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Abstract. Instruction scheduling is a necessary step in compiling for
many modern microprocessors. Traditionally, global instruction schedul-
ing techniques have outperformed local techniques. However many of
the global scheduling techniques described in the literature have a side
effect of increasing the size of compiled code. In an embedded system,
the size of compiled code is often a critical issue. In such circumstances,
the scheduler should use techniques that avoid increasing the size of the
generated code. This paper explores two global scheduling techniques,
extended basic block scheduling and dominator path scheduling, that do
not increase the size of the object code, and in some cases may decrease
it.

1 Introduction

The embedded systems environment presents unusual design challenges. These
systems are constrained by size, power, and economics; these constraints intro-
duce compilation issues not often considered for commodity microprocessors.
One such problem is the size of compiled code. Many embedded systems have
tight limits on the size of both RAM and ROM. To be successful, a compiler must
generate code that runs well while operating within those limits.

The problem of code space reduction was studied in the 1970’s and the early
1980’s. In the last ten years, the issue has largely been ignored. During those ten
years, the state of both processor architecture and compiler-based analysis and
optimization have changed. To attack the size of compiled code for embedded
systems, we must go back and re-examine current compiler-based techniques in
light of their impact on code growth.

This paper examines the problem of scheduling instructions in a limited-
memory environment. Instruction scheduling is one of the last phases performed
by modern compilers. It is a code reordering transformation that attempts to
hide the latencies inherent in modern day microprocessors. On processors that
support instruction level parallelism, it may be possible to hide the latency of
some high-latency operations by moving other operations into the “gaps” in the
schedule.

* This work has been supported by DARPA and the USAF Research Laboratory
through Award F30602-97-2-298.



Scheduling is an important problem for embedded systems, particularly those
built around DSP-style processors. These microprocessors rely on compiler-based
instruction scheduling to hide operation latencies and achieve reasonable perfor-
mance. Unfortunately, many scheduling algorithms deliberately trade increased
code size for improvements in running time. This paper looks at two techniques
that avoid increasing code size and presents experimental data about their ef-
fectiveness relative to the classic technique—local list scheduling.

For some architectures, instruction scheduling is a necessary part of the pro-
cess of ensuring correct execution. These machines rely on the compiler to insert
NOPs to ensure that individual operations do not execute before their operands
are ready. Most VLIW architectures have this property. On these machines, an
improved schedule requires fewer NOPs; this can lead to a direct reduction in
code space. If, on the other hand, the processor uses hardware interlocks to en-
sure that operands are available before their use, instruction scheduling becomes
an optimization rather than a necessity. On these machines, NOP insertion is not
an issue, so the scheduler is unlikely to make a significant reduction in code size.

In this paper, we focus on the VLIW-like machines without hardware inter-
locks. (Of course, good scheduling without code growth may be of interest on
any machine.) For our discussion, we need to differentiate between operations
and instructions. An operation is a single, indivisible command given to the
hardware (eg. an add or load operation). An instruction is a set of operations
that begin execution at the same time on different functional units.

Traditionally, compilers have scheduled each basic block in the program in-
dependently. The first step is to create a data precedence graph, or DPG, for the
block. Nodes in this graph are operations in the block. An edge from node a to
node b means that that operation b must complete its execution before operation
a can begin. That is, operation a is data dependent on operation b. Once this
graph is created it is scheduled using a list scheduler [17,11].

Since basic blocks are usually rather short, the typical block contains a limited
amount of instruction-level parallelism. To improve this situation, regional and
global instruction scheduling methods have been developed. By looking at larger
scopes, these methods often find more instruction-level parallelism to exploit.
This paper examines two such techniques, extended basic block scheduling (EBBS)
and dominator path scheduling (DPS). Both methods produce better results than
scheduling a single basic block; this results in fewer wasted cycles and fewer
inserted NOPs.

We selected these two techniques because neither increases code size. In the
embedded systems environment, the compiler does not have the luxury of repli-
cating code to improve running time. Instead, the compiler writer should pay
close attention to the impact of each technique on code size. These scheduling
techniques attempt to improve over local list scheduling by examining larger
regions in the program; at the same time, they constrain the movement of in-
structions in a way that avoids replication. Thus, they represent a compromise
between the desire for runtime speed and the real constraints of limited memory
machines.



Section 2 provides a brief overview of prior work on global scheduling. In sec-
tion 3 we explain in detail the two techniques used in our experiments: namely
extended basic block scheduling (EBBS) and dominator-path scheduling (DPS). Sec-
tion 4 describes our experiments and presents our experimental results.

2 Global Scheduling Techniques

Because basic blocks typically have a limited amount of parallelism [20], global
scheduling methods have been developed in the hopes of improving program
performance. All the global techniques we will be describing alter the scope of
scheduling, and not the underlying scheduling algorithm. Each technique con-
structs some sequence of basic blocks and schedules the sequence as if it were a
single basic block. Restrictions on moving operations between basic blocks are
typically encoded in the DPG for the sequence.

The first automated global scheduling technique was trace scheduling, origi-
nally described by Fisher [8]. The technique has been used successfully in several
research and industrial compilers [7, 18]. In trace scheduling, the most frequently
executed acyclic path through the function is determined using profile informa-
tion. This “trace” is treated like a large basic block. A DPG is created for the
trace, and the trace is scheduled using a list scheduler. Restrictions on inter-
block code motion are encoded in the DPG. After the first trace is scheduled, the
next most frequently executed trace is scheduled, and so on. A certain amount
of “bookkeeping” must be done when scheduling a trace. Any operation that
moves above a join point in the trace must be copied into all other traces that
enter the current trace at that point. Likewise, any operation that moves below
a branch point must be copied into the other traces that exit the branch point,
if the operation computes any values that are live in that trace.

One criticism of trace scheduling is its potential for code explosion due to
the bookkeeping code. Fruedenberger, et al., argue that this does not arise in
practice [10]. They show an average code growth of six percent for the SPEC89
benchmark suite and detail ways to avoid bookkeeping (or compensation) code
altogether. Restricting the trace scheduler to produce no compensation code only
marginally degrades the performance of the scheduled code.

Hwu, et. al., present another global scheduling technique called superblock
scheduling [14]. Tt begins by constructing traces. All side entrances into the traces
are removed by replicating blocks between the first side entrance and the end
of the trace. This tail duplication process is repeated until all traces have a
unique entry point. This method can lead to better runtime performance than
trace scheduling, but the block duplication can increase code size. Several other
techniques that benefit from code replication or growth have been used. These
include Bernstein and Rodeh’s “Global Instruction Scheduling” [4,2], Ebcioglu
and Nakatani’s “Enhanced Percolation Scheduling” [6], and Gupta and Soffa’s
“Region Scheduling”[12].



3 The Two Techniques

In this section we look at two non-local scheduling techniques specifically de-
signed to avoid increasing code size, namely dominator-path scheduling (DPS),
and extended basic block scheduling (EBBS). We assume that, prior to schedul-
ing, the program has been translated into an intermediate form consisting of
basic blocks of operations. Control flow is indicated by edges between the basic
blocks. We assume this control flow graph (CFG) has a unique entry block and
a unique exit block.

3.1 Extended basic block scheduling

Little work has been published on scheduling over extended basic blocks. Freuden-
berger, et. al. show some results of scheduling over extended basic blocks, but
only after doing some amount of loop unrolling [10]. Since we are striving for
zero code growth, such loop unrolling is out of the question.

An extended basic block (or EBB) is a sequence of basic blocks, By, ..., B,
such that, for 1 < i < k, B; is the only predecessor of B;;1 in the CFG, and B
may or may not have a unique predecessor [1]. For scheduling purposes, we view
extended basic blocks as a partitioning of the CFG; a basic block is a member of
only one EBB.

The first step in EBBS is to partition the CFG into extended basic blocks. We
define the set of header blocks to be all those blocks that are the first block in
some EBB. Initially, our set of headers consists of the start block and all blocks
with more than one predecessor in the CFG. Once this initial set of headers is
computed, we compute a weighted size for each basic block. The size for a header
is set to zero. The size for all other blocks equals the total number of operations
in the block weighted by their latencies plus the maximum size of all the block’s
successors in the CFG. To construct the EBB’s, we maintain a worklist of header
blocks. When a block B is pulled off the worklist, other blocks are added to its
EBB based on sizes computed earlier. The successor of B in the CFG with the
largest size is added to B’s EBB. The other successors of B are added to to the
worklist to become headers for some other EBB. This process continues for the
new block, until no more eligible blocks are found for the current EBB. For each
EBB, a DPG is constructed, and the EBB is scheduled with a list scheduler.

We must prohibit some operations from moving between the blocks of an EBB.
Assume a block B; has successors Bs, Bs, ..., B, in the CFG. Further assume
that B, is placed in the same EBB as B;. We prohibit moving an operation from
Bs to By, and vice versa, if that operation defines a value that is live along some
path from By to B; where ¢ # 2. We call this set of values path-live with respect
to By, or PLp,. The set is a portion of the set liveout(B) as computed by the
following equation:



Intuitively, we can’t move the operation if any value it defines is used in some
block other than B; or By and that block is reachable from B; via some path
not containing Bs. The operations that can be moved are called partially dead
if they are in By [16].

3.2 Dominator-path scheduling

DPs was originally described in Sweany’s thesis [21]. Other work was done by
Sweany and Beaty [22], and Huber [13].

We say a basic block B; dominates block By if all paths from the start
block of the CFG to By must pass through Bj [19]. If By dominates By, and
block Bs executes on a given program run, then B; must also execute. We
define the immediate dominator of a block B (or idom(B)) to be the dominator
closest to B in the CFG. Each block must have a unique immediate dominator,
except the start block which has no dominator. Let G = (N, E) be a directed
graph, where the set IV is the set of basic blocks in the program, and define
E = {(u,v) | u =1idom(v)}. Since each block has a unique immediate dominator,
this graph is a tree, called the dominator-tree. A dominator-path is any path
between two nodes of the dominator-tree.

We now define two sets, idef(B) and iuse(B). For a basic block B, idef(B)
is the set of all values that may be defined on some path from idom(B) to B (not
including B or idom(B).) Likewise iuse(B), is the set of all values that may be
used on some path from idom(B) to B. The algorithm for efficiently computing
these sets is given by Reif and Tarjan [23].

DPS schedules a dominator-path as if it were a single basic block. First, the
blocks in the CFG must be partitioned into different dominator-paths. Huber
describes several heuristics for doing path selection and reports on their relative
success. We use a size heuristic similar to the one described above for EBBS. This
is done via a bottom-up walk over the dominator-tree. The size of a leaf equals
the latency-weighted number of operations in the block. For all other blocks,
size equals the latency-weighted number of operations in the block plus the
maximum size of all the block’s children in the dominator-tree. When building
the dominator-paths, we select the next block in the path by choosing the child
in the dominator-tree with the largest size. All other children become the first
block in some other dominator-path. Once the dominator-paths are selected, a
DPG is created for each path, and the path is scheduled using a list scheduler.
After each path is scheduled, liveness analysis and the idef and juse sets must
be recomputed to insure correctness.

When the compiler builds the DPG for the dominator-path, it adds edges to
prevent motion of certain operations between basic blocks. Assume Bj is the
immediate dominator of By. Sweany’s original formulation prohibited moving
an operation from By up into By if that operation defined a value in idef(Bg) U
iuse(Bz), or if it referenced a value in idef(By). That is, we don’t want to move
an operation that defines a value V' above a use or definition of V' in the CFG.
Likewise, an operation that references V is not allowed to move above a definition
of V. This strategy is safe when B; dominates By and By postdominates B;.



However, Huber showed that in the general case this strategy is unsafe. Fig-
ure 1(a) illustrates the problem. In this simple CFG we show only the operations
that use or define r1. Assume blocks By and Bs will be scheduled together.
Clearly r1 is not a member of iuse(Bz) or idef(Bsz) since there are no blocks
between B; and Bs. Thus, the definition of r1 in By could be unsafely hoisted
into block B; causing the use of r1 in By to use the wrong value. Thus, Huber
adds the restriction that any operation that defines a value in

idef(Bg) Uiuse(Bg) U (liveout(By) — livein(Bz))

cannot be moved up from By into Bj.

Bi| 1: DEF r1 Bi| 1: DEF

rl
Bz | 2: DEF r1 2: USE rl
Bs

3: DEF rl
N /
B3
B4| 3: USE r1
By| 4: USE r1
(a) (b)

Fig. 1. DPS example

However, we have found that this formulation too is unsafe. Figure 1(b)
demonstrates the problem. Again, assume that blocks B; and By will be sched-
uled together. Note that r1 € liveout(B;) and r1 € livein(Bz) since it is ref-
erenced before it is defined in By. Therefore, r1 is not in the set liveout(B;) —
livein(Bg). Assuming operation 2 does not define anything that causes move-
ment to be unsafe, we can move it up into block B;. It would then be legal
to move the operation 3 into B;. Thus both operations in By could be moved
into block B, which would cause operation 4 in block By to potentially get the
wrong value. Once a dominator-path is selected for scheduling, no updating of
the liveness information is done during the scheduling of that dominator-path.
Some sort of incremental update would be one way to solve this problem, since
moving operation 2 into B; would cause r1’s removal from the set livein(Bs).

We use an approach that doesn’t require incremental updates. What we really
want to capture are those values that are live along paths other than paths from
By to Bs. This is fairly straightforward if B; is the only parent of Bs in the
CFG; we simply use the path-live notion discussed in the previous section. In



dontdef = idef(B2) Uiuse(Bz)
if B2 does not post-dominate B
then if B; is the predecessor of By in CFG
dontdef = dontdef U PLp,
else
dontdef = dontdef U liveout(B1)
if B2 and Bj are in different loops
then dontdef = dontdef U liveout(B1)
dontdef = dontdef U memory_-values

Fig. 2. Summary of prohibited moves between B; and B-

other cases, we take the conservative approach and don’t allow any operation
that defines a value in liveout(B;) to move up.

Now we consider motion of an operation in the downward direction. Sweany
does not allow an operation to move down the CFG, that is into block By from its
dominator By, but he does mention that this could be done if By post-dominates
B;. A block By post-dominates Bj if every path from B; to the end of the CFG
must pass through By (simply the dominance relation in reverse). Huber allows
operations to move down into the post-dominator if they don’t define anything
in idef(Bz2) Uiuse(Bg) or use anything in idef(Bz). No downward motion is
allowed if By does not post-dominate B;. We take this one step further by
allowing motion of an operation from B; into Bs if B; is the predecessor of By
in the CFG, and the operation computes values that are only live along the edge
(B1, Ba). (This is the path-live notion from section 3.1.) In any other case where
By does not post-dominate By, we take the conservative approach and disallow
any motion of operations that compute a value in liveout(B).

Loops pose additional concerns. We must be careful not to allow any code
that defines memory to move outside of its current loop or to a different loop
nesting depth.! In addition to the restrictions described above, we disallow any
operation that defines memory from moving between two blocks if they are in
different loops or at different loop nesting levels. Finally, we don’t allow an
operation that defines registers in liveout(B; ) to move between the two blocks.

To summarize, we disallow motion of an operation between block By and its
immediate dominator By (forward or backward) if that operation defines a value
in the set dontdef. This set is defined in figure 2. Additionally any operations
that use a value in idef(Bz) are not allowed to move.

4 Experimental Results

Our research compiler takes C or Fortran code and translates it into our assembly-
like intermediate form, ILOC [5]. The ILOC code can then be passed to various op-

! Recall that scheduling follows optimization. The optimization should include some
careful code motion [15].



timization passes. All the code for these experiments has been heavily optimized
before being passed to the instruction scheduler. These optimizations include
pointer analysis for the C codes, constant propagation, global value numbering,
dead code elimination, operator strength reduction, lazy code motion, and regis-
ter coalescing. No register allocation was performed before or after scheduling, as
we wanted to completely isolate the effects of the scheduler. After optimization,
the 1LOC is translated into C, instrumented to report operation and instruction
counts, and compiled. This code is then run.

A variety of C and Fortran benchmark codes were studied, including several
from various versions of the SPEC benchmarks and the FMM test suite [9]. The
C codes used are, clean, compress, dfa, dhrystone, fft, go, jpeg, nsieve,
and water. All other benchmarks are Fortran codes. clean is an optimization
pass from our compiler. dfa is a small program that implements the Knuth-
Morris-Pratt string matching algorithm. nsieve computes prime numbers using
the Sieve of Eratosthenes. water is from the SPLASH benchmark suite, and £ft
is a program that performs fast-fourier transforms.

4.1 A Generic VLIW Architecture

In the first set of experiments, we assume a VLIW-like architecture. This hypo-
thetical architecture has two integer units, a floating point unit, a memory unit,
and a branch unit. Up to four operations can be started in parallel. Each 1LOC
operation has a latency assigned to it. We assume that the latency of every op-
eration is known at compile time. The architecture is completely pipelined, and
NOPs must be inserted to ensure program correctness. We compare DPS and EBBS
to scheduling over basic blocks. In each case the underlying scheduler is a list
scheduler that assigns priorities to each operation based on the latency-weighted
depth of the operation in the DPG. For both DPS and EBBS we select which blocks
to schedule based on the size heuristic described above. In this experiment, we
permit all blocks in a given EBB or dominator-path to be at any loop nesting
level. Code is allowed to move between blocks as described above. One additional
restriction on code movement is that we do not allow any operations that could
cause an exception to be moved “up” in the CFG. We do not allow any divide
operations, or loads from pointer memory (ILOC’s PLDor operations), to move
up.

Table 1 shows the dynamic instruction counts for our benchmark codes. This
value can be thought of as the number of cycles required to execute the code.
Both EBBS and DPs resulted in faster code than basic block scheduling. Slightly
better than fifty per cent of the time DPS outperformed EBBS, and a few of these
wins were substantial. On average EBBS produced a 6.5 per cent reduction in
the number of dynamic instructions executed, and DPS produced a 7.5 per cent
reduction.

Table 2 shows the static instruction counts for the same experiments. This
corresponds to the “size” (number of instructions) of the object code. Note that
all the object codes have the same number of operations; only the number of
instructions changes. DPS did better by this metric in roughly the same number of



Table 1. Dynamic Instruction Counts for vLIwW

Basic Block EBBS DPS
Benchmark||Dynamic Insts||Dynamic Insts|% decrease||Dynamic Insts|% decrease
clean 4515619 4113837 8.9 3969926 12.1
compress 10641037 9511683 10.6 9489915 10.8
dfa 696450 592836 14.9 625166 10.2
dhrystone 3660102 3340092 8.7 3220092 12.0
fft 22469970 22138422 1.5 22193147 1.2
go 589209782 527762311 10.4 521628685 11.5
jpeg 45900780 44107954 3.9 44040659 4.1
nsieve 2288889385 2254236158 1.5 2254236164 1.5
water 36111497 33544010 7.1 33253230 7.9
fmin 5370 4495 16.3 4100 23.6
rkf45 818884 731155 10.7 749565 8.5
seval 3340 3264 2.2 3261 2.4
solve 2813 2652 5.7 2627 6.6
svd 14649 13805 5.8 13921 5.0
urand 1117 1081 3.2 1093 2.1
zeroin 4603 4088 11.2 4035 12.3
applu 884028559 865609968 2.1 866257750 2.0
doduc 16953587 16122745 4.9 15248824 10.1
fpppp 95701038 90578189 5.4 89483748 6.5
matrix300 43073238 42802715 0.6 42803515 0.6
tomcatv 436717483 436706995 0.0 408090942 6.6

experiments. However, the static and dynamic improvements did not necessarily
occur on the same codes. This demonstrates that smaller more compact code
does not always results in enhanced runtime performance. On average EBBS
reduced static code size by 10.9 per cent and DPS by 11.8 per cent.

When performing basic block scheduling, we found each block had an average
of 6.8 operations (over all benchmarks). On average, an EBB consisted of 1.8 basic
blocks and 12.4 operations. Dominator paths averaged 2.2 basic blocks and 15.1
operations, each.

We also measured the amount of time required to schedule. The scheduling
times for each benchmark are shown in table 3. In two runs, the average schedul-
ing time for all benchmarks was 88 seconds for basic block scheduling, 92 seconds
for EBBS, and 2297 seconds for DPS. This comparison is a bit unfair. Several of
our C codes have many functions in each 1LOC module. Thus DPS is performing
the dominator analysis for the whole file every time a dominator-path is sched-
uled. The go benchmark contributed 2109 seconds alone. We totaled times for
the Fortran benchmarks (all 1LOC files contain a single function), and a random
sampling of the single function C codes (about 24 functions). The scheduling
times were 56 seconds for basic block scheduling, 50 seconds for EBBS, and 105
seconds for DPS. If we eliminate fpppp, which actually scheduled faster with
EBBS than basic block scheduling, we get times of 8 seconds, 10 seconds, and 49
seconds, respectively.



Table 2. Static Instruction Counts for VLIW

Basic Block EBBS DPS
Benchmark|| Static Insts||Static Insts|% decrease||Static Insts|% decrease
clean 11479 10406 9.3 10439 9.1
compress 1601 1401 12.5 1403 12.4
dfa 1357 1040 23.4 1061 21.9
dhrystone 525 477 9.1 463 11.8
fft 2748 2554 7.1 2533 7.8
go 73528 62829 14.6 62059 15.6
jpeg 19825 18416 7.1 18486 6.8
nsieve 274 258 5.8 256 6.6
water 6485 6094 6.0 5962 8.1
fmin 712 503 29.4 447 37.2
rkf45 2389 2057 13.9 2032 14.9
seval 1057 995 5.9 1014 4.1
solve 1012 940 7.1 933 7.8
svd 2496 2245 10.1 2278 8.8
urand 192 172 10.4 168 12.5
zeroin 545 446 18.2 443 18.7
applu 13403 13008 2.9 12920 3.6
doduc 42135 38543 8.5 37401 11.2
fpppp 10525 9800 6.9 9666 8.2
matrix300 429 361 15.9 367 14.5
tomcatv 953 912 4.3 887 6.9

Table 3. Scheduling times in seconds

Benchmark|| BB |EBBS| DPS

clean 5.10| 6.49| 44.54
compress 1.31| 1.37 3.26
dfa 0.19| 0.24 3.75
dhrystone || 0.20| 0.24 0.31
fft 0.37| 0.47 5.15
go 12.07]|20.86|2108.22
jpeg 12.83|14.85| 41.29
nsieve 0.08| 0.08 0.13
water 0.89| 1.00 1.75
fmin 0.06| 0.06 0.11
rkf45 0.18| 0.22 0.57
seval 0.09| 0.10 0.15
solve 0.12| 0.12 0.31
svd 0.19| 0.25 1.54
urand 0.03| 0.03 0.04
zeroin 0.04| 0.05 0.07
applu 1.84| 2.34 7.03
doduc 4.01| 5.20| 22.24
fpppp 47.93|39.48| 55.91
matrix300 || 0.08 0.08 0.14
tomcatv 0.13| 0.15 0.26




4.2 The TI TMS320C62xx Architecture

The Texas Instruments TMS320C62xx chip (which we will refer to as TMS320) is
one of the newest fixed point DSP processors [24]. From a scheduling perspective
it has several interesting properties. The TMS320 is a VLIW that allows up to eight
operations to be initiated in parallel. All eight functional units are pipelined, and
most operations have no delay slots. The exceptions are multiplies (two cycles),
branches (six cycles), and loads from memory (five cycles). NOPs are inserted
into the schedule for cycles where no operations are scheduled to begin. The
NOP operation takes one argument specifying the number of idle cycles.

This architecture has a unique way of “packing” operations into an instruc-
tion. Operations are always fetched eight at a time. This is called a fetch packet.
Bit zero of each operation, called the p-bit, specifies the execution grouping of
each operation. If the p-bit of an operation o is 1, then operation o+1 is executed
in parallel with operation o. (I. e., they are started in the same cycle). If the
p-bit is 0, then operation o+ 1 begins the cycle after operation o. The operations
that execute in parallel are called an execute packet. All operations in an exe-
cute packet must run on different functional units, and up to eight operations
are allowed in a single execute packet. Each fetch packet starts a new execute
packet, and execute packets cannot cross fetch packet boundaries. This scheme
and the multiple-cycle NOP operation described above, allow the code for this
VLIW to be very compact.

We have modified our scheduler to target an architecture that has the salient
features of the TMS320. Of course, there is not a one-to-one mapping of ILOC
operations to TMS320 operations, but we feel our model highlights most of the
interesting features of this architecture from a scheduling perspective. Our model
has eight fully pipelined functional units. The integer operations have latencies
corresponding to the latencies of the TMS320. Since 1LOC has floating point oper-
ations and the TMS320 does not, these operations are added to our model. Each
floating point operation is executed on a functional unit that executes the cor-
responding integer operation. Latencies for floating point operations are double
those for integer operations. All ILOC intrinsics (cosine, power, square root, etc.)
have a latency of 20 cycles. The experiments in the last section assumed per-
fect branch prediction. However, the TMS320 has no mechanism for predicting
branches. Thus, every control-flow operation (including an unconditional jump)
incurs a five cycle delay to refill the pipeline. We simulate this by adding five
cycles to the dynamic instruction count each time a branch, jump, subroutine
call, or subroutine return is executed.

Our static instructions counts reflect the TMS320 fetch packet /execute packet
scheme. We place as many execute packets as possible in each fetch packet. NOPs
in consecutive cycles are treated as one operation, to be consistent with the
multiple-cycle NOP on the TMS320. Each basic block begins a new fetch packet.

Table 4 shows the dynamic instruction counts for our T™MS320-like architec-
ture. Static instruction counts (i.e., fetch packet counts) are reported in table 5.
In dynamic instruction counts, we see improvements over basic block schedul-
ing similar to those seen for the other architecture. On average, EBBS showed a



Table 4. Dynamic Instruction Counts for TMS320

Basic Block EBBS DPS
Benchmark||Dynamic Insts||Dynamic Insts|% decrease||Dynamic Insts|% decrease
clean 7120834 6809472 44 6759302 5.1
compress 6451078 5865494 9.1 5860732 9.2
dfa 1234284 1163901 5.7 1187176 3.8
dhrystone 6310416 6040418 4.3 5940418 5.9
fft 19134370 18881224 1.3 18896041 1.2
go 873164337 826369843 5.4 824064415 5.6
jpeg 59600121 58496774 1.9 58629470 1.6
nsieve 3810982127 3793649623 0.5 3793649623 0.5
water 37216606 34821429 6.4 34575067 7.1
fmin 4363 3852 11.7 3590 17.7
rkf45 621932 561135 9.8 564360 9.3
seval 2515 2443 2.9 2441 2.9
solve 2819 2692 4.5 2674 5.1
svd 12716 12023 5.4 12160 4.4
urand 1504 1487 1.1 1494 0.7
zeroin 3710 3391 8.6 3292 11.3
applu 676079366 658466445 2.6 658542326 2.6
doduc 13510434 12693031 6.1 12111705 10.4
fpppp 57174493 49772531 12.9 49523545 13.4
matrix300 33652694 33362954 0.9 33363754 0.9
tomcatv 291504852 291494375 0.0 265479402 8.9

5.0 per cent improvement over basic block scheduling, and DPS an 6.1 per cent
improvement. Since the same number of control-flow operations are executed
regardless of the scheduling technique used, these percentages would improve if
the architecture could take advantage of branch prediction information.

However, static code sizes increased slightly over all benchmarks by as much
as nine per cent, with DPS producing smaller codes than EBBS in 13 out of 21
cases. This degradation is due to the code compaction method described above.
Consider a basic block that has eight operations all packed into one instruction.
If six of these operations are moved into another block, and the number of
instructions in that block is increased by one, the overall length of the code
will increase by one instruction. While we have not added any operations to
the compiled code, the number of instructions has increased due to the code
motion. This shows how effective the TMS320 design is at keeping object code
compact. It also highlights the need for improved scheduling techniques to keep
the static code size for these architectures small, while still improving runtime
performance.

5 Conclusions and Observations

This paper has examined the problem of scheduling instructions without increas-
ing code size. We looked at two techniques that consider regions larger than a



Table 5. Static Instruction Counts for TMS320

Benchmark||Basic Block EBBS DPS

Benchmark|| Static Insts||Static Insts|% increase||Static Insts|% increase
clean 1960 2011 2.6 2001 2.1
compress 306 315 2.9 310 1.3
dfa 345 357 3.5 353 2.3
dhrystone 109 110 0.9 113 3.7
fft 398 411 3.2 406 2.0
go 12780 13328 4.3 13322 4.2
jpeg 3051 3083 1.0 3092 1.3
nsieve 52 54 3.8 54 3.8
water 749 759 1.3 755 0.8
fmin 61 65 6.6 64 4.9
rkf45 187 190 1.6 188 0.5
seval 82 86 4.9 85 3.7
solve 122 126 3.3 125 2.5
svd 258 262 1.6 259 0.4
urand 23 25 8.7 23 0.0
zeroin 40 42 5.0 43 7.5
applu 1943 1961 0.9 1966 1.2
doduc 3768 4015 6.6 3898 3.5
fpppp 1560 1573 0.8 1576 1.0
matrix300 7 81 5.2 81 5.2
tomcatv 127 134 5.5 134 5.5

single basic block, but do not replicate code. We compared the performance of
these two methods against that of list scheduling over single basic blocks. We
reformulated the safety conditions for DPS to avoid problems that arose in our
implementation of the algorithm.

1. Both techniques improved on the single block list scheduling by about seven
percent. DpPS produced better results, on whole, than EBBS. This may be due
to the fact that DPS generated larger regions for scheduling.

2. Both EBBs and DPS required more compile time than list scheduling. EBBS
was reasonably competitive with list scheduling, taking up to thirty percent
longer. DPS required much more time-the worst case slowdown was two
orders of magnitude. This suggests that better implementation techniques
are needed for DPS.

3. On machines that require the compiler to insert NOPs for correctness, the
improvement in running time may lead to a decrease in code size. Our mea-
surements showed that this averaged roughly eleven percent for the codes
used in our study. The experiments with the TMS320 showed negative re-
sults for code size; that machine’s hardware strategy for achieving compact
instructions makes the arithmetic of compiler-based code compaction very
complex.



Taken together, these findings suggest that, even in a memory constrained en-
vironment, non-local scheduling methods can achieve significant speedups com-
pared to a purely local approach. For machines that require NOPs, the accom-
panying reduction in code size may be important.

This study suggests two directions for future study.

— Techniques that quickly generate larger acyclic regions may lead to further
reductions in running time (and code space), even when code growth is
prohibited. These warrant investigation.

— A more efficient implementation of DPS is needed. This may be a matter of
engineering; on the other hand, it may require some significant re-thinking
of the underlying algorithms.

If code size is an issue, these techniques deserve consideration. In fact, the com-
piler writer should consider using EBB as the baseline scheduling technique, and
using a best-of-several approach for final, production compiles. This approach
has proved profitable on other problems [3]; Huber has recommended it for find-
ing the best dominator path.
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