool for parallel programming, we need to develop mechanisms to

help the ParaScope user deal with the complex web of information surrounding hisFORTRAN program. Our

approach is to view the information as adocument, an ‘‘electronic book’’ written in the dynamic medium of

computer graphics instead of on paper[KayG 77, YMvD 85, We yB 85]. We think of all the extra information as

annotationsof theFORTRAN source text, analogous to a book’s footnotes, figures, and appendices. Unlike a

paper book, portions of the annotatedFORTRAN can be selectively revealed or concealed, viewed in a choice

of different formats, or edited. There has been much research on such dynamic media, but little of it has

dealt with computer programs and none that we know of has focused on the complex, inter-related informa-

tion managed by a programming environment.

3.6.1. Annotations

Some of the information managed by ParaScope comes from the programmer, and some is produced

by ParaScope as a product of program analysis or transformation. The programmer provides four kinds of

information to ParaScope.Project management informationincludes ownership of versions and revision

histories of modules.Programming informationincludes formal specifications, design documentation,

source code modules, and compositions of modules into programs.Compiling informationincludes such

choices as where to perform in-line substitutions, what target machine to assume, and which modules to run

interpretively. Testing informationincludes input test data, expected output, and debugging session logs.

ParaScope provides information to the programmer as a result of analyzing, transforming, or execut-

ing FORTRAN source. Conventional analysis finds syntactic and semantic errors inFORTRAN source code,

connects declarations and uses of identifiers, and determines variables aliased by common or equivalence

statements. Data-flow analysis finds constant valued expressions, connects stores with loads, and deter-

mines what dependences exist between statements or expressions. Transformation exposes parallelism at

the source code level. In addition to producing normal program output, execution can produce other impor-

tant information: suspended execution contexts, traces of adversary schedules, and performance measure-

ments.

3.6.2. Source Code Enhancement

To display these annotations, we will explore techniques from four areas of related research: struc-

tured documents[DKLM 84, YMvD 85], hypertext[Carm 69, Nels 74], Knuth’s WEB system of structured docu-

mentation[Knut 84], and graphical programming[Raed 85, Reis 84, MorH 85]. We will begin by applying some

of these techniques in isolation, using the current IRn system as a test bed. Our eventual aim is to find ways

of unifying these techniques into a simple but powerful model for annotatedFORTRAN.

In the first phase of research, we will use the existing IRn user interface as a test bed to explore ways

of presenting annotations. Later, we will build an entirely new user interface based on the unifying notion

of annotated documents. One benefit of this research would be to ensure that ParaScope is easy to use

when it is finished.

4. Conclusions

The first vector supercomputers appeared on the market in the early to mid seventies. Yet, because of

the lag in developing supporting software, it is only recently that vectorizing compilers powerful enough to

effectively utilize vector hardware have been developed.



Since parallel programming is a much more complex task than vectorization, we expect the challenge

of producing adequate programming support to be much greater. In the ParaScope project, we will be

exploring the leverage to be gained through an integrated collection of tools in which each tool depends on

the others for important information. For example, the editor will depend on the interprocedural analyzer,

which itself depends on the results of editing other modules. The debugger uses dependence information to

assist in the location of potential problems. The user interface permits abstract displays of the data-flow

information within a program.

We believe that it is essential to have this sort of cooperation to provide adequate support for pro-

gramming on the evolving class of highly parallel machines.
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