
Cross-loop Reuse Analysis and its Application to
Cache Optimizations

Keith Cooper, Ken Kennedy, and Nathaniel McIntosh ?

Department of Computer Science
Rice University

Houston, Texas USA

Abstract. In this paper we describe the design of a data-flow framework
for detecting cross-loop reuse. Cross-loop reuse takes place when a set
of data items or cache lines is accessed in a given loop nest and then
accessed again within some subsequent portion of the program, usually
another outer loop nest. In contrast to intra-loop reuse, which occurs
during the execution of a single loop nest, cross-loop reuse is hard to
analyze using traditional dependence-based techniques. The framework
we have constructed is based on a combination of array section analysis
(to capture array access patterns at a high level) and data-flow analysis
(to deal with intra-procedural control flow). The framework is designed to
account for cache size when gathering reuse information, and when used
in an interprocedural setting, the framework also provides a mechanism
for summarizing the effects of procedure calls.

Cross-loop reuse information can be used to drive a number of transfor-
mations that enhance locality and improve cache utilization, including
loop fusion and loop reversal. Although these transformations are not
new, their impact on cache behavior has not always been possible to
predict, making them difficult to apply. As part of this paper we report
the results of a comprehensive experimental study in which we apply
our techniques to a set of ten programs from the SPEC95 floating point
benchmark suite. We were able to obtain modest performance gains over-
all for several of the programs, based mostly on improvements in cache
utilization.

1 Introduction

One of the major trends in computer architecture over the last decade has been
the widening gap between processor speed and memory latency. Main memory
latencies for modern-day workstations are approaching 100 cycles and beyond,
compared with the 1-5 cycle latencies of a decade ago. This huge speed difference
has had a number of consequences in the world of computer architecture, chiefly
that system designers have had to rely increasingly on cache memories as a means
to avoid latency and increase overall memory bandwidth. This is particularly
true for shared-memory multiprocessors, since transfers between a processor and
? This work was supported in part by ARPA (Army Contract DABT63-95-C-0115).



memory must pass through additional levels of interconnection, resulting in even
longer latencies.

Compiler researchers have also been attacking this problem; they have devel-
oped a number of optimizations that seek to enhance cache utilization, including
loop interchange, loop tiling, and unroll-and-jam [8, 20] 2. For most of these tech-
niques, the compiler first analyzes a loop nest to find out what sort of reuse it
contains, and then applies transformations to expose or improve the reuse in
some way. Accurate information on loop-level reuse is a critical component for
these methods; if the compiler can’t detect the reuse, then there is no way for it
to determine how or when to apply transformations.

Loop-level reuse analysis is most often based on dependence analysis [4, 21].
Dependence analysis can provide very detailed information about the memory
access patterns within a loop, but applying it to larger regions within a procedure
is difficult, especially if the region in question contains control flow or procedure
calls. As a result, dependence analysis is not well suited to detecting cross-loop
reuse.

Transformations also exist that exploit cross-loop reuse, primarily loop fusion
and loop reversal [21]. Because of the shortcomings of existing reuse analysis
methods, however, there has been no effective way until now to detect situations
where these transformations can be profitably applied.

In this paper we describe a compiler framework for detecting useful cross-
loop reuse. Rather than operating on the granularity of individual statements
or array references, as is the case with dependence analysis, our framework uses
array section analysis to reason about reuse in terms of entire regions within an
array. The information derived from array section analysis is then used as input
to a data-flow solver, which deals with intra-procedural control flow.

An outline of the remainder of this paper is as follows. In Section 2 we de-
scribe the details of our framework. In Section 3 we outline how the information
provided by the framework can be applied, and in Section 4 we describe the
results of some preliminary experiments using our framework. In Section 5 we
discuss related work, and finally in Section 6 we offer our conclusions on this
work.

2 Analysis framework

We now describe the details of our analysis. In Section 2.1 we outline some of the
key design goals for the problem we are solving, and discuss how we accomplish
these goals. In Section 2.2 we discuss array section analysis, an important com-
ponent of our framework. Section 2.3 introduces the control flow representation
used by our data-flow solver. In Section 2.4 we describe the domain over which
our data-flow solver operates (i.e. the sets propagated during the analysis). Sec-
tions 2.5, 2.6 and 2.7 describe the actual data-flow equations used, along with
2 Much of this work has been geared towards optimizing scientific programs, since

these programs often make relatively poor use of cache memories, and since they are
amenable to compile-time methods such as dependence analysis.



their inputs and the details of the solver. In Section 2.8 we discuss incorporation
of cache size constraints. In Section 2.9 we briefly cover the algorithmic com-
plexity of some of the operations performed in the framework. Finally, in Section
2.10 we describe how this framework can be used in an interprocedural setting.

2.1 Important design considerations

At a high level, the goal of our framework is to determine, given a point X within
the program being analyzed, the set of array regions accessed on all paths that
reach X; in many respects, this problem is similar to the well-known compiler
optimization problem of “available expressions”. We attack this problem, not
surprisingly, with data flow analysis.

We do not use a traditional data-flow solver, however, since our problem is
unusual in some important respects. First, the problem requires that we explicitly
take into account the loop structure of the program, as opposed to treating
all control flow in an identical fashion. This is due to the fact that a given
subscripted reference may access a different region in an array depending on
how much of the surrounding loop context is taken into account (see section
2.2).

A second aspect of the problem that complicates the analysis is that we
want to take into account the size of the cache. The tools we have developed for
this sub-task are difficult to combine with traditional flow analysis techniques.
The solver we use allows us to develop a framework for detecting reuse without
considering cache size constraints, and then factor in the cache size if necessary
(see section 2.8).

2.2 Array sections

Array section analysis is a technique for summarizing the region(s) within an
array that are accessed during some portion of the program [2, 5, 7, 15]. These
summary representations provide a compact way of capturing the array access
patterns, making them attractive for applications in which large portions of the
program need to be considered. Our particular implementation represents array
accesses using Data Access Descriptors [3], or “DAD”s.

The region within an array accessed by a given subscripted reference depends
on the context that surrounds the reference. For example, consider the reference
a(i,j) in Figure 1. If we consider this array reference in isolation, then it can
be thought of as accessing the single element at a(i,j). If we take the do i
loop into account, then the reference can be thought of as accessing the vector
a(1:n,j), and so on.

We use the term array section at level M to refer to the region within an
array that is accessed at a given loop level. More formally, given a subscripted
reference nested within N loops, the array section at level M for the reference is
the region accessed within the array when A) the loop induction variable(s) at
levels M-1 and below are viewed as invariants, and B) the induction variables at
levels M and above are allowed to vary.



2.3 Control flow representation

Rather than using a standard control flow graph (CFG), this framework uses an
interval-flow graph, developed by Reinhard von Hanxleden and Ken Kennedy
[14]. This allows us to take the loop structure of the program into account
explicitly. The interval-flow graph (IFG) can be constructed by starting with
a normal CFG and then partitioning the nodes and edges in the graph into
categories based on Tarjan interval analysis [18] 3.

A Tarjan interval T (h) is a set of CFG nodes that corresponds to a loop
within the program, where h is a unique header node (with h /∈ T (h)). Intuitively,
T (h) together with h form a strongly connected region within the CFG. When
x ∈ T (h), we say that Header(x) = h.

Each interval-flow graph G = (N,E) has a unique root node, Root, that
can be viewed as the header node for the interval corresponding to the entire
procedure. We define Level(n) as the loop nesting level of node n, counting from
the outside in, where Level(Root) is defined as 0. For a given interval T (n), we
define Children(n) as the set of nodes { p ∈ T (n) : Level(p) = Level(n)+1 },
that is, the nodes in the interval headed by n that are immediate descendants
of n. Figure 1 shows an example program fragment along with its interval-flow
graph.

Each edge (x→ y) in the IFG is placed into one of the following categories:

Entry: iff y ∈ T (x) ; this corresponds to an edge from an interval
header x to a node within the interval.

Cycle: iff x ∈ T (y) ; this corresponds to an edge from within
an interval back to the header of that interval.

Jump: iff ∃h : x ∈ T (h), y /∈ { T (h)∪ h } ; this corresponds to a
jump out of a loop (i.e. an edge from a node in one interval to
a node outside the interval that is not the header node).

Flow: iff ∀h : x ∈ T (h) ⇐⇒ y ∈ T (h) ; this corresponds to an
intra-interval edge (i.e. an edge that is none of the above).

To refer to the predecessors and successors of a given node, we use the fol-
lowing terminology:

Preds(n): The set of nodes { x : ∃e ∈ E, e = (x, n) }

Succs(n): The set of nodes { x : ∃e ∈ E, e = (n, x) }

The Preds(n) and Succs(n) notation may be further qualified by adding
a superscript containing the desired edge type. For example, Preds

F (n) is the
set of nodes that are at the source of a Flow edge whose sink is n.
3 The interval-flow graph is not be confused with interval-based data-flow analysis.

With the interval-flow graph, there is no notion of collapsing intervals in the CFG
into single nodes, as in interval-based data-flow analysis.



do j = 1, n

do i = 1, n

. . . = a(i,j)

enddo

. . . = b(j)

enddo

call bar(a)

do k = 1, n

. . . = a(1,k)

call foo(a, k)

enddo

do i a(i,J)

b(j)

2 3

4

do j

call
bar

1

5

...

...

do k a(1,k)

6 7

8

call
foo

Intervals:
T(1) = { 2,3,4 }
T(2) = { 3 }
T(6) = { 7, 8 }

Fig. 1. Example sub-program with interval-flow graph

After construction of the IFG, the graph is post-processed to insure that
each interval has at most one Cycle edge, i.e. for each non-empty interval T (h)
there exists a unique n ∈ T (h) such that (n, h) ∈ E. This sometimes requires
the insertion of synthetic nodes and edges; see [13] for details.

In addition, we define two types of partial orderings on N , as follows:

Forward/Backward: Given a Flow/Jump edge (m, n), a Forward

order visits m before n, whereas a Backward order visits m after n.

Upward/Downward: Given m, n ∈ N such that m ∈ T (n), an
Upward order visits m before n, whereas a Downward order visits n
before m.

These two orderings are orthogonal and may be combined (for example, a
Forward and Downward order).

2.4 Data-flow universe

The universe for this data-flow problem consists of sets of array section descrip-
tors, where each descriptor is composed of the name of the array in question and
a symbolic representation of the region accessed within the array. We call these
sets reuse summary sets. An example of a reuse summary set might be

{ a(1 : 10), a(75 : n), b(1 : n) }

As can be seen from the set above, a reuse summary set may contain more
than one region within a given array. The interpretation of the set depends on
the context; it may represent a set of array sections available on entry to a given
block, generated within a given loop, etc.



2.5 Initial information

For each basic block n that contains one or more array references, we compute
the set GENINIT (n). This reuse summary set contains an array section for each
array reference within the block. The sections initially assigned to GEN INIT (n)
are computed with respect to the innermost loop level. During the analysis, when
the section is propagated up out of an enclosing loop, the region of the section
is reconstructed to take the loop in question into account.

During the computation of the initial set for a block, we attempt to coalesce
sections that are adjacent or identical. For example, we might try to collapse
the set { a(i,j), a(i+1,j) } into { a(i:i+1,j) }. This coalescing is only
performed when it will result in no loss of precision, however.

GEN IN (n) =
∧

p∈PREDF (n)

{ GENOUT (p) } (1)

GENLOC(n) =

{
GENOUT (Lastchild(n)) if n is an interval header

GEN INIT (n) otherwise

}
(2)

GENOUT (n) = GEN IN(n) ∨ GENLOC(n) (3)

REACHIN (n) =


REACHIN(Header(n)) if Preds

E(n) 6= ∅∧
p∈PREDF (n)

{ REACHOUT (p) } otherwise

 (4)

REACHOUT (n) = REACHIN(n) ∨GENLOC(n) (5)

Fig. 2. Reuse equations

2.6 Reuse equations

Our goal for the flow analysis is to compute the set REACHIN(n) for all of
the nodes in the IFG. The set REACHIN (n) corresponds informally to the set
of array sections that reach node n on all paths from Root to n. We com-
pute REACHIN using the equations in Figure 2; evaluation of the equations is
controlled by the algorithm in Figure 3. All sets are initially empty (with the
exception of GEN INIT ).

Intuitively, GEN IN(n) corresponds to the set of sections accessed by the
nodes prior to n within the interval that contains n. GENLOC(n) corresponds
to the set of sections accessed within n (if n is not a loop header) or the sections
accessed within the interval headed by n (if n is a loop header). GENOUT (n)
combines GEN IN and GENLOC to form the set of sections that flow out of



n (taking into account only the nodes in the interval containing n). The GEN
values are computed starting with innermost loops and working outwards.

REACHIN (n) corresponds to the set of sections reaching n from within n’s
interval and (possibly) from some previous loop outside n’s interval.REACHOUT (n)
is the set of sections flowing out of n, where the sections may be generated locally
or they may reach n from some previous loop somewhere in the program.

procedure ComputeReuse

inputs: interval-flow graph G = (N,E)
GEN INIT (n) for all n ∈ N

outputs: REACHIN (n) and REACHOUT (n) for all n ∈ N

begin

forall n ∈ N in Upward and Forward order:
compute equations 1, 2, and 3

forall n ∈ N in Downward and Forward order:
compute equations 4 and 5

end

Fig. 3. Procedure for computing reuse equations

2.7
∨

and
∧

operators

In the equations above, the ∨ and ∧ operators play an important role. The ∧
operator is used to merge together sets of sections at join points, and the ∨
operator is used to merge together local information with incoming information
(i.e. models the effects of passing through a block).

The left hand side of Figure 4 illustrates a situation where the ∧ operator
would be applied. In this case, the analysis needs to merge together the sections
reaching the node X from its two predecessors M and N, taking into account the
fact that the particular path to X is unknown.

The right hand side of Figure 4 shows a situation where the ∨ operator is
needed. The sections flowing out of X need to be combined with the sections
locally generated at Y, but in this case we know that flow of control must reach
Y if it reaches X.
2.8 Incorporating cache constraints

If the goal is to predict reuse without regard to cache size or other resource
constraints, then we can implement the ∨ operator as set union and the ∧ op-
erator as set intersection. The resulting information, however, does not give any
hint as to distance between successive uses of array data (only that some set of
array locations are reused). In many situations we would like to know whether



N

X

M

Y

X
pass-
through

V

Y

N

X

M

join

Fig. 4. Control flow

the distance between the successive uses is small enough that the reused items
will be found in cache, for some fixed cache size. This section describes how we
modify our framework to take cache size and organization into account.

Array section age: First, we introduce the concept of the “age” of an array
section with respect to a particular point in the program. We define the age of a
given section as the number of cache misses that have taken place since the first
element of the section was brought into the cache.

During the analysis, we associate age values with each of the sections in a
reuse summary set. When an array section is first added to a reuse summary set
(corresponding to the point where it is first brought into the cache) we assign it
an initial age value based on its volume. As the section is propagated to other
points in the program, other accesses will start to displace the section from
the cache; when this happens, the age of the section is incremented. Eventually
the age of the section reaches a cutoff, at which point we consider the section
“dead” (i.e. totally displaced from the cache), and it is eliminated from its reuse
summary set.

In order for this scheme to work, we need to have a mechanism for deter-
mining the number of cache lines accessed by an array reference within a loop;
this is in fact a research problem all by itself [10]. Our approach is to estimate
the volume of the DAD for the reference, using a simple technique similar to the
RefCost algorithm developed by Carr, McKinley, and Tseng [8].

Cache organization: Our framework is not equipped to predict cache conflicts
due to limited associativity; we instead conservatively assume that cache conflicts
will reduce the amount of reuse that takes place by a fixed factor. We currently
estimate the “effective” size of the cache (used in the analysis) by multiplying
the actual cache size by 1 − 1

2S , where S is the set associativity of the cache.

∨ operator for finite caches: For the finite cache case, we use a more sophis-
ticated ∨ operator that models the cache effects when execution passes through
a given node (shown in Figure 5). Given the set of sections flowing into block
N (IN) and the set of sections accessed locally within N and N ’s descendants



(LOC), this new ∨ operator computes the OUT set, taking into account the level
of reuse and the size of the cache. The algorithm is based on the observation
that a given section S ∈ LOC will cause cache misses only if it is not contained
in some section S′ ∈ IN .

procedure FiniteCache-∨

inputs: IN (incoming reuse summary set)
LOC (reuse summary set for locally accessed data)

outputs: OUT (outgoing reuse summary set)

begin

volume← 0
R ← ∅
forall x ∈ LOC:

if ∃ y ∈ IN such that x is contained in y then
R ← R ∪ { y }

else
volume← volume + (cache line volume of x)

endif
endfor
OUT ← LOC ∪ (IN - R)
forall x ∈ OUT:

increment age value of x by volume

remove x from OUT if age exceeds cache size cutoff
endfor

end

Fig. 5. ∨ for finite cache case

∧ operator for finite caches: We also modify the ∧ operator when estimating
reuse for a finite cache. Set intersection is still the basis for the operator, but the
age values of the sections must be adjusted as well. In particular, when the reuse
summary sets for two incoming paths are merged together by the ∧ operator,
we may encounter an array section that appears in both sets, but has a different
age value in each one. In this case, the ∧ operator chooses the larger of the two
ages for the section in question when forming the result.

For example, consider the graph fragment in Figure 4. Suppose that we are
applying the ∧ operator to the sections reaching block X from its predecessors
M and N , and suppose that blocks V , M , and X contain array accesses (each
to a different array), and that N contains no accesses. When we apply the ∧
operator, both input sets will contain the section from V (we assume here that
the number of accesses in M is relatively small), however the age of the sections
from V that arrive atX along the edge M → X will be larger than the age of the



corresponding sections flowing through the edge N → X (due to the additional
data brought into the cache in M). The ∧ operator selects the larger age, in
order to be conservative.

2.9 Complexity

Generating the GENINIT set for each block requires that we build a DAD for
each array reference in the procedure. This process requires O(D2 ∗N) time per
reference, where D is the number of dimensions of the array and N is the nesting
depth of the reference. Each DAD takes O(D2) space, and most operations in-
volving DADs (union, intersection, containment, comparison) take O(D2) time.

The flow analysis framework itself considers each node and edge in the IFG
exactly twice. The ∧ and ∨ operators for the unlimited-cache case are linear in
the number of sections in the sets being operated on, but for the finite-cache
case, ∨ takes O(N2) time in the worst case (where N is the number of sections
in each set), since since each section in the set may have to be compared with
every other section.

In practice, we have found that the time required by the framework is compa-
rable to the time that it takes to perform dependence analysis for the procedure.

2.10 Interprocedural analysis

Array section analysis was originally conceived of as a means of summarizing the
effects of procedure calls within loops; as a result, it is relatively straightforward
to extend our framework to work in an interprocedural setting.

When invoked in the context of whole-program analysis, we use the following
strategy. We analyze procedures starting with the leaves in the call graph and
working up to the root, visiting a procedure only after all of the procedures it
calls have been visited. When a procedure call is encountered within the IFG of
the subroutine being analyzed, we take the previously computed REACHOUT

set for the callee and use it as the GENLOC set for call (applying array reshapes
if necessary, and translating the summary into the name space of the caller by
substituting actuals for formals, etc).

Summarizing call sites in this fashion is generally feasible only if the frame-
work is being run with cache size constraints taken into account (without the
size constraints, the reuse summary sets grow very large in the upper regions of
the call graph).

Currently we are restricted to propagating information upwards in the call
graph; we do not, for example, take advantage of context within calling routines
to reason about reuse within a callee. Our analysis does not currently handle
programs whose call graphs contain cycles.

3 Applications of cross-loop reuse information

This section describes some of the ways in which cross-loop reuse information
can be used by a compiler. It should be noted that exploiting cross-loop reuse



information tends to be more difficult than exploiting loop-level reuse informa-
tion; the larger the region over which the reuse is taking place, the more more
obstacles that must be overcome if restructuring is to be applied.

3.1 Locality-enhancing loop transformations

Cross-loop reuse can be used to predict the profitability of locality-enhancing
transformations involving pairs of adjacent loop nests. These transformations
include (but are not limited to) loop fusion and loop reversal.

Loop fusion: Loop fusion is the dual of loop distribution; it combines two
adjacent loops with identical headers into a single loop. Loop fusion has the
potential to convert cross-loop reuse into loop-level reuse, which can greatly
enhance cache utilization.

Our framework can supply enough information to cheaply predict the prof-
itability of loop fusion. The compiler can examine the REACHIN set for a
given loop nest to see what sections reach the loop. If the intersection of the
REACHIN set with the GENLOC set of the loop is sufficiently large and the sec-
tions in the REACHIN set originate from the immediately preceding loop nest,
then loop fusion will be profitable (the degree of profitability will be dependent
on the volume of the intersection).4 Once it is established that the transforma-
tion is profitable, then the compiler can apply the more costly dependence-based
techniques to determine whether fusion is safe [21].

Loop reversal: A weaker but slightly more widely applicable technique is loop
reversal. This optimization can provide benefits only in proportion to the size of
the cache, thus it works best for very large (presumably secondary or tertiary)
caches. Consider two consecutive outer loops that both access a single large
vector (i.e. larger than will fit in the cache). Even though the vector is reused,
there is no cache reuse, since when the second loop begins execution, the first
elements of the vector have long since been flushed from cache. However if we
reverse the second loop, then the last elements of the vector from the previous
loop are likely to still be in cache. This optimization relies on the traversal order
component of the DAD representation, which captures the direction and stride
of the access in each array dimension (see [3] for the details). One advantage
of loop reversal is that the loops to be optimized do not have to be directly
adjacent (there may be intervening code, provided that it does not destroy the
reuse between the loops).

3.2 Transformation selection

Even if the compiler can cheaply predict when a transformation is going to be
profitable, there still remains the problem of deciding the sequence of transfor-
mations to apply within a procedure. A given loop nest may be optimized in
4 This requires that we tag each section with the ID of the loop in which it originated.



several different ways (fused with its predecessor or with its successor, for ex-
ample). Selecting the optimal set of transformations is a very difficult problem;
optimizing temporal locality using loop fusion alone is NP-hard [16]. As a re-
sult, the compiler must resort to heuristics to choose the set of transformations
to apply.

4 Experimental results

In this section, we report the results from an experimental study, in which we
apply our techniques to ten programs from the SPEC95 floating point benchmark
suite [19]. Our experimental infrastructure consists of a Fortran transformation
engine, including the cross-loop reuse analysis framework, and an execution-
driven simulator for gathering instruction counts and cache statistics.

4.1 Compiler

The phases in our compiler are shown in Figure 6. The compiler operates in a
source-to-source fashion, reading and writing Fortran code. All of the analysis
and transformation steps shown are performed automatically.

Phase Remarks

1. Front end processing read and typecheck Fortran source
build AST (abstract syntax tree)

2. Local analysis build IFG for each procedure
compute GENINIT for all n ∈ IFG

3. Cross-loop analysis run cross-loop framework for each function

4. Transformations apply loop reversal and loop fusion
based on cross-loop reuse info

5. Output generate transformed Fortran source

Fig. 6. Compilation stages

Our transformation selection procedure is as follows. For each loop nest N , we
create a hash table (the “reuse score table”) whose entries are tuples of the form
〈L,R〉, where L is a loop ID number and R is an estimate of the number of cache
lines reused from loop L. We generate the reuse score table for a loop N while
computing the value of equation 3 in Figure 2; when a section x ∈ GEN IN(N)
intersects with a section y ∈ GENLOC(N), we compute the volume of the
intersection of x and y, determine the loop L′ in which x originated, and update
the L′ entry in N ’s table. We calculate the total score for a loop by summing
the values of all of the entries in its reuse score table.

We then use a greedy algorithm to select the loops to optimize; we first
consider the loop nest with the highest reuse score value, optimize it if possible,
then consider the loop with the next highest score, and so on. We first apply loop



fusion, then loop reversal. In order to concentrate our results primarily on cache
effects, we limited loop fusion to the outermost loop in each pair of adjacent loop
nests.

4.2 Simulator

Our cache simulator is based on the SPARC Performance Analysis Toolkit; it is
layered on top of the tool shade [9]. Shade provides an extensible mechanism for
writing execution-driven simulators; it operates by interpreting a SPARC exe-
cutable and passing a trace of the instructions to a user-written trace analyzer.
In our case, the trace analyzer counts instructions and simulates a particular
cache configuration.

After the source-to-source transformer is run, the target programs are instru-
mented with calls to runtime routines to tag outer loop nests and to demarcate
the regions of the program’s address space containing array data. The instru-
mented programs are then compiled using the Sun f77 Fortran compiler (version
SC4.0 18/Oct/95).

The simulator deals with data cache behavior only; it does not simulate
an instruction cache. Simulated cache characteristics were as follows. We used
a 64Kbyte, 4-way set-associative L1 cache with a line size of 32 bytes, and a
1024Kbyte L2 cache, also 4-way set-associative with a line size of 32 bytes. An
LRU replacement policy was used within each cache set. Both caches are write-
back, with an allocate-on-write-miss policy.

Program Functions Lines Data (KB) Runtime (secs)

applu 16 1869 32,309 25

apsi 96 4576 9,381 61

fpppp 38 2408 454 6

hydro2d 42 1597 8,630 182

mgrid 14 448 7,464 192

su2cor 36 1700 23,806 551

swim 6 254 14,392 15

tomcatv 1 119 14,407 181

turb3d 23 1294 25,360 337

wave5 104 7036 41,403 65

Fig. 7. Program characteristics

4.3 Benchmark programs

Figure 7 gives some of the summary characteristics of the programs we used
for our experiments. “Functions” is the number of procedures in the program;
“Lines” is the number of non-comment source lines. “Data” is the total size of all



the arrays used by the program, in kilobytes. “Runtime” shows the approximate
wall clock running time on an unloaded SPARCStation 10 with 256 megabytes
of memory. The “training” input files were used for these runs, in order to yield
more reasonable simulation times [19].

Program Instructions L1 hits L1 misses L2 hits L2 misses P-cycles

applu 329,240 66,962 5,962 4,731 1,231 487,340
apsi 2,333,872 362,521 5,427 5,413 4 2,388,462
fpppp 240,043 23,771 38 36 2 240,583
hydro2d 5,543,080 1,186,888 218,461 16,091 202,371 23,917,370
mgrid 12,566,952 3,445,822 119,285 102,698 16,587 15,086,762
su2cor 23,341,356 6,425,969 1,215,323 1,024,815 190,508 50,735,226
swim 481,252 119,409 8,784 21 8,763 1,270,132
tomcatv 6,398,033 1,647,655 172,041 26,139 145,901 19,790,523
turb3d 14,453,171 2,568,151 84,751 34,275 50,475 19,338,681
wave5 2,700,459 564,179 38,124 30,988 7,106 3,650,179

Fig. 8. Simulation data for original programs [thousands]

4.4 Results

Figure 8 gives the raw instruction counts and cache metrics for the original
untransformed programs. All numbers are in thousands. The “Instructions” col-
umn contains the total dynamic instruction count for the program. The L1 and
L2 cache metrics are for accesses to array data only (i.e. they exclude accesses
to scalars, compiler-generated spill code, etc). The “P-cycles” term in the final
column is an approximation of the overall execution time of the program; it com-
bines the total instruction count with the projected stalls due to cache misses.
It is computed as follows:

P-Cycles = IC + (M1 ∗ P1) + (M2 ∗ P2)

where “IC” is the total instruction count, Mk is the total number of misses
at level k, and Pk is the additional miss penalty at level k. For the purposes of
our study, we assume a level 1 miss penalty of 10 cycles, and an additional level
2 miss penalty of 80 cycles (a miss to main memory takes a total of 90 cycles,
in other words).

Figures 9, 10, and 11 show the results for the transformed programs using
purely static reuse analysis. Figure 9 gives a summary of the specific transfor-
mations applied to each of the programs. The numbers show for “candidates”
indicate the total number of loops in the program that were determined to be
legal candidates for fusion or for reversal. Figure 10 shows the raw data for the
transformed programs (again, all numbers are in thousands). Figure 9 compares
the transformed programs to the original programs in each category, showing



fusion reversal

Program loops fused candidates reversed candidates

applu 168 2 4 20 111
apsi 298 1 2 5 150
fpppp 39 0 0 0 6
hydro2d 163 3 14 5 136
mgrid 57 0 1 7 36
su2cor 118 0 0 3 47
swim 24 0 4 0 22
tomcatv 16 0 2 0 8
turb3d 64 0 0 0 33
wave5 377 14 27 27 212

Fig. 9. Transformation summary

Program Instructions L1 hits L1 misses L2 hits L2 misses P-cycles

applu 330,029 67,138 5,814 4,582 1,232 486,729
apsi 2,333,872 360,505 5,411 5,399 4 2,388,302
fpppp 240,042 23,518 39 37 2 240,592
hydro2d 5,542,709 1,197,341 218,262 18,518 199,744 23,704,849
mgrid 12,561,752 3,448,549 116,891 100,306 16,577 15,056,822
su2cor 23,341,354 6,423,729 1,217,500 1,027,017 190,482 50,754,914
swim 481,490 119,409 8,784 21 8,763 1,270,370
tomcatv 6,397,215 1,647,651 172,044 26,143 145,901 19,789,735
turb3d 14,668,168 2,555,806 95,870 45,379 50,490 19,666,068
wave5 2,686,798 559,578 38,891 31,779 7,081 3,642,188

Fig. 10. Simulation data for transformed programs [thousands]

Program Instructions L1 hits L1 misses L2 hits L2 misses P-cycles

applu 0.23 0.26 -2.48 -3.14 0.08 -0.12
apsi 0 -0.55 -0.29 -0.25 0 0
fpppp 0 -1.06 2.63 2.77 0 0
hydro2d 0 0.88 -0.09 15.08 -1.29 -0.88
mgrid -0.04 0.07 -2.00 -2.32 -0.06 -0.19
su2cor 0 -0.03 0.17 0.21 -0.01 0.03
swim 0.04 0 0 0 0 0.01
tomcatv -0.01 0 0 0.01 0 0
turb3d 1.48 -0.48 13.11 32.39 0.02 1.69
wave5 -0.50 -0.81 2.01 2.55 -0.35 -0.21

Fig. 11. Percent change between original and transformed



percent change; as can be easily seen, there is very little overall change in pro-
gram performance.

After a closer inspection of the results, we found that the framework appeared
to be missing a number of important transformation opportunities, due primarily
to situations loop bound values could not be determined at compile time (forcing
the compiler to conservatively assume no reuse). To explore this hypothesis, we
ran a new set of experiments in which the compiler incorporated profiling data
into the analysis framework.

Profiling data was gathered by running each program on the given input file
and gathering the minimum, maximum, and average value for the loop bounds,
loop step, and overall trip count. For loops whose bounds were constant at
run-time, the compiler substituted in the bounds from the profiling data when
computing the GENLOC set for the loop in question. It should be emphasized
that profiling data was only used in the portions of the analysis that determine
profitability of transformations, not the safety of the transformations.

Figures 12, 13, and 14 show the results with the profiling information. By
using profiling data, the compiler was able to compute more accurate estimates
of the number of cache lines accessed in each loop nest, and was able to detect
reuse in situations where previously it had to conservatively assume no overlaps.
The number of loops fused went up from 20 to 24, and the number of reversed
loops went up from 67 to 84. The results in Figure 14 indicate that two programs,
tomcatv and hydro2d, showed improvements in performance as a result of the
transformations. In both cases, the speedup is due to improved cache behavior;
both programs show significant reductions in both L1 and L2 misses overall.

5 Related work

A number of researchers have developed compiler techniques useful for improving
cache behavior [1, 6, 8, 17, 20]. Almost all of these techniques apply to individual
loop nests, however, and are not designed to detect or exploit cross-loop reuse.
Two exceptions are loop fusion and affinity regions.

Kennedy and McKinley have proposed using loop fusion to improve locality
and cache behavior [16]. In a subsequent study, McKinley, Tseng, and Carr
included loop fusion in their repertoire of transformations for an experimental
study on compiler cache optimizations [8]. This study used dependence analysis
to test for the profitability of loop fusion; loop reversal was not used as a locality-
enhancing transformation.

Affinity regions are a mechanism that allows a compiler or user to give
locality-improving hints to the loop scheduler for a parallel program running
on a shared-memory multiprocessor. By placing a set of consecutive parallel
loops within an affinity region, the user or compiler is informing the loop sched-
uler that cross-loop reuse exists and that it should try to assign iterations to
processors in such a way that the reuse is preserved. Compile-time identification
of affinity regions was proposed by Appelbe et al [1].



fusion reversal

Program loops fused candidates reversed candidates

applu 168 2 4 20 111
apsi 298 1 2 5 150
fpppp 39 0 0 0 6
hydro2d 163 5 14 20 136
mgrid 57 0 1 7 36
su2cor 118 0 0 5 47
swim 24 1 4 1 22
tomcatv 16 1 2 0 8
turb3d 64 0 0 0 33
wave5 377 14 27 26 212

Fig. 12. Transformation summary (with profile)

Program Instructions L1 hits L1 misses L2 hits L2 misses P-cycles

applu 329,562 67,122 5,813 4,584 1,229 486,012
apsi 2,333,873 362,635 5,289 5,277 4 2,387,083
fpppp 241,000 23,518 39 37 2 241,550
hydro2d 5,581,854 1,195,747 209,575 30,474 179,101 22,005,684
mgrid 12,561,753 3,446,434 118,673 102,110 16,563 15,073,523
su2cor 23,342,471 6,423,530 1,217,698 1,027,185 190,514 50,760,571
swim 480,793 119,411 8,783 29 8,754 1,268,943
tomcatv 6,396,957 1,663,997 155,700 23,096 132,603 18,562,197
turb3d 14,453,171 2,567,901 84,701 34,225 50,476 19,338,261
wave5 2,705,524 559,560 38,909 31,797 7,081 3,661,094

Fig. 13. Simulation data for transformed programs, with profile [thousands]

Program Instructions L1 hits L1 misses L2 hits L2 misses P-cycles

applu 0.09 0.23 -2.49 -3.10 -0.16 -0.27
apsi 0 0.03 -2.54 -2.51 0 -0.05
fpppp 0.39 -1.06 2.63 2.77 0 0.40
hydro2d 0.69 0.74 -4.06 89.38 -11.49 -7.99
mgrid -0.04 0.01 -0.51 -0.57 -0.14 -0.08
su2cor 0 -0.03 0.19 0.23 0 0.04
swim -0.09 0 -0.01 38.09 -0.10 -0.09
tomcatv -0.01 0.99 -9.49 -11.64 -9.11 -6.20
turb3d 0 0 -0.05 -0.14 0 0
wave5 0.18 -0.81 2.05 2.61 -0.35 0.29

Fig. 14. Percent change between original and transformed (with profile)



Our data-flow framework resembles that of Gross and Steenkiste [11]. How-
ever their framework is geared towards finding parallelism as opposed to detect-
ing useful reuse for cache optimizations. Our techniques are also similar to those
developed by Gupta, Schonberg, and Srinivasan for optimizing communication
placement for programs running on distributed-memory multiprocessors [12].

6 Conclusions

In this paper we have presented a framework for predicting cross-loop reuse. The
framework combines two existing tools: array section analysis and data-flow anal-
ysis. By using array sections, we can exploit the characteristics of the program’s
array access patterns without resorting to potentially costly procedure-wide de-
pendence analysis. By using data-flow analysis, we can gracefully handle intra-
procedural control flow. Our framework also provides a mechanism for taking
into account a fixed cache size when predicting reuse, should this be required.

This work opens up the possibility of systematically applying cross-loop
transformations to improve cache utilization, since it provides a means of cheaply
predicting the profitability of loop fusion and particularly loop reversal.

Our experimental results suggest that for programs that exhibit cross-loop
reuse, our analysis framework is able to detect this reuse at apply cross-loop
transformations to exploit it. For programs running on uniprocessors, our results
translate into modest improvements in overall execution time; we would expect
to see more significant gains for shared-memory multiprocessors, where small
increases in second-level cache utilization can sometimes result in significant
performance improvements.

7 Acknowledgements

The authors would like to thank Kathryn McKinley, Jerry Roth, Taylor Simpson,
and Phil Schielke for their comments on earlier drafts of this paper.

References

1. B. Appelbe and B. Lakshmanan. Program transformations for locality using affin-
ity regions. In Proceedings of the Sixth Workshop on Languages and Compilers for
Parallel Computing, Portland, OR, August 1993.

2. V. Balasundaram. Interactive Parallelization of Numerical Scientific Programs.
PhD thesis, Dept. of Computer Science, Rice University, May 1989.

3. V. Balasundaram. A mechanism for keeping useful internal information in parallel
programming tools: The data access descriptor. Journal of Parallel and Distributed
Computing, 9(2):154–170, June 1990.

4. U. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic Pub-
lishers, Boston, MA, 1988.

5. M. Burke and R. Cytron. Interprocedural dependence analysis and parallelization.
In Proceedings of the SIGPLAN ’86 Symposium on Compiler Construction, Palo
Alto, CA, June 1986.



6. D. Callahan, S. Carr, and K. Kennedy. Improving register allocation for sub-
scripted variables. In Proceedings of the SIGPLAN ’90 Conference on Program-
ming Language Design and Implementation, White Plains, NY, June 1990.

7. D. Callahan, J. Cocke, and K. Kennedy. Analysis of interprocedural side effects in
a parallel programming environment. Journal of Parallel and Distributed Comput-
ing, 5(5):517–550, October 1988.

8. S. Carr, K. S. McKinley, and C.-W. Tseng. Compiler optimizations for improving
data locality. In Proceedings of the Sixth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-VI), San
Jose, CA, October 1994.

9. R. Cmelik and D. Keppel. Shade: A fast instruction-set simulator for execution
profiling. Technical Report SMLI 93-12; UWCSE 93-06-06, Sun Microsystems
Laboratories, Inc. and University of Washington, 1993.

10. J. Ferrante, V. Sarkar, and W. Thrash. On estimating and enhancing cache effec-
tiveness. In U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua, editors, Lan-
guages and Compilers for Parallel Computing, Fourth International Workshop,
Santa Clara, CA, August 1991. Springer-Verlag.

11. T. Gross and P. Steenkiste. Structured dataflow analysis for arrays and its use in
an optimizing compiler. Software—Practice and Experience, 20(2):133–155, Febru-
ary 1990.

12. M. Gupta, E. Schonberg, and H. Srinivasan. A unified data-flow framework for
optimizing communication. In Proceedings of the Seventh Workshop on Languages
and Compilers for Parallel Computing, Ithaca, NY, August 1994.

13. R. v. Hanxleden. Compiler Support for Machine-Independent Parallelization of
Irregular Problems. PhD thesis, Dept. of Computer Science, Rice University, De-
cember 1994.

14. R. v. Hanxleden and K. Kennedy. Give-N-Take — A balanced code placement
framework. In Proceedings of the SIGPLAN ’94 Conference on Programming Lan-
guage Design and Implementation, Orlando, FL, June 1994.

15. P. Havlak and K. Kennedy. An implementation of interprocedural bounded regular
section analysis. IEEE Transactions on Parallel and Distributed Systems, 2(3):350–
360, July 1991.

16. K. Kennedy and K. S. McKinley. Maximizing loop parallelism and improving data
locality via loop fusion and distribution. In Proceedings of the Sixth Workshop on
Languages and Compilers for Parallel Computing, Portland, OR, August 1993.

17. W. Li and K. Pingali. Access normalization: Loop restructuring for NUMA compil-
ers. In Proceedings of the Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS-V), Boston, MA,
October 1992.

18. R. E. Tarjan. Testing flow graph reducibility. Journal of Computer and System
Sciences, 9:355–365, 1974.

19. J. Uniejewski. SPEC Benchmark Suite: Designed for today’s advanced systems.
SPEC Newsletter Volume 1, Issue 1, SPEC, Fall 1989.

20. M. E. Wolf and M. Lam. A data locality optimizing algorithm. In Proceedings of
the SIGPLAN ’91 Conference on Programming Language Design and Implemen-
tation, Toronto, Canada, June 1991.

21. M. J. Wolfe. Optimizing Supercompilers for Supercomputers. The MIT Press,
Cambridge, MA, 1989.

This article was processed using the LATEX macro package with LLNCS style


