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Abstract

Procedure cloning is an interprocedural optimization
where the compiler creates specialized copies of proce-
dure bodies. To clone a procedure, the compiler repli-
cates it and then divides the incoming calls between
the original procedure and the copy. By carefully par-
titioning the call sites, the compiler can ensure that
each clone inherits an environment that allows for bet-
ter code optimization. Subsequent optimization tailors
the various procedure bodies.

This paper examines the problem of procedure
cloning. It describes an experiment where cloning was
required to enable other transformations. It presents
a three-phase algorithm for deciding how to clone a
program, and analyzes the algorithm’s complexity. Fi-
nally, it presents a set of assumptions that bound both
the running time of the algorithm and the expansion
in code size.

1 Introduction

Compiler developers have long understood that proce-
dure calls pose a barrier to code optimization. The
problem shows up in two distinct ways: the overhead
of the call itself and its impact on the code around
each call site, and a degradation in the quality of infor-
mation that the compiler derives. It has been widely
assumed that call overhead is the more significant ef-
fect; a recent study suggested that call overhead may
play less of a role in run-time performance than ex-
pected [?].

Traditionally, two approaches have emerged for
breaking down the call site barrier. The first, inline
substitution, replaces call sites with distinct copies of
the body of the called procedure. The code is then opti-
mized in the context of the calling procedure. The sec-
ond, interprocedural data-flow analysis, estimates the
set of compile-time provable facts about the environ-
ments passed and returned at procedure calls. This
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information is used, in turn, to optimize the individual
procedures. Each technique has limitations. Inlining
can lead to code growth, increased compile time, and
degradation in code quality [?]. Simply using inter-
procedural analysis lets the structure of the program
constrain the compiler; it assumes that each procedure
should be implemented once.

To improve the latter approach, an aggressive com-
piler can consider procedure cloning — creating mul-
tiple implementations of a single procedure and parti-
tioning the calls among them [5].

• Cloning differs from straightforward application
of interprocedural data-flow analysis. It changes
the structure of the underlying graph used by the
data-flow problem, removing some of the points
where paths in the graph merge — it allows the
compiler to solve a “nearby” problem that pro-
vides a more useful set of facts for code optimiza-
tion.

• Cloning differs from inlining. The actual code that
implements the call is left intact. The compiler
can map multiple calls onto a single copy of the
procedure.

In its full generality, cloning can produce exponential
growth in program size.

This paper presents an algorithm for deciding which
procedures to clone and how many instances to create.
The algorithm finds potential improvements in forward
interprocedural data-flow solutions and clones those
procedures that lead to sharper information. We dis-
cuss similar techniques used in partial evaluation [?, 10]
and intraprocedural optimization [11]. Our algorithm
improves on previous work by avoiding worst-case be-
havior while creating clones for those cases most likely
to produce run-time improvement.

2 Background and Motivation

To motivate our work on cloning, we summarize an
experiment aimed at improving the performance of the
program matrix300 from release one of the Spec bench-
marks. Our goal was to apply a series of transforma-



main

. . .

do i=0..7
call dgemm(. . . , i, 1)

dgemm

. . .

subroutine dgemm (. . . , jtrpos, job)
jb=f(jtrpos, job)
call dgemv (. . . , jb)

dgemv

subroutine dgemv (. . . , job)
real A(100,1)
if (f(job)) then ii=1 else ii=100
do j

call daxpy (A(k, 1), ii)

daxpy

subroutine daxpy(A,ia)
real A(ia,1)
do i
. . . A(1,i)

Figure 1: Call graph for matrix300.

tions that block the computation for cache and reg-
ister reuse [?]. Matrix300 computes eight variants on
matrix multiplication, selectively transposing the input
and output matrices.

The goal of the experiment was to obtain the best
possible execution time using cache blocking and scalar
replacement. These transformations reorder the itera-
tion space of a loop to increase locality, thus exposing
reuse of values in registers and decreasing cache misses.
The most important of these optimizations, unroll and
jam, has demonstrated dramatic improvements on lin-
ear algebra kernels [2].

Unroll and jam cannot be applied directly to the
key computational kernel of matrix300 because of the
program’s structure. Unroll and jam transforms a nest
of two or more loops; in matrix300, each loop is in a
different procedure. The leaf procedure, daxpy, only
contains a single loop. The code in daxpy reveals little
or no reuse of values in either registers or cache. This
loop is a good candidate for memory optimization, but
needs to be inlined into the caller dgemv to expose an
outer loop.

Unfortunately, the call in dgemv performs an ar-
ray reshape — the actual and formal parameters
have different dimension sizes. Inlining daxpy trans-
lates the reference A(1,i) to the linearized form
A(k+(i-1)*ii,1). The multiplication by ii, whose
value is not known at compile time, makes this sub-
script expression too complex for dependence analy-
sis. The memory optimizations rely on precise depen-
dence information to locate reuse and to prove safety
conditions. Thus, directly inlining the call creates
the necessary loop structure, but leaves the code in
a form where the transformations cannot be applied.

main

dgemm0 dgemm1 . . . dgemm6 dgemm7

dgemv1 dgemv3

daxpy daxpy

Figure 2: Call graph for matrix300 after cloning and
inlining.

In fact, all the calls in matrix300 must be inlined be-
fore enough information is exposed to simplify this sub-
script expression.1

By applying cloning prior to inlining, these problems
are alleviated. To illustrate these points, the call graph
for matrix300 is shown in Figure 1, annotated with the
relevant pieces of code. Cloning achieves the same re-
sult with much less duplication of code. The value of
ii — the dimension size of array A — passed at the
call to daxpy depends only on the evaluation of the if
condition in dgemv, which in turn, depends only on the
value of the input parameter job. The value of job de-
pends solely on dgemm’s input parameters jtrpos and
job. Jtrpos takes on the integer values from 0 to 7,
while job always has the value 1.

Taken together, this suggests cloning the eight calls
from main to dgemm to expose unique constant values
for jtrpos. This results in dgemv’s formal job receiv-
ing a value of either 1 or 3. By making two copies of
dgemv, we can finally determine the value of ii, the
dimension size passed at calls to daxpy. For the case
where job has the value 1, the value of ii is 1, so the
reference to A after inlining daxpy becomes A(k+i,1).
When job has the value 3, no reshape of A occurs at
the call so the translated reference is A(k,i). Finally,
we can inline daxpy and perform the memory optimiza-
tions. The resulting call graph for matrix300 is shown
in Figure 2.

3 Key Insights

The algorithm described in this paper was motivated
by four key insights, presented in this section. The first
three of these were derived from the preceding example.

1Other experimenters have since reported similar improve-
ments on matrix300 using memory optimizations, probably with
user-specified inlining.



Propagation. Cloning changes the call graph in a
way that removes some of the points of confluence —
those points where the data-flow algorithm uses a meet
to approximate the facts that are true along two paths
that converge. This changes the call graph underlying
the data-flow problem; a structural change in the graph
often changes the results of data-flow analysis. Our
goal in cloning is to select modifications that result in
data-flow information that more precisely models the
events that happen at run-time. By creating isolated
copies of specific paths through the call graph, cloning
can achieve this effect.

We can take advantage of the change in graph struc-
ture by cloning a procedure with invocations contribut-
ing significantly different interprocedural information.
In our example, we applied cloning when calls con-
tributed different constant values for variables in a
called procedure. We propagated the effects of cloning
to descendants in the graph since cloning a procedure
may in turn expose opportunities for cloning its de-
scendants.

In general, cloning decisions can be based on par-
tial solutions to any forward interprocedural data-flow
problem (i.e., a problem where a node inherits infor-
mation from its predecessors in the graph, rather than
its successors). Examples of forward interprocedural
problems are constant propagation, alias analysis and
type analysis. This approach directly sharpens the so-
lution to the forward interprocedural problem used as
the basis for cloning. In addition, the change in the
graph may indirectly sharpen solutions to other inter-
procedural problems.2

Goal-directed cloning. The above discussion sug-
gests that we calculate solutions to the forward inter-
procedural problems and use these directly as the basis
for cloning decisions. Unfortunately, compilers cannot
capitalize on every new data-flow fact that is exposed.
For example, it would not be profitable to clone based
on different constant values of a string used in an er-
ror printing routine. Thus, a good cloning technique
should try to distinguish between facts that have an
impact on code quality and those that do not.

We can avoid unnecessary code growth by restrict-
ing cloning to those cases where important informa-
tion is exposed. We describe such a strategy as goal-

2While cloning can have an impact on the solutions pro-
duced for backward data-flow problems, the relationship between
cloning decisions and the data-flow sets is far less direct. For ex-
ample, changes in the results of alias analysis or constant prop-
agation (both forward problems) can change the results of inter-
procedural side-effect analysis. Because the relationship between
changes to the call graph and changes in the information is much
more indirect than for forward problems, it is not clear to us that
cloning for improvement in backward problems makes any prac-
tical sense.

directed [?]. In the matrix300 example, we clone only to
expose constants needed to improve dependence infor-
mation. These constants fall into three categories: (1)
they specify the dimension size of an array parameter;
(2) they determine control flow; or, (3) they appear in a
subscript expression. This approach exposes sufficient
information to perform inlining and unroll and jam.

We detect important constants by examining each
dimension statement, control flow test and subscript
expression in a procedure. Suppose such an expres-
sion could be evaluated assuming all global variables
and formal parameters in the expression enter the pro-
cedure with constant values. If we can clone to ex-
pose constant values for these variables, then it is
likely more precise dependence information will result.
A bottom-up pass over the program propagates these
variables, translating from formal to actual parameters
at calls. Upon completion, we know at each procedure
the variables that, if constant, might improve depen-
dence information in this procedure or one of its de-
scendants [?, 8].

In general, a goal-directed approach depends both
on the interprocedural problem and the desired opti-
mization effects. Designing a strategy for a specific
compiler necessarily involves experimentation to un-
derstand how well the compiler takes advantage of the
kind of facts that cloning can expose. To filter cloning
vectors during the algorithm, a bottom-up pass over
the program examines code to derive what cloning in-
formation would be useful.

Merging equivalent clones. As described above,
we can avoid unnecessary cloning by ignoring informa-
tion about variables that cannot have an important
effect on optimization. In some cases, we can further
reduce the amount of unnecessary cloning by merging
cloning vectors that produce the same effects on op-
timization. In matrix300, eight copies of dgemm were
made corresponding to the eight possible constant val-
ues of one of its input parameters. However, only two
copies were needed to tailor the two versions of daxpy
in order to apply inlining and unroll and jam. By eval-
uating important expressions in the program based on
the constant values provided by cloning, we can deter-
mine if two clones generate the same values for these
important program points. If so, then the two clones
are “equivalent” from the standpoint of the target op-
timization and can be merged.

The second phase of the cloning algorithm locates
equivalent clones and merges them. We discuss this
phase in the context of constant propagation. It turns
out that this phase is only necessary for some inter-
procedural problems, which we characterize in Sec-
tion 4.2.



main
call p2(1)
call p2(2)

p2

subroutine p2(input)
call p3(3 ∗ input)
call p3(4 ∗ input)

p3

subroutine p3(input)
call p4(5 ∗ input)
call p4(6 ∗ input)

· · ·
subroutine pn−1(input)

call pn((2 ∗ (n− 1)− 1) ∗ input)
call pn(2 ∗ (n− 1) ∗ input)

pn

(a) Initial program

main

p2(1) p2(2)

p3

· · ·

pn

(b) After cloning p2

main

p2(1) p2(2)

p3(1) p3(2) p3(3) p3(4)

· · ·

pn

(c) After cloning p3

Figure 3: Exponential code growth due to cloning.

Exponentiality. The final insight about cloning is
perhaps the most important. In its full generality,
cloning can result in exponential growth in compile
time and object code size. The example shown in fig-
ure 3 demonstrates this point. In the initial program,
shown in 3(a), there are n procedures in the program,
p1, p2, . . . , pn. Each procedure pi invokes pi+1 at two
call sites. At one call, the procedure pi passes as a pa-
rameter (2i − 1) ∗ input. At the other call, the value
2i ∗ input is passed. By producing clones for each
unique value of the input parameter at p2, we produce
the call graph shown in 3(b). By doing the same for
p3, the call graph shown in 3(c) results. After cloning
all calls in the program, the final call graph has 2n− 1
nodes and 2n − 2 edges. The original call graph has
only n nodes and 2(n− 1) edges.

Because cloning can exhibit exponential behavior,
our algorithm must anticipate this possibility and im-
pose restrictions when necessary. However, based on
experience, the amount of useful cloning on a program
is likely to be small [8]. For this reason, we anticipate
that the restrictions on cloning will rarely be necessary.
Nevertheless, the algorithm will perform well even in
the event of pathological behavior.

4 Cloning Algorithm

This section presents a polynomial-time algorithm for
procedure cloning. The algorithm has three phases.
First, we propagate vectors of interprocedural infor-

mation describing the possible cloning that can be per-
formed on the program. In the second phase, we merge
vectors representing clones with “equivalent” effects.
In the third phase, we actually transform the code until
program growth exceeds some threshold. This section
provides more detail on each of these phases.

4.1 Phase 1: Calculating Cloning Vectors
In the first phase, cloning information is propagated
down the call graph to explore cloning opportunities.
The idea behind the algorithm is to retain interesting
interprocedural information contributed by each path
through the program, rather than conservatively ap-
proximating information when multiple paths join.

Cloning can be performed based on any forward
interprocedural data-flow analysis problem. Data-flow
information provides a good basis for cloning decisions.
It is easily manipulated; these problems are formulated
as systems of equations on a lattice framework. It
has path-specific components, but they can be read-
ily merged to represent aggregations of multiple paths.
Finally, it has a direct impact on the quality of the
code generated by the compiler.

Each unique procedure clone can be represented by
a cloning vector, a vector of information representing
the value of the interprocedural set used as the basis
for cloning. For example, with constant propagation
it would be the set of 〈variable name, constant value〉
pairs. Using a goal-directed strategy, we filter the inter-



procedural sets to only include information about vari-
ables important to the targeted optimizations.

Propagation Algorithm
The algorithm for calculating cloning vectors is given
in Figure 4. It propagates all possible values for some
forward interprocedural set S. Since a procedure can
inherit information exposed by cloning from its callers,
cloning vectors are propagated in topological order.
This ordering makes it possible for the algorithm to
make only a single forward pass over the call graph,
with procedures involved in recursive cycles handled
specially.

A few definitions are needed for the algorithm in
Figure 4:

• S identifies the interprocedural set being used as
the basis for cloning. It is also used in the algo-
rithm to give the value for that interprocedural set
at a particular procedure or call site.

• The set CloningVectors(S, p) gives all possible val-
ues for interprocedural set S that can reach proce-
dure p during program execution. CloningVectors
is initialized to ∅ for each node.

• The function Translate(c, cv), for some call site c
with caller p and callee q, maps elements in the
vector cv of p to the corresponding variables in q
based on parameter passing at c. The result is
the creation of a new CloningVector for q. This
mapping function is similar to the one used in the
underlying interprocedural problem to map vari-
ables from the caller to the callee.3

The algorithm propagates cloning vectors for all calls to
a procedure and renames the variables in each cloning
vector according to the parameter passing at its corre-
sponding call. For recursive cycles, we locate strongly-
connected regions in the call graph and replace the cy-
cle with a representative node [12]. This step ensures
correctness of the cloning and allows propagation to
occur in a single pass over the call graph.

When the algorithm reaches a node representing a
cycle, it must take each incoming cloning vector and
propagate it within nodes in the recursive cycle until
its information stabilizes. The cloning vectors result-
ing from the propagation determine both cloning of the
cycle and the cloning vectors that are propagated to its
successors in the reduced call graph. They may contain
less information than the original incoming cloning vec-
tors. For example, incoming information might refer to
the initial value of a variable in the cycle and each pass

3Note that CloningVectors(main) is initialized to ∅. Translate
adds facts to the sets for procedures called from the main routine.

/* Initialization */
Locate cycles and replace with representative

nodes and edges
foreach node n in representative graph

CloningV ectors(S, n)← ∅

/* Propagation */
foreach node n in topological order

foreach call site c invoking n
let p represent the procedure invoking n at c
foreach vector v in CloningV ectors(S, p)

CloningV ectors(S, n) ← CloningV ectors(S, n)
∪ Translate(c, v)

if n represents a recursive cycle then
foreach vector v in CloningV ectors(S, n)

Iteratively propagate v within procedures
in cycle until information stabilizes

Figure 4: Phase 1 – Calculating CloningVectors.

through the cycle might modify the value of this vari-
able. The propagation within the cycle would set this
value to ⊥, preventing cloning from unrolling recursion.
This property is important because the amount of this
unrolling can be unbounded.

Whenever the final cloning algorithm determines
that cloning should occur at a representative node, all
procedures involved in the cycle are cloned. Treating
cycles in the call graph in this all-or-nothing fashion is
most appropriate if call graph cycles consist of a small
number of nodes and edges. If this is not the case, it
might be preferable to consider cycles as a hierarchy of
strongly-connected components, similar to the treat-
ment of loops by intraprocedural interval analysis.

This algorithm might generate an exponential num-
ber of cloning vectors. In practice we do not expect
this behavior. Section 5 presents an argument that the
number of cloning vectors is polynomial under a plau-
sible set of assumptions. Section 6 describes a strategy
for restricting the number of cloning vectors that it
actually generates.

4.2 Phase 2: Merging Equivalent Cloning
Vectors

The previous phase produces the CloningVectors sets
that represent all the interesting opportunities for
cloning in the program. If we have filtered the informa-
tion in the cloning vectors to consider only important
variables, these sets may fairly precisely indicate the
clones that must be produced to perform the targeted
optimizations. However, for certain interprocedural
problems such as constant propagation, it is still possi-
ble for two unique cloning vectors to produce the same
effect on optimization.



The second phase of the cloning algorithm locates
equivalent cloning vectors and merges them. The pur-
pose of this phase is to reduce the amount of cloning
without hindering important optimizations. Determin-
ing when two cloning vectors result in the same impor-
tant optimizations requires a goal-directed strategy. It
is necessary to locate specific targets of optimization,
so that the effects of a particular cloning vector on
the targets of optimization can be ascertained. If two
different cloning vectors have the same effect on these
targets of optimization, then they can be merged.

Consider why this phase is necessary for inter-
procedural constant propagation. For optimization
purposes, the compiler wants to know not only that a
variable is constant but also the value of the variable.
The unbounded number of potential constant values
for an important variable makes it impossible to enu-
merate all possible values and determine which ones
are important. Instead we locate important variables
prior to cloning. We evaluate only the constant val-
ues that appear in the cloning vectors. If two cloning
vectors have unique constant values that produce the
same effect on optimization, they are merged.

Other interprocedural problems exist for which this
merging phase is unnecessary. As an example, we
briefly describe cloning based on alias analysis[1]. Two
variable names are aliases in a procedure if they can re-
fer to the same memory location. A compiler uses alias
information to verify the safety of certain optimiza-
tions. Typically the compiler is interested in whether
a variable that is modified has an alias that is either
modified or referenced. The absence of these aliases
allows the compiler to perform more aggressive opti-
mizations. A simple strategy for goal-directed cloning
based on aliases involves filtering from the cloning vec-
tors all alias pairs except for those where one variable
is modified and the other variable is either referenced
or modified. This filtering can be performed during the
Phase 1 algorithm, eliminating the need for Phase 2.

The two data-flow problems differ in that the lat-
tice for constant propagation is infinite (i.e., has an
unbounded number of possible set values), while the
lattice for the alias problem is finite. Thus, the most
precise approach to filtering aliases — enumerating all
the possible aliases and evaluating their effects on op-
timization — is tractable because the lattice is finite.

For lattices with a reasonably small number of val-
ues, it may be practical to filter the cloning vectors as
they are produced. Filtering aliases to exclude irrele-
vant pairs can be done efficiently with the first strategy
mentioned above; this eliminates the need for a merg-
ing phase for the resulting vectors. However, when the
underlying data-flow problem has an infinite lattice,
the merging phase is both necessary and practical. In

fact, it may also be desirable in cases where the lattice
is finite but large enough to make enumeration expen-
sive.

For the rest of this discussion, we focus on the so-
lution for constant propagation. A similar approach
could be taken for other problems, like type analysis.

program main
call p(10, 1)
call p(10, 2)
call p(10, 3)

subroutine p(f1, f2)
call q(f1, f2 + 4)

subroutine q(f1, f2)
S1: dimension A(f1, 1)
S2: if (f2 mod 2 = 1) then . . .
S3: A(f1 + 2, 1) = . . .

Jump functions for q:
S1: f1

S2: f2 mod 2 = 1
S3: f1 + 2

CloningVectors(p) = {〈(f1 = 10), (f2 = 1)〉,
〈(f1 = 10), (f2 = 2)〉, 〈(f1 = 10), (f2 = 3)〉 }

CloningVectors(q) = {〈(f1 = 10), (f2 = 5)〉,
〈(f1 = 10), (f2 = 6)〉, 〈(f1 = 10), (f2 = 7)〉 }

StateVectors(p) = {∅(10,1), ∅(10,2), ∅(10,3)}
StateVectors(q) = {〈10, true, 12〉(10,5),

〈10, false,⊥〉(10,6), 〈10, true, 12〉(10,7)}

Figure 5: Example illustrating StateVector calculation.

Defining a State Vector

For each cloning problem, it is necessary to determine
what contributions from a cloning vector are signifi-
cant. The important effects of a cloning decision are
represented by a StateVector. For interprocedural con-
stants, the StateVector can be the values of important
expressions appearing in the procedure: control flow
tests, subscripts and array dimensions. For each one
of these, we construct a jump function that describes
its value as a function of potential interprocedural con-
stants [4]. Only jump functions for program points that
can be determined by interprocedural constants need
be kept. With this information and a cloning vector
describing interprocedural values, the value of a state
vector can be determined.



The example in Figure 5 illustrates these points.
Procedure q has three incoming cloning vectors. By
applying the constant values in the cloning vectors to
the jump functions for the important expressions in
q, we discover that two of the three state vectors are
equivalent and can be merged.

Partitioning Algorithm
The algorithm for merging equivalent cloning vectors
appears in Figure 6. It is related to the algorithm for
minimizing the number of states in a Deterministic Fi-
nite Automaton (DFA) [9]. It is also similar to an algo-
rithm used to minimize the number of implementations
of a procedure required when multiple definitions of the
same procedure occur in a program [7].

1. Initially, all CloningVectors for a particular proce-
dure are placed in the same partition.

2. In reverse topological order, visit the partition π
corresponding to each node n:

(a) Partition elements vi of π based on the value
of StateVector(vi).

(b) For each partition πi of π consisting of mul-
tiple elements:

Form partitions of elements of πi
such that if two CloningVectors a
and b in πi result in invocations at
some call site c with CloningVectors
x and y of the called procedure, then
a and b are in different partitions if
x and y are in different partitions.

Figure 6: Phase 2 – Merging CloningVectors.

The algorithm partitions the cloning vectors for a
procedure according to the values for their state vec-
tors. It begins by assuming all cloning vectors for a
procedure are equivalent. It proceeds to distinguish
between cloned versions of a procedure based on their
StateVector and the partitioning of procedures they
invoke. Two clones can be merged if they have the
same StateVector, and for corresponding call sites in
the cloned versions, the invoked procedures are in the
same partition of CloningVectors. Upon termination of
the algorithm, clones remaining in the same partition
can be merged and represented by a single implemen-
tation. Nodes are visited in a single reverse topological
pass so that the clones of a procedure have been parti-
tioned before any of its callers are considered. In this
algorithm as in the previous one, recursion is handled
by considering a cycle in the call graph as a single pro-
cedure unit.

To understand the algorithm, consider the example
in Figure 5. Procedure q has three unique cloning vec-
tors. Partitioning these according to state vector values
results in two partitions, one partition for the cloning
vector 〈(f1 = 10), (f2 = 6)〉 and another partition con-
taining the remaining two cloning vectors. Proceeding
to partition the cloning vectors for p, there are three
distinct cloning vectors. Each one generates the same
state vector. However, 〈(f1 = 10), (f2 = 2)〉 is placed
in its own partition since it invokes a partition of q
that is separate from that invoked by the other two
partitions of p.

4.3 Phase 3: Perform Cloning

As suggested in Section 4.1, we expect the number of
cloning vectors to be polynomial. If all of this cloning
were performed, the final program size could be a poly-
nomial of its original size. The polynomial bound on
the number of cloning vectors is acceptable during anal-
ysis, but a polynomial growth in program size is intol-
erable due to its effects on compile time. Thus, as an
additional safeguard to the costs of cloning, we only
clone until program growth exceeds some threshold.
As with other restrictions, we expect the need for this
will be rare.

originalSize ← program.size
foreach procedure p in topological order

CloneProcedure(p)

if (program.size > originalSize ∗ threshold) then
exit

endfor

CloneProcedure (p)
foreach partition πp of p

–Create a copy newp of p
program.size← program.size + newp.size
–Annotate representation of newp with

StateVector and set of CloningVectors in πp
endfor

end /* CloneProcedure */

Figure 7: Phase 3 – Transforming program.

Algorithm

The final phase, given in Figure 7, performs the cloning
indicated by the partitions of cloning vectors produced
in the previous step. The algorithm clones until the
program size reaches some threshold factor of its origi-
nal size. Since decisions at a procedure are affected by
cloning of its ancestors in the call graph, it is critical
that the cloning be performed in topological order. An
ideal ordering of cloning decisions would also take into
account how a decision would affect performance. A



simple approach is to estimate the execution frequency
of procedures and perform cloning along paths leading
to the most frequently executed procedures [8]. We
could also use a strategy similar to the merging of vec-
tors for an individual procedure (see Section 6).

For the interprocedural problem being used as the
basis for cloning, we need to associate with a clone its
set of CloningVectors and its StateVector. These anno-
tations direct the optimizer to apply the desired opti-
mizations. They also enable recompilation analysis to
ensure on subsequent compilations that the cloning is
still valid [6]. Recompilation analysis is used to avoid
unnecessary recompilation of procedures by an inter-
procedural optimizing compiler. The problem of re-
compilation analysis in the presence of this cloning al-
gorithm is discussed elsewhere [8].

5 Time Complexity

Phase 1. In the algorithm from Figure 4, the outer
loop iterates over procedures, and the inner loop it-
erates over cloning vectors at a call site. Assume the
maximum number of elements in a cloning vector is L,
and the maximum number of values for each element
is V . N is the number of procedures in the program,
and E is the number of call sites. Then, the algorithm
is bounded by O((N + E)V L) time.4

The actual sizes of V and L depend on the inter-
procedural set being used and the possible values of the
set elements. Since we are dealing with interprocedural
information, the size of L is related to the number of
externally accessible variables in the scope of the pro-
cedure. This is the number of formal parameters of a
procedure and global variables in the program. Based
on experience, the number of formals is a small con-
stant and the number of globals increases more slowly
than program growth. For the sake of this presenta-
tion, let us assume that this number is bounded by
c logN .

Let vi be the number of distinct values that the ith

element in a CloningVector can have. For each vi,
there is a ki such that 2ki−1 < vi ≤ 2ki . For a given
procedure, an upper bound on the number of unique
CloningVectors is defined by the following equation:∏L

i=1 2ki = 2
∑

L

i=1
ki .

Taking the average of ki over its L possible values, we

4When a program contains recursive cycles, propagating
cloning vectors within the nodes in the cycle contributes a factor
I, where I is the number of times the iterative algorithm visits a
node in the cycle. This factor is ignored in subsequent discussion
because it is completely dependent on the interprocedural prob-
lem being solved. However, the amount of iteration required for
cloning vector propagation will not be worse than that required
by the underlying data-flow problem.

arrive at some value kp. 2kp gives an average number
of values for each element, so 2Lkp is an upper bound
on the number of cloning vectors for procedure p. As-
suming L ≤ logN , we know that the number of cloning
vectors for a procedure p ≤ 2kp logN . The total number
is bounded by the following:∑N

p=1 2kp logN ≤ N ∗ 2kmax logN = Nkmax .

Here, kmax is the maximum value of kp over all proce-
dures p. Thus, given reasonable values for L and kmax,
the complexity is O((N + E)Nkmax), a polynomial.

Phase 2. Cloning vectors are partitioned in a single
reverse pass over the call graph. Assume that the Stat-
eVector representation is a string with some canonical
order imposed on its elements. If we test for equality
by hashing the strings, the partitioning step for each
procedure has an expected time linear in the number of
its cloning vectors. (A different approach would yield
O(n logn) time, even for worst-case performance [9].)

Phase 3. The final phase of the cloning algorithm is
accomplished by a single top-down pass over the call
graph. The number of clones created is less than the
total number of cloning vectors. Thus, Phase 3 is also
bounded by the number of cloning vectors.

Given that the time required by each of the phases is
bounded by the total number of cloning vectors, the
entire algorithm has an expected time complexity of
O((N + E)Nkmax).

6 Rationing Cloning Vectors

We have argued that real programs will produce a
polynomial number of cloning vectors; in practice, we
expect the number to be manageable. Nonetheless,
programs can produce impractically large numbers of
cloning vectors. When the compiler encounters such
a program, the cloning algorithm must be prepared to
limit the number of vectors stored and propagated. A
practical approach to this problem is to adopt a ra-
tioning scheme for cloning vectors. When the quota of
vectors is exceeded, the algorithm should begin merg-
ing vectors as they are produced.

We can define the cost of merging two cloning vectors
cvi and cvj as a measure of the effect that the merge
will have on optimization. The cost must account for
improvements enabled by information exposed by cvi
and not in cvj , and vice versa. Having a metric to
compare vectors is crucial to any rationing scheme.

Several strategies are possible to determine the cost
of merging two cloning vectors. As a possibility, albeit
an unrealistic one, we can compile and run two versions



of the program. One program maintains the separate
versions of the procedure, while the other merges them.
The merge cost is the difference in execution time of the
two program versions. We would like to approximate
this approach by using static analysis to estimate the
merging cost. For example, the merging cost can be
the number of positions that differ between a pair of
cloning vectors. This can be improved by taking into
account execution frequency estimates and weighting
the effects of each piece of information [?].

Given a method to compute the cost of merging two
cloning vectors, the compiler can adopt a relatively
simple rationing scheme. Assume that we set a quota
for the total number of cloning vectors allowed during
compilation and a quota for each procedure. The over-
all quota should be proportional to the number of pro-
cedures, the individual quotas should be set somewhat
higher than the overall quota divided by the number
of procedures. When propagation attempts to create
a vector for procedure p that would exceed either the
local or the global quota, the following steps are taken.

1. partition the set of cloning vectors for the proce-
dure as described in Section 6,

2. as a new vector v is generated, either

(a) merge v into an existing partition, or

(b) merge two lower profit classes and keep v as
a new partition, or

(c) (if the quotas permit) create a new partition
for v.

In implementing this scheme, an efficient means of in-
crementally comparing and merging vectors based on
costs is needed.

A number of schemes suggest themselves, including
reapplication of the partitioning algorithm from Sec-
tion 6, clever application of string matching algorithms,
representing the set of retained cloning vectors as a
prefix tree, and simply keeping the k partitions with
largest estimated improvement. Which of these meth-
ods is most appropriate depends heavily on the inter-
procedural data-flow problem being used as a basis for
cloning.

7 Related Work

Approaches similar to procedure cloning have appeared
in intraprocedural optimization and partial evalua-
tion. Wegman describes an algorithm to replicate ba-
sic blocks in the control flow graph based on intra-
procedural data-flow solutions and incrementally prop-
agate the more precise solutions [11]. The algorithm
reduces code growth by avoiding replication using a
number of heuristics, but these heuristics are not suf-
ficient to always prevent exponential code growth.

In the partial evaluation literature, the technique
called specialization involves replicating code in or-
der to tailor the code to particular variable values or
types [?]. Bulyonkov describes an approach based on
abstract interpretation to locate program points where
specialization improves information. He observes that
the problem is appropriate in both interprocedural and
intraprocedural settings. The execution time of the
specialization algorithm is bounded by the execution
time of the program. This time may still be exponen-
tial in the size of the program.

Ruf and Weise present an algorithm to reduce the
amount of specialization in a partial evaluator [10].
Their algorithm computes the value of each statement
in a specialization. Two specializations are equiva-
lent if they result in the same value for every state-
ment, even if the information they provide is differ-
ent. This approach is very similar to our Phase 2 algo-
rithm. However, our approach differs from theirs in two
ways. First, while both algorithms consider the state
resulting from a cloning decision, their algorithm does
not perform the state minimization over the program.
It would presumably maintain separate specializations
when two copies have function calls passing different
parameters, even if the net effect results in identical
specializations in all descendant procedures. Second,
because it can target specific points of interest, our ap-
proach can use significantly less space than maintaining
information about each statement.

8 Conclusion

This paper has described an efficient algorithm for de-
ciding how to clone a program for improved optimiza-
tion. This general approach bases cloning on any for-
ward interprocedural data-flow analysis problem.

The algorithm was designed in the context of the pro-
gram compiler for the ParaScope programming envi-
ronment – the tool that manages interprocedural issues
in compilation [3]. This general algorithm supports a
number of emerging applications for cloning. These
applications come from diverse areas: compiling for
scalar architectures, compiling for both shared-memory
and distributed-memory parallel architectures, and in-
strumenting code for run-time detection of race con-
ditions in shared-memory parallel programs. To date,
we have effectively employed cloning in experiments
with interprocedural constant propagation [?, 8] and
interprocedural transformations for parallel code gen-
eration [?].

ParaScope is devoted to high-performance Fortran
programming, but the need for cloning arises in many
other contexts. For example, in languages with im-
plicit typing, cloning enables separate calls to a pro-
cedure to be customized according to the types of the
input parameters. Similar problems appear to arise



in compilation of object-oriented languages and in the
implementation of optimized bodies for generic proce-
dures in Ada, as well as those areas discussed in the
previous section. Experimentation is needed to verify
that the assumptions used in our algorithm generalize
to these other contexts.
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