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1. Introduction

Since the appearance of the first electronic computers over forty years ago, software for science and
engineering has been an important consumer of computer resources. Almost every industry uses scientific
software in the development of their products. Energy companies use scientific programs to simulate the
behavior of oil and gas reservoirs and to analyze seismic data for evidence of new reservoirs. The automo-
bile and aircraft industries use very large programs to analyze and experiment with new vehicle designs.
The National Center for Atmospheric Research is working with a computerized model of world weather in
search of better weather prediction techniques. Computer models are also indispensable tools for theoreti-
cal biochemists, chemists, and physicists.

The total world investment in scientific programs is enormous, and the development and maintenance
costs continue to grow. Support for scientific software development presents most of the problems found in
systems programming support—the codes are large, the interfaces are complex, and debugging is difficult.
In addition, there are three unique aspects to scientific programming that must be taken into consideration
when designing support environments.

e First, most scientific codes are writtenFORTRAN and, although the language can be criticized on a
variety of grounds, its standardization together with the early availability of good compilers has led to
the wide acceptance of the language by the numerical software community.

e Second, there is vast repository of accumulated software and the scientific community actively
exchanges software, particularly in the form of libraries@#TRAN subroutines such asnPACK and
EISPACK.

e Third, since scientific calculations are extremely computation-intensive, efficiency of the code gener-
ated by the compiler is critical to tlORTRAN programmer. The firsSEORTRAN compiler project
implemented a very sophisticated optimization phase. Today, any manufacturer desiring to sell
machines for scientific problem-solving must devote significant resources to the development of a
optimizing compiler fOFORTRAN.

In spite of all the recent research activity on programming support environments, not much has been done

for the support of scientific programmingAs a part of a research project on the use of workstations for
scientific problem-solving, we embarked in 1982 on a project to design and implement a software develop-
ment environment, called Rfor numerical programmers. In addition to providing the usual environment
tools—intelligent editor, debugger, data base—we designétbl@ddress the three unique aspects of sci-
entific programming:FORTRAN, software libraries, and efficiency of execution.

" This work has been supported by both IBM Corporation and the National Science Foundation.

1 An exception is TOOLPACK, a widely-distributed library of programming support tools for FORTRAN.



Of these, efficiency has had the most important implications for the environment. In exploring ways
that IR" might help an optimizing compiler produce efficient code, it is reasonable to ask if there is any
room for improvement over the very good code generated by today’s commercial compilers. The largest
remaining impediment to high efficiency in code generated FORTRANis the presence of calls to inde-
pendently-compiled procedures. When the compiler encounters such a call, it must assume that every vari-
able accessible to that procedure will be both used and changed. In other words, every variable in common
and every parameter must be assumed to be corrupted by the call. This assumption severely inhibits opti-
mization around a procedure call. For exampdundant subexpression eliminatisnan optimization in
which computation of an expression is replaced by a load of the value of a previously-computed identical
subexpression. When attempting to eliminate redundant subexpressions, the compiler must assume that
any expression involving either a global variable or a formal parameter must be recomputed after a call site,
severly limiting the effectiveness of this important optimization.

These problems have been acknowledged by compiler-writers for a long time, yet there has emerged no
general solution suitable for adoption into commercial compilation systems, in spite of the extensive litera-
ture on algorithms for interprocedural optimization and analysis (see Richardson and Ganapathi's recent
bibliography[s]). The problem is that interprocedural optimization conflicts WiRTRANS notion of
independent compilatierthe ability to compile a subroutine in the absence of any information about the
program that calls it. In a typicabRTRAN compilation system, the user prepares and compiles each of the
subroutines separately. The program is then constructed by joining the pieces together during the linkage
edit phase. If we are to take advantage of knowledge about other procedures in the program during compi-
lation, this approach is no longer feasible.

A naive solution is to insist that the entire program be submitted to the compiler at one time, enabling it
to garner all the information it needs to perform interprocedural analysis and optimization from its reading
of the code. This approach suffers from the drawbackAbRtRAN programs often grow to hundreds of
thousands of lines and compiling such a program at once would take an intolerable length of time. One of
the main reasons for independent compilation is to make it possible to rapidly reconstruct an executable
after a change to a small part of the program. Our experienceerdtla compilation system for parallel
computers which uses the naive approach has taught us that the overhead of simply reading the entire pro-
gram makes the system too slow to be usable.

A software development environment like'IBffers an opportunity for a more elegant solution. If the
programmer is willing to define which procedures constitute the program before compilations begin, then
the system components can collaborate to deliver the information needed to perform interprocedural analy-
sis and optimization while preserving the efficiency of independent compilation. For example, the source
editors can provide enough information about the contents of every procedure in a given program to permit
the compilation system to develop enough information about interprocedural data flowdedthprqual-
ity of optimization in a procedure with subroutine calls. In addition, the system can use information from
the editors to perform sophisticated interprocedural optimizations.

This paper describes 'IRpaying particular attention to its role in the compilation process. Section 2
contains a description of the important programming tools'lraiil a discussion of the mechanics of pro-
gram preparation. Section 3 discusses the design and implementation of the environment’s two principal
editors. Section 4 describes taecution monitgrwhich runs a program and provides debugging support.
The compilation system is treated in detail in Section 5, with particular emphasis on compiling the whole
program, rather than a single subroutine. Finally, Section 6 outlines the evolution of the environment to
support parallel programming.

2. IR" Overview

IR" is intended to be used by expert programmers in developing, testing, debugging and maintaining
large FORTRAN programs. The current version of the environment includes a graphical window manager, a
database, tools for creating whole programs fFR@RTRAN source, tools for compiling these programs, and
tools for debugging them.



2.1. The Monitor and Database

The entire environment is structured as a collection of command processors running inside a single

UNIXT process. A window-basemtonitor provides mechanisms to control sub-processes, facilitates com-
munication between command processors, and manages the display, mouse, and keyboard. It also provides
a set of abstractions for the objects used to construct the user interface.

The command processors use a cerdehbaseas a long term repository for the objects used in
preparing and translating programs. This includes objects created by the programmer, such as source text
and data, and objects created by the compiling system, such as subroutine interface information. The two
principal types of objects stored in the databasenmgulesandcompositions A module is a set of one or
more entry points and the code to implement them. Thus, a module may include several subroutines. The
decision about what to include in a module is up to the user, and is made on the basis of taste about how
much should go into a single editable or compilable unitofpositionis a hierarchical specification of a
program’s structure in terms of modules and other compositions.

2.2. Program Preparation Tools

One of the explicit design goals of IRas to provide a mechanism for supporting interprocedural anal-
ysis and optimization of compiled code in a practical compiling system. To achieve this, we have divided
the compilation system into two compilerspgram compileyrwhich deals solely with optimizations and
analysis that cross procedure boundaries, anddule compilerwhich compiles and optimizes the proce-
dures in a single module, using interprocedural information developed by the program compiler.

Similarly, to support construction of whaot®RTRAN programs, IR provides a pair of editors:@mpo-
sition editor which is used to define the contents and structure of programs and composite modules, and a
module editorwhich is used to enter and modHgRTRAN source.

The steps required to prepare for execution fhale depicted in Figure 1. We briefly discuss each of
these tools.

Module Editor
The module editoiis intended to be the primary vehicle for editF@RTRAN modules in the environ-
ment. It provides a convenient blend of structure and text editing, allowing the user to shift freely
between these two paradigms. It is an intelligent editor that not only assists the programmer in pro-
ducing syntactically correct programs, but also participates in gathering information for use by other
tools. The editor directly constructs ahstract syntax treeepresentation of the module; this internal
form for procedures is used throughout the environment. In addition, the module editor collects mod-
ule-specific information required to support the interprocedural analysis and optimization performed in
the compilation system.

Composition Editor
The user creates and modifies compositions witlcdimeposition editowhich checks for consistency
(the agreement of entry point specifications with corresponding calls) and completeness (the inclusion
of all required entry points). In essence, the composition editor is a syntax-directed editor for a mod-
ule interconnection language, albeit one with a screen-oriented concrete syntax. The composition edi-
tor allows the user to conveniently complete a program with missing entry points by searching through
a sequence of libraries. If the user wishes to take advantage of the support for interprocedural opti-
mization, the composition of a program must be defined before the compilation process begins.

Program Compiler
The principal task of the program compiler is to automatically construct an executable image for a pro-
gram that is, at once, fully optimized and fully consistent with the source[glodenus, it performs
the bulk of the work of interprocedural analysis. This entails deriving a graph of the procedure call

TUNIX is a trademark of AT&T Bell Laboratories.
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Figure 1: Program preparation in IR"

structure of the program, as well as computing summary, aliasing, and constant sets. It also develops
an optimization plan for the whole program. The plan details what type of procedure linkage should
be used for each call site. The actual translation of source code to object code for the target machine is
performed by the module compiler.

Module Compiler
The module compiler resembles the optimizer and code generator of a conventional compiler. It deals
with a single module or a small collection of modules that are being optimized together because of
directives provided by the program compiler. It translates the source code for the module or modules
into optimized code for the target machine, capitalizing on the presence of interprocedural information
about the program. The module compiler has been carefully designed to allow experimentation with
different strategies for optimization and for recompilation analysis.

Execution Monitor

The execution monitor allows the programmer to run a program constructed by the environment. It
provides an editor-like setting for program execution and debugging. For example, operations such as
breakpoint setting or expression evaluation are accomplished with a small number of mouse selec-
tions. In addition, it allows a range of instrumentation levels, including execution of hybrid programs
in which some modules are run from compiled, optimized code and other modules are run interpre-
tively. Instrumentation levels are dynamic; the programmer can change them whenever execution is
paused at a breakpoint.

While the interprocedural information collected by the environment is primarily of interest to the opti-
mizer, it finds application in other areas. In particular, the two editors and the execution monitor capitalize
on the availability of this information. The composition editor uses information about the number, type,
and dimension of parameters to check for consistent use of interfaces. The module editor uses the same



information to generate editing templates for calls to known procedures. Further, if the programmer enters
a literal constant as an argument to a subroutine invocation, and the parameter in that position may be mod-
ified, the editor generates a warning. The execution monitor uses interprocedural information about which
variables may be modified by a procedure call to awpthe efficiency of interpreted code. This is dis-
cussed further in Section 4.

2.3. The Compilation Process

In designing the environment, one of our explicit goals was to distribute the program analysis required
for optimization over the entire program preparation process. By carefully making the information flow in
the environment match the steps a user takes to develop a program, we have been able to collect the requi-
site information efficiently and unobtrusively. As shown in Figure 2, the module editor collects local data-
flow information and the composition editor collects program structure information. The program compiler
uses this information to compute interprocedural data-flow information which is then supplied to the mod-
ule compiler. In effect, the editors unobtrusively record information needed to support optimization while
the user is developing a program, reducing both the actual and the perceived expense of the analysis. To
see this, consider a specific interprocedural problem.

Suppose we wish to determine, for each call sitea procedure, the seoD(s) that contains all the
variables that might be modified upon return from the call. Any variable that is passed as a parameter to the
called procedure or any variable that is global to the called procedure is a candidete(Br Conven-
tional optimizing compilers have no access to information about called procedures, and hence must assume
that MoD(S) consists of all variables that are either actual parameters at the call site or global variables of
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Figure 2: Flow of interprocedural information




the called procedure—the only assumption that is guaranteed to be safe in these circumstances.

To compute a more preciseD(s), we need to look at the variables that might be changed, directly or
indirectly, by the called procedurg, Let cgMoD(q) be the set of variables that may be changed by a call to
g. If we can determinemon(q) for each procedurg in the program, themobn(s) for a call toq can be
derived by determining which variables in the calling procedure are bound to membersog) by the
call.

A strategy for computing themoD sets can be derived by noticing tletop(q) consists of two com-
ponents:

» the setimoD(q) of variables that might be directly modified by statementg aiher than procedure
calls, and

» the set of variables that might be modified as a side effect of a secondary procedure call frog within

The setamobp(q) for each entryg in a module are independent of any other procedures in any program in
which the module is incorporated. Hence, these sets capniyeuted by the module editmd stored with

the module that generated them. From these &etsp(q) can be computed for a program by solving a
data-flow analysis problem on the program’s call graph. Since themgetsq) depend on the specific call
graph, they must be stored with the program for which they are computed.

By distributing the analysis over both editing and compiling, we are able to decrease the time it
requires. Because the editors derive initial information likeiNtee sets and the call graph components,
the program compiler need not reread each of the procedures in the program for each compilation. The
required local information, recorded by the editors as procedures are developed and modified, is saved in
the database. Instead, the program compiler need only readabesets, recompute the interprocedural
information, and recompile the changed subroutine along with any subroutines for which interprocedural

information has changéd This avoids the necessity to read the source of every module in the program at
each compilation, a real savings.

These observations illustrate an important aspect of the division of labdt. itniRddition to parsing
and type checking, the editors can gather most of the information needed to support interprocedural analy-
sis. An independent process can then compute the interprocedural side effects for the whole program.
Because the analysis of these side effdois not depend on output from the compilee environment
can compute interprocedural information for each entry point in the program before any module is com-
piled.

3. IR" Editors

In this section we will describe in more detail the two editors that are used to prepare progrdms in IR
The purpose of this discussion is to illustrate the philosophy behind the design, rather than to provide a
level of detail more suitable for a user's manual. Hence, our primary focus will be on the functions per-
formed by these editors and upon the principal design decisions.

3.1. The Module Editor

As discussed in the previous section, the module editor is not only used for entering source text, it also
plays a major role in gathering information to support the compilation process. In"tdat#base, all
modules are represented as abstract syntax trees. The editor is responsible for producing such trees as a by-
product of the editing process. In addition, the editor must produce information about the usage of vari-
ables in the program as an input to interprocedural analysis. Such information can only be gained by exam-
ining the program in parsed form.

Since we needed to have the program in parsed form, it seemed logical to design the module editor as a
structure editor one in which the user enters whole syntactic constructs into a tree. In a typical structure

2 The subject of limiting the number of recompilations is discussed in Section 5.



editor, the program is entered through a series of steps in which the user expands a placeholder template at
each step. For example, the user might wish to expand a <statement> into a <conditional statement>. After
executing the command to do this, the statement placeholder is replaced by an if-then-else template which
contains placeholders for the conditional expression, the then-statement and the else-statement. Hence, the
program is developed from the top down using a system based on the language’s grammar.

Structure editors have many advantages. They provide assistance for the programmer in correctly enter-
ing unfamiliar statements and moving entire syntactic structures around the program. As an additional

advantage from the implementor’s standpoint, they obviate the need for a source languate parser

Unfortunately, users find structure editors awkward for a variety of reasons. The main problem is that
such editors deal with trees that look like text. Hence, the rules concerning legal and illegal operations are
far from self-evident. For example, there are parts of the displayed text that cannot be edited, namely the
fixed tokens in a template. The user who wishes to convert an if statement to a while statement soon dis-
covers that changing the if token will not work. In fact, this change requires a non-intuitive sequence of
transformations that are far more complex than the operation deserves. Another problem with structure edi-
tors is that the cursor motion commands are difficult to deal with because they represent motion in trees.
Our original editor provided a partial solution by relying on point-and-click semantics using a mouse, but
this was not sufficient for the sophisticated user who wantedotee the cursor without leaving the
keyboard.

For these reasons, we have completely reimplemented thedRule editor to accommodate a style
that mixes the text and structure paradigms. This solution retains most of the advantages of structure edit-
ing while providing a much more understandable interface to the user. The new editor has all the capabili-
ties of the old editor but now can be used as a pure text editor as well. Furthermore, there is a natural and
helpful connection between text and structure. The user who wishes to get a template for a particular con-
struct need only type an unambiguous prefix and hjE#&ND] key.

The key to the implementation is to use a line-oriented approach to parsing. Text is parsed on a line-by-
line basis, with errors reported immediately. This is a good matebhRTRAN, with its line-oriented state-
ment structure. The whole program is parsed in two levels—with one parse for a single line and a second
to determine global program structure. After any text editing operation is perform&drtmaN parser is
invoked on the changed text to reconstruct the abstract syntax tree for the module.

Selection in the module editor also employs the mixed paradigms. Textual selections are made simply
by dragging the mouse over a range of charact®f8/ORE| operation expands the selection to the smallest
enclosing structural subtree. Selections can be deleted, copied or pasted by making a selecticeditom an
menu or by directly entering the appropriate key sequence.

Manual view controlis an important feature of the new module editor. The user specifies the view
through the use ofxplicit [CONCEAL and[REVEAL commands, which can be applied to text ranges or whole
substructures. If applied to substructures, concealment is persistent; that is, the concealed substructure
remains concealed when the user scrolls to another part of the program and then returns. The editor
employs filtering mechanisms to provide automatic view control.

A final feature is of interest because of its use of information about the program that contains the mod-
ule being edited. If the user specifiesomtext programin which the module is included, and then asks the
editor to expand a call statement, he will be prompted with a menu of entry points provided in the context
program. Once he selects an entry point and expands again, a call template will be displayed with place-
holders for each parameter. These names of these placeholders indicate the type and meaning of the param-
eters they represent. This feature makes it easy for the programmer to get the parameter bindings right
without searching through the code of the program for the entry point code.

3 IR" includes a parser to allow importing of programs developed under other systems.



3.2. The Composition Editor

To create grogramin IR", the software developer constructs a hierarchical description known as a
composition A composition is simply a list of modules and other compositions—hence, a composition can
be used to specify not only a program’s contents but also its structure. For example, if the program
designer wishes to organize the code into three phases, he builds the program composition by including
three subcompositions, each representing one of the phases.

Compositions are the basis for the configuration management and module interconnection facilities in
IR". They contain the information needed to perform efficient cross-procedural consistency checks. At
each level of the composition, import and export lists provide a scoping and renaming facility for entry
point names. In essence, compositions provide the numerical programmemaitiviaa -like abstraction
mechanism without extending the ba&s®TRAN syntax. Compositions can represent libraries and compos-
ite modules as well as programs.

Compositions are constructed and modified withahmposition editgran interactive editor that uses
the same mixture of structure and text editing found in the module editor. The composition editor checks
the composition for consistency and completeness after each modificBamsistencyequires that all
call site specifications match the entry point specifications to which they are bound and that no two subunits
included by a composition export identically named routin@empletenessequires that a composition
implement all entry points that it exports, except those that it explicitly imports from some external source.

Little distinction is made between composite modules, libraries and programs. A composite module
encapsulates a particular indivisible abstraction, much likemuLA module does. A library is a logical
collection of indivisible subunits supporting problem solving in some domain. A program is simply a com-
plete and consistent composition having a designated “main” entry point. The composition editor can be
used to build complete programs and libraries of subroutines, and to compose collections of subroutines
and lower-level abstractions into new abstractions. Just as easily, a complete program may be used as a
library, or as a single cohesive abstraction for use within another program.

These ideas are best illustrated through an example. Suppose we are implementing a program that
requires an efficient sorting routine, sqyicksort and we wish to use the linear-time median finding algo-
rithm to select the pivot element. The median finder needs another sorting routine for small sets, for exam-
ple bubblesorto deal with sets of fifty or fewer elements.

Figure 3 shows an example composition that describes one possible implementation of our sorting pro-
gram. The innermost composition, nameedian contains two modules needed for the linear median
algorithm, medianand bubblesort This composition is included, in turn, in a composition nawonsdk-
sort, which is one of the subunits of the outermost composition, n@uetTest

The example illustrates the facilities for managing name scopes. Becaysevhesset of the com-
positionmediandoesn’t contairsort, the entry inside moduleubblesortcan’t be seen outside that compo-
sition. Thus, it doesn’t conflict with the enteprt provided by the modulguicksort The composition
quicksort in turn, makes the entryort available externally under the namsort by renaming it in the
providesset. The example also illustrates the power of this system for structural description. The median
finder is encapsulated into one composition while the main sorting procedure is encapsulated into another.
Throughout, comments are used to elucidate the program map.

Support of botthottom-upandtop-downprogram development paradigms has been an important goal
in the design of the composition editor. Bottom-up development constructs programs from existing code.
Using the composition editor, the programmer can build a portion of a program and have the environment
efficiently complete it by including existing routines with matching subroutine interfaces from some base
library or previously-existing program. All automatic additions are tentative, and can be easily “undone.”
This scheme is ideal for constructing a new program that is very similar to an existing program, or for con-
structing a program that primarily invokes common library routines.

Top-down development allows the system developer to describe the entire structure of his program
phase by phase, before amyRTRAN code has been written; global storage can be defined and subroutine
names and parameter definitions can be chosen. These subroutine interfaces and global storage definitions



comp QuickTest
provides main;
{
mod driver
provides main;
requires gsort;
comp quicksort
provides gsort=sort;
{
/* Large-data quicksort--uses linear median finder */
mod quicksort
provides sort;
requires median;
comp median
provides median;
{
/* Linear median - uses bubblesort to find
median for sets with fewer than 50 elements */
mod median
provides median;
requires sort;
mod bubblesort
provides sort;

Figure 3: A composition

will be made available to the programmer automatically. In this scenario, interface inconsistencies are
either avoided or immediately discovered. Errors will be tolerated within a composition, however, in order
to support graceful changes to the top-down design of a system. It is, of course, possible to mix bottom-up
and top-down development schemes.

4. The Execution Monitor

4.1. Design Motivation

One of the major concerns in designing a system for debugging large, programs is the fact that
increased power in the debugger slows the execution of the program being debugged. Although interpreters
can provide many desirable features for instrumenting a running program, they are typically too slow to be
seriously considered for debugging computationally intensive programs. On the other hand, a fully opti-
mized program is exceedingly difficult to debug, primarily because there may be little correspondence
between the original source and the program being executed.

We need a paradigm for program execution that combines the best of both execution methods. If the
debugger permits the substitution of interpreted for optimized code during execution, it will be possible to
provide the increased debugging instrumentation precisely when it is needed without being penalized for it
elsewhere. For example, if a large program has recently had one of its component modules changed, it



should be possible for execution to proceed quickiy ¢ompiled code) to the module under development
and at that point bring the full instrumentation power of an interpreter to bear. Such a facility would make
it possible to implement several important features:

Incremental Modification
Having interpreted code in the form of an abstract syntax tree will make it easy to support modifica-
tions of the program during execution. This is particularly important when running large programs,
because of the time required to recompile, relink, and return to the same point in the execution.

Exact Real Arithmetic
One of the most promising reasons for the inclusion of interpreted code in large scientific programs is
that it will be possible to perform floating point arithmetic withroundoff or representation errors.
By representing a real number by instructions for producing arbitrarily precise approximations,
Boehm, et al, [3] have provided a way to perforexact arithmetic operations on real numbers.
Because the numbers are not represented by finite precision floating point representations, problems
such as roundoff errors do not occur. Although a severe efficiency penalty rules out the possibility of
using the exact representation of real numbers for performing all calculations in a large program, the
techniques are perfectly adequate for evaluating the accuracy of answers obtained by conventional
floating point arithmetic.

Reversible Execution
Interpreted code will also make it feasible to support reverse-stepping the program counter. Such a
facility would permit the user to back up execution from a fault to determine what went wrong. For
example, if the program stops because of a “zero divide”, the user could reverse-step the program
counter, looking for the place where the denominator became zero.

4.2. Implementation

To handle the execution of compiled code, the execution monitor is implemented in the style of other
UNIX debuggers such agbx and sdb—the debugger resides in a process that has the program being
debugged as a child process. To access or change values in the program state of the child, the debugger
uses a system call that enables a process (such as a debugger) to read and write the target's address space.
To determine where various identifiers are in the executable, it uses symbol table data placed in the
executable by the compiler. Having separate address spaces for parent and child has the obvious advantage
that the existence of the debugger will not interfere with memory utilization in the program being
debugged. The organization of the execution monitor is depicted in Figure 4.

To handle interpretation during program execution, the debugger process includes the code that imple-
ments the interpreter. When interpretation is requested, the debugger reads an abstract syntax tree (AST)
representing the code to be interpreted into the address space of the parent process. To accomplish this, it
uses symbol table information in the executable to map from the address of an instruction to the name of
the object module that contains that address. The module name is then mapped to the appropriate AST in
the database.

To support the existence of interpreted and compiled code in the executable we must worry about two
things: the control flow interfaces and the data interfaces between the two types of code. For example,
when a call is made from compiled code to a subprogram that is to be interpreted, we must ensure that
execution in the child process stops and that the interpreter is started at the correct location in the forest of
AST’s. In addition, references to data that cross the interpreted-compiled boundary must be handled cor-
rectly. For example, there may be references in compiled code to data that is declared in a module being
interpreted.

Fortunately, a simple invariant makes it easy to avoid the data interface proliengsitire state of the
program being debugged is kept in the child procédsus, correct values for variables and a correct proce-
dure call stack are always available to the compiled code in the subprocess. The other side of the coin is
that with this invariant, interpreted code must use a system call to access variable values. We can relax this
invariant and allow caching of some parts of the program state in the parentdwdraficiency. This will
not cause any problems as long as the state of the child process is restored before any compiled code is

10
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Figure 4: Organization of the execution monitor

executed. Furthermore, data-flow information provides a description of precisely those values in the cache
that need to be written through to the debugged process on entry to compiled code. The data-flow informa-
tion also describes those values in the cache that must be refreshed after execution of the compiled code.

To handle the control flow interfaces between interpreted and compiled code, we must first solve the
problem ofdetectingthe change and then take action to ensure that the invariant is maintained. Detecting
the interfaces is trivial in interpreted code. In compiled code, we need only set breakpoints at the points of
interface. If we require that these be at statement boundaries, this poses no special problems. The hardest
part of maintaining the invariant involves updating the procedure call stack in the child when a call or return
is made. In fact, because of the invariant, we must also be concerned with calls from interpreted code to
interpreted code. The tables below summarize what needs to be done on calls to and returns from a subpro-
gram. In addition, Figure 5 shows an example of the changes in control flow on a call from compiled code
to interpreted code.

call to compiled to interpreted
from compiled A + break at first executable state-
nothing ment and start interpreting
from interpreted | B ¢ push parameters & return ad- e doBthen®

dress on stack in child
e resume execution in compiled
prologue code

return from compiled from interpreted
to compiled nothing © - resume execution at compiled
epilogue code
to interpreted D < trap on RETURN machine in{ « do©thenD
struction

* pop parameters
* resume interpreter

11



The interpreter is able to implement operations on variables of type exact precision by communicating
with the exact arithmetic server, running locally or on another machine on the network. The server pro-
gram stores the exact representations of the numbers. It also accepts requests to initialize the numbers,
combine them with standard arithmetic operations, and return printable representations of their values.

In order to maintain the invariant that requires the values of variables to be stored in the child process,
after every assignment to an exact variable, the interpreter requests a printable representation of the variable
from the server, and then converts that to a double precision value, which it stores in theUsifidtu-
nately, because exact values are computed in a demand-driven fashion, this “display” operation which pro-
duces a printable representation is the costliest of all exact operations. As described above, the existence of
interprocedural data-flow information will allow us to limit display operations to only those that are neces-
sary because of actual references to the values in output statements or compiled code.

In order to single-step the program counter in reverse we need to keep track of all the states that the pro-
gram enters. One way to achieve this is to make sure that each change to the program state can be undone.
To reverse program execution we need to be able to reverse each different kind of statement:

 If successive values assigned to a variable are kept in a push-down store, then an assignment statement
can be reversed by popping from the stack.

Compiled Code (executed in detached process) Interpreted Code (executed in environment)

call ISUB

next statement

ISUB: ISUB:

<prologue code <prologue code

<statement (replaced with breakpoint <statement>
<statement> <statement>
<statement> <statement>

<epilogue code <epilogue code

Figure 5: Flow of control during call from compiled code to interpreted code

4 The double precisiomalues are used only by compiled code. The interpreter continues to use the values stored on the
exact machine.
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» To reverse a branch, we need to keep track of where execution came from at all branch targets (both
explicit and implicit). Again, this needs to be done in a last-in, first-out fashion.

« Subroutine or function calls to compiled code are similar to assignment statements, except that instead
of a single scalar value being saved, we will need to save all variables that are potentially modified by
the compiled code. In the absence of interprocedural data-flow information, this amounts to saving all
parameters, static variables, and globally accessible varigxeghose in common in a Fortran pro-
gram). With the data-flow information in lRhowever, we have a more precise description of what
will need to be checkpointed.

* 1/O statements are perhaps the most difficult to handle efficiently. Sik@aan be handled fairly sim-
ply by keeping counts of how much input or output was performed by a statement. Non-stream output
could be handled as an assignment statement on a very large array, although this has obvious effi-
ciency problems on large files.

5. Whole Program Analysis and Optimization

Numerical programmers have long demanded that compilers produce efficient code. This is particularly
true in theFORTRAN realm, where programmers have come to expect that their existing “dusty decks” will
be translated, automatically, to take maximal advantage of new machines and new architectures. This atti-
tude presents a major challenge to designers of optimizing compilers. Techniques in intraprocedural opti-
mization have reached a fairly mature state. To furtherawgihe efficiency of compiled code will require
an optimizer that considers the whole program, planning optimizations based on program-wide informa-
tion. This is a natural evolutionary step in the development of optimizers, which have progressed from
statement-by-statment code improvement, through techniques that handled sequences of statements, to
global optimizations that take an entire subroutine into account.

In IR" we are building an interprocedural optimizer that analyzes the entire program and plans optimiza-
tion from a whole-program perspective. Conradi has estimated that aggressively pursuing such an approach
can result in a speed improvement of twenty percent or @lore

In Section 2, we saw how the tools in’ I[Booperate to provide the information necessary to perform
interprocedural analysis and optimization. However, this introduces a new problem. Once the compiler
uses interprocedural information as a basis for compile-time decisions, it introduces subtle and complex
compilation dependences between the procedures in the program. To see this, consider two peocedures
andb that are components of a single program. In comp#gintgpe compiler applies optimizations that it
knows are safe, using interprocedural facts gathered from analyzing the whole program. If the user makes
an editing change tb that adds some fact to one of its interprocedural data-flow sets, and the previous
compilation ofa relied on the absence of the fact to justify the safety of some optimizing transformation,

then the change makes that transformation unsafe, retroattifélys, if the compiler uses interprocedural
facts as a basis for compile time decisions, it must have the ability to later retract the decision in response to
editing changes that invalidate the correctness of the transformed program.

In a traditional compiler, the only way to achieve this is by compiling the whole program at once—an
expensive proposition that removes the benefits of separate compilation. I doenfllation system, we
track the compilation dependences introduced by the use of interprocedural information to limit the amount
of analysis and compilation required to return the program to a state consistent with its source code. This
“damage control” strategy allows the compilation system to retain some of the benefits of separate compi-
lation while aggressively using interprocedural information to awpthe efficiency of compiled code.
This approach should make the system practical for large programs.

To allow it to efficiently perform whole program optimization, thé #dmpiler has been divided into
two parts: aprogram compilerthat handles the interprocedural aspects of the compilation process and a

5 Of course, the analogous case where a fact is deleted and the compiler relied on its presence in a previous compilgition require
similar treatment.
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module compilerthat performs intraprocedural optimization. The program compiler is responsible for
building a consistent executable for a program, computing interprocedural information for use by the mod-
ule compiler, and determining which procedures should be recompiled. The program compiler also deter-
mines where interprocedural optimizations should be performed. The module compiler produces optimized
object code for a single module based on information provided by the program compiler about the context
program and its own analysis of the module source code. An artifact of this compilation strategy is that the
code generated by the module compiler is a function of the program in which the module is incorporated as
well as its own source. Hence, the object version cannot be safely re-used in other programs.

5.1. Program Compiler

The program compiler is assigned the task of directing the compilation of a program and computing
information about the program which other tools in the environment can use. Since the programs being
compiled may be large, efficiency is a major concern. This is particularly important when the program
compiler is recompiling an existing program that has been slightly modified. To recompile such a program,
it employs efficient algorithms for computing the interprocedural information. (If possible, an incremental
update is applied.) It next performs analysis aimed at limiting the number of procedures that must be
recompiled. Finally, it selects interprocedural optimizations for the module compiler to perform on the pro-
cedures slated for recompilation. These three phases of program analysis and optimization are described
below.

Interprocedural Information

Before a program can be compiled, interprocedural information for the program must either be derived
or updated. The program compiler is the tool that actually computes this information, so its first task when
compiling a program is to perform interprocedural analysis on the program. It uses initial information pro-
vided by the module editor, the call graph components provided by the composition editor, and any inter-
procedural information for the program computed by previous compilations. It stores the results of its anal-
ysis in the database. Interprocedural summary sets, likedhesets described in Section 2.3, are one type
of information that it produces. Interprocedural constants are another type of information computed.

An interprocedural constant is a variable that has a known constant value on all invocations of a proce-
dure in a given program. The process of discovering interprocedural constants and their values is known as
interprocedural constant propagationThese constants may provide valuable information about loop
strides and bounds that can iroyethe compiler’s ability to optimize the whole program. This is often the
case in large programs that call library routines. Unfortunately, the precise solution to the constant propa-
gation problem, whether interprocedural or intraprocedural, is not computable. In fact, even the standard
approximations solved intraprocedurally are co-NP complete in the presence of aliasing between call-by-
reference formal parameters and global variafglesFortunately, it is possible to find approximate solu-
tions to this problem, solutions that contain interprocedural constants that are valuable for optimization.

In IR" we have developed a method for computing interprocedural consjaintsvhich the creation
and transmission of constants within a procedure is modeled by a function that is constructed by the source
editor. The interprocedural analysis phase invokes these functions at program compilation time to model
the flow of constants between procedures.

Recompilation

To make the IR compilation system practical for large programs, we have tried to retain some of the
benefits of separate compilation. Recall that using interprocedural information as a basis for optimization
introduces subtle compilation dependences between the procedures in a progrdhnthénd®mpiler ana-
lyzes these dependences to predict how source code changes can affect the correctness of previously com-
piled code. This information, in turn, allows the compiler to determine which procedures must be recom-
piled to insure consistency in the program after an editing chiange

After the program compiler updates the interprocedural information for a program, it constructs a list of
the procedures requiring recompilation. It initializes the list to contain all those procedures that must be
recompiled because of direct editing changes. This list is actually produced by the two editors. If the
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initial list does not contain all of the procedures in the program, the program compiler then examines each
procedure where interprocedural sets have changed to see if it must be recompiled because of changes in its
interprocedural sets.

All of our techniques for recompilation analysis apply the same test to determine when a procedure
must be recompiled. The test compares the current interprocedural information agaotstion sets
These sets contain those interprocedural facts that can be true without invalidating the procedure’s previous
compilation. The various methods that we have proposed differ in the precision with which they assign val-
ues to the annotation sets.

Interprocedural Optimization

The program compiler examines the whole program to develop a plan for applying interprocedural opti-
mizations. Some parts of the plan are obvious: for example, any constants discovered during the interpro-
cedural analysis will be folded into the individual procedures where they hold. Other parts of the plan
require explicit and complex decision processes, like the decision over where to perform inline substitution.

The approach we are pursuing is implemented in the program compiler. The program compiler con-
structs the call graph, gathers information about each procedure, and computes interprocedural data-flow
information. Next, it competitively evaluates the possible transformations, applying those with the largest
estimated improvement. Finally, it invokes the module compiler on individual modules, passing it direc-
tives to guide the optimization process. By evaluating on a competitive basis the opportunities for applying
these transformations, the program compiler directs the effort of the module compiler into those areas that
are most likely to pay off, from the perspective of the whole program.

5.2. Module Compiler

While the program compiler effectively directs the whole program optimization by providing interpro-
cedural information and interprocedural optimization directives, the module compiler actually implements
these optimizations. It does this both indirectly, by using interprocedural information tovimtpe preci-
sion of its intraprocedural information, and directly, by applying the interprocedural transformations as
directed.

The module compiler uses information about side effects of procedure calls twéri precision of
the intraprocedural data-flow information around the call sites. The increased precision of the data-flow
information leads to an improvement in the module compiler’s ability to optimize procedures. For instance,
consider performing common subexpression elimination. To determine which expressions are eligible for
common subexpression elimination at a given point in a procedure, it is necessary to compute which
expressions aravailable An available expression is an expression that was computed and not subse-
guently changed along any path leading to the point of interest in the program.

If, when computing the available expressions, the compiler encounters a procedure call, it is forced to
make conservative assumptions about the side effects of invoking that procedure. In the absence of inter-
procedural side effect information, the compiler must assume that any variables that were visible to the
called procedure may have been changed by the procedure call. When any of these variables appear in an
expression that is considered available before the procedure call, the expression must be marked as unavail-
able because its value may have changed as a result of the procedure invocation. If interprocedural infor-
mation is present, the compiler need only invalidate those expressions that rely on a variable contained in
themMoD set for the call site. As a result, expressions that contain only variables that cannot be modified are
still available after the call. This leads to a larger set of available expressions and, potentially, allows addi-
tional common subexpressions to be eliminated. This improvement speeds up the resulting executable.

The module compiler uses information about aliases between formal parameters and global variables to
improve intraprocedural optimization. For example, in the absence of interprocedural aliasing information,
the compiler cannot determine whether or not pairs of global variables or formal parameters occupy disjoint
storage locations. To avoid incorrect code, the compiler cannot store such variables in registers. If the
compiler knows that the aliases do not exist, it can store these variables in registers, with a resulting
improvement in the speed of the object code. Knowledge of aliasing patterns comes into play in nearly
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every optimization decision.

Similarly, the module compiler uses information about interprocedural constants as input to its own
intraprocedural constant propagation analysis. This allows the intraprocedural analyzer to recognize con-
stants that are are inherited from the calling environment. In practice, important information like array
dimensions and loop strides are likely to be detected by the interprocedural constant propagation; this infor-
mation can play an important role in purely intraprocedural optimizations, like loop unrolling.

Information about interprocedural side effects not only helps produce better code, it can also reduce the
amount of analysis required in the module compiler. Our experiencerigtbhows that the number of
use-definition chains constructed by the compiler can be drastically reduced through the use of interproce-
dural analysis. This occurs because the compiler is able to use the interprocedural side effects information
at a call site to determine which variables visible to the called procedure have been used or redefined as a
result of invoking the procedure. The compiler then is not forced to make conservative assumptions about
the side effects of the procedure call and create unnecessary use-definition chains.

6. Support for Parallel Programming

In the next phase of research we plan to evol)edRsupport parallel programming. This is a natural
extension of our work on automatic detection of parallelism and software for supercompuidies begin
with a summary of work to date on the supercomputer software project. Then we present a conceptual pic-
ture of the parallel programming environment we envision, along with a discussion of implementation strat-

eqgy.

6.1. PFcand PTOOL

Since 1978, a group at Rice has been conducting an active program of research in software for vector
and parallel supercomputers. This research has led to two important experimental $ystam$PTOOL

PFC (ParallelFORTRAN Converter) is a system that automatically vectorizesrRAN programs by per-
forming a sophisticated analysisdgpendencesA dependence exists between two statements if one state-
ment can store into a location that is later accessed by the second statement. Although most optimizing
compilers analyze dependences in a program, they use a particularly naive treatment of arrays. Vectoriza-
tion systems employ a much more powerful analysis that is fairly effective in dealing with subscripted ref-
erences in loops, 2].

To illustrate the analysis of dependences, consider the code fragment below (expressggAN 8x
notation):

DOI=1,N
X =Y(h)+C
Y(I+1) = X(I) + A(l)
REPEAT

The second statement depends on the first by virtue of the value stored in X(l) and then loaded on the same
iteration. This dependence is calletbap-independent dependeroecause it forces a particular ordering

among the statements in the body of the loop. The first statement depends upon the second one, because of
the value stored into Y(I+19n one iteration and loaded from Y{h the next one, whenhlas been incre-

mented. This dependence is said to be catviethe loop because it forces an ordering among the different
iterations of that loop. To put it another way, the existence of a carried dependence prevents the separate
iterations from being run completely in parallel unless some synchronization is inserted to insure that the
proper values of Mare used on each iteration. Such a synchronization effectively serializes the loop.

Research orrFchas concentrated on finding vectorization algorithms efficient enough for use in a com-
piler. An indication of its success is thtcserved as the prototype for tie® vS FORTRAN Version 2 vec-
torizing compiler for the 3090 Vector Featysg which achieves excellent results while remaining reason-
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ably efficient.

Since completion of the originakcin 1982, research has continued in three areas. First, algorithms to
perform interprocedural analysis on whole programs have been added. The approach used is based upon
experimentation with an implementation of the algorithms developed forTRe aim of this work is to
determine the impact of whole program knowledge on vectorization and parallelization. Curmrnitly,
analyzes side effects of procedure calls, aliasing patterns, and constants propagated across procedure
boundaries.

Second, we have been developing parallel programming tools that@seanalysis phase. Our first
effort, calledpTooL, is an interactive adviser designed to assist in the prevention of errors arising from
unintentional data sharing or unforeseen load-store orders for shared data in parallel pregoams
really a sophisticated browser for an interstatement-dependence database createdltbpermits the
user to select a loop in a sequenti@RTRAN program and ask whether or not the iterations may be run in
parallel. If the answer is “no”pTooL will display all the carried dependences that would prevent paral-
lelization.

While pToOL is extremely helpful for identifying loops that can be parallelized, it provides no assistance
in the generation of parallel code. A third project is investigating automatic generation of code for multi-
processors. This has led to another derivativeraf called PFc+ that not only recognizes loops whose
iterations can be run in parallel but also performs sophisticated transformations, such as loop interchange,
loop alignment, and code replication to enhance the parallelism avagiable

PFC now contains approximately 95,000 linespafi code and runs on an IBM 434gTo0L is already
in use at Los Alamos National Laboratory and is scheduled to be installed at Livermore and Argonne. Both
pTooL and prct will be installed at the Cornell Theory Center. These systems represent a significant
research resource because they are relatively easy to modify. This makes it possible to add and evaluate
new transformation methods rapidly. In additiempoL has value as an educational tool—it is now used to
teach compiler students about dependences in programs.

6.2. A Parallel Programming Environment

Building on IR' and our experience gained withc andPTooL, we are enhancing [Rwith extensive
support for parallel programming. This involves both continued work on the fundamental tools of the envi-
ronment and the addition of entirely new features.

The programming environment we envision will provide support for an extended versiorTeAN
that we call ParalletorRTRAN. This language will be similar to the emerging class of macro libraries that
provide parallel programming supportAPRTRAN. Programming in the environment would take place in
two phases. In the first phase, the programmer would construct a program that is correct in a version of the
language that has a single, non-parallel execution schedule. This is similar to writing the program in
sequentiaFORTRAN. In the second phase, the programmer would evolve the program into an efficient par-
allel program by eliminating dependences that prohibit a highly parallel schedule.

It is in this second phase that the parallel programming tools would be used. The environment will sup-
port a transformational style of programming in which the system provides automatic assistance. In this
style, the user will ask the system where the performance bottlenecks are and can ask for suggestions or
make a change. If the request is for suggestions, the system will reach into its library of transformations to
find the ones that will impwve the parallelism without changing the meaning from the fixed-schedule ver-
sion of the program. The user may then select a transformation to be performed. If, on the other hand, the
user makes a manual change, the system will attempbte tirat it preserves the meaning of the fixed-
schedule program. If it does not succeed, it then records the change as one to be tested later.

5 The IBM compiler, based on an early version of the PFC system, is quite effective at vectorization and requires only a modest
increase in compile time over the scalar VS FORTRAN compiler with optimization.
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To support this style of programming, many changes must be made to the existing software. First, we
must have ways of incrementally analyzing dependence and making transformations in the source editor.
Second, we must have ways of analyzing a program in enough depth to verify that a change preserves
meaning. Finally, we must have ways to use information about questionable changes in the testing and
debugging process. In addition, a good parallel programming environment must include support for the
designof parallel programs. The following subsections discuss the ways we propose to address these
requirements.

Dependence Analysis in a Structure Editor

In the automatic detection of parallelism, the key analytical information used by a compitlpiera
dence graphs, 2] for the procedure. Our experience with #oL system has convinced us of the value
of presenting dependence information to explain why particular loops will not run in parallel. Unfortu-
nately, becausetooL relies on a batch analysis of the program, users have found the delay between typing
a proposed change into the source and getting feedback about its impact to be frustrating. To build a more
responsive parallel programming advisor, we plan to maintain a current dependence graph in the structure
editor for FORTRAN, incrementally rebuilding dependences whenever the source is modified. In addition,
we will provide automated support for transformations that increase the parallelism availabt®imran
program. The resulting editor should make experimentation with parallel programming reasonably easy.

Improvements to Interprocedural Analysis

The analysis of interprocedural side effects is an important component of the system because accurate
information about interprocedural data flow is essential if we are to verify the manual transformation steps
discussed earlier. Our experience with interprocedural data-flow analysis in batidifechas convinced
us that improvements are needed in both the theory and the implementation. Two particular problems pre-
sent themselves: the need for more precise treatment of arrays and the need for incremental updating tech-
nigues. We intend to further our work on the theoretical front while at the same time pursuing implementa-
tions in the new parallel programming environment.

Our experience with using interprocedural summary information in a working system for detecting par-
allelism has shown that the granularity of conventional summary information is too coarse to allow effec-
tive detection of parallelism in loops that contain call sites. The problem is that the current analysis treats
whole arrays as single units. Thus, it is able to determine whether an array is modified somewhere, but not
whether it is modified in only a single column or row. This limitation is disastrous for parallelization
because the most effective way to parallelize a loop is through data decomposition, in which each parallel
iteration works on a different subsection of a given array.

Fortunately, a generalization of the approach currently used to solve interprocedural data-flow analysis
problems can be used to develop more precise information about side effects. The standard algorithms for
interprocedural analysis can be extended in a natural way to deal with a laticpilaf sectionsf an
array. Each regular section represents a common pattern of access to a subarray such as a single element, a
whole row or a whole column. If the regular section lattice is carefully designed, the analysis will produce
information precise enough to do a good job of parallel decomposition without becoming unacceptably
inefficient. Nevertheless, we expect that regular section analysis will require substantially more computing
resources than the current techniques. This will increase the desirability of incremental methods for updat-
ing interprocedural information in response to a program change. In addressing this problem, it is impor-
tant to evaluate the tradeoff between incremental and parallel evaluation methods, since it seems likely that
batch algorithms will be more amenable to parallel execution than incremental techniques.

Parallel Debugging

Currently, the IR execution monitor supports debugging a sequential program on the local machine.
We plan to enhance it to support debugging programs executing on remote machines and to support the
management of parallel background processes, using an approach similar to those employed by execution
monitor was implemented in a manner that should facilitate extending it to deal with processes on remote
machines. All that is required is to produce distributed versionwfixa system call that permits a fore-
ground process to inspect and change locations in the address space of a background process. The
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extension to the management of several processes is also straightforward, but requires more work. This is
the sort of approach being used in the emerging class of parabedebuggers, such as those offered by
Sequent and Alliant for use with their machines.

However, what may well be the most difficult problem in debugging code for shared memory multipro-
cessors still remains: it is very hard to recreate with a debugger the sequence of events that led up to an
error of unintentional data sharing. To address this problem, we plan to use the information from the envi-
ronment discovered during analysis and compilation to provide clues to the location of errors at run time.

For example, if an incorrect value is detected in a parallel program at a point where the sequentially
scheduled version produced the correct value, the debugging system would be invoked. It would trace back
to locations inside parallel regions that might have contributed to the computation of the erroneous value.
Then it would usedversary scheduling technique that employs dependence analysis to pick schedules
likely to lead to errors, to help locate the problem. In other words, the debugger would step the processors
in a sequence that static analysis suggests is likely to produce a different answer from the standard sequen-
tial schedule.

Whole Program Planning

In a system for automatically decomposing a large program for parallel execution, optimizing transfor-
mations should be planned from a global perspective. For example, to make effective use of inline substitu-
tion, the compiling system must plan the optimizing transformations, including parallelization, for the
whole program. As outlined in Section 5, planning optimizations on a whole program basis is the responsi-
bility of the program compiler.

The planning phase of the program compiler is the natural place to identify larger granularity paral-
lelism. The program compiler will select the loops to be run in parallel, considering loop nests that span
procedure call boundaries. It will use this information as input to its decision process that selects procedure
calls for inline substitution. The program compiler will include this information in the directives passed to
the module compiler. Thus, the module compiler will know which routines contain parallel loops and
which ones will be run from inside parallel loops.

7. Summary and Conclusions

The IR project has broken new ground in the use of components of a software development environ-
ment to support the compilation process, while developing a number of new ways to build those component
tools. The research has contributed new algorithms for interprocedural analysis and methods for managing
the recompilation problem. It has also explored an approach to language-oriented editing that combines the
advantages of text and structure editing and a debugging system that permits the mixed execution of com-
piled and interpreted routines.

The current implementation, scheduled for distribution to a number of sites this fall, consists of approx-
imately 105,000 lines of C and runs on both the IBM RT PC amdwdrkstations. Over the next several
years the implementation will evolve as scientific programming evolves, with the principal change being
the incorporation of advanced features for the support of parallel programming.
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