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Abstract

Despite substantial progress in the theory of interprocedural data flow analysis, few prac-
tical compiling systems have applied such techniques to produce more efficient object
programs. For a compiler to perform interprocedural analysis and optimization, it needs
access to information about the entire program during the compilation of each procedure
in the program. Imbedding the compiler in a programming environment simplifies the
task of efficiently providing this support. The compiling system in the programming
environment has been designed to optimize whole programs. This paper discusses the
design of that compiler. It sketches the algorithms used to perform interprocedural analy-
sis and discusses issues involved in constructing a practical interprocedural optimizer.

1. Introduction

The programming environment is an inte-
grated collection of tools to assist programmers in
building numerical software in Fortran. Although,
sophisticated systems exist to support program-
mers who write in high level languages that are
popular among computer scientists, like Lisp [21],
C [13], Mesa [17], PL/I [22], and Smalltalk 80
[12], little effort has been expended to provide
similar support for Fortran, the language used by
most numerical programmers. The programming
environment [14] is intended to fill this void.

Since Fortran users have come to expect
compilers that generate excellent code, proper
concern for efficiency is important to the
programming environment project. Indeed, one
of its primary goals is to mount a concerted attack
on the problems of performing interprocedural
analysis and optimization in a compiling system.
Few commercial optimizing compilers employ
interprocedural techniques because the cost of
gathering the requisite information is too great in a
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traditional batch compiler.1 Computing the side
effects of a procedure call requires detailed knowl-
edge of the internals of both the called procedure
and any procedures invoked either directly or indi-
rectly from it. Thus, the compiler potentially
needs information about the internals of every
procedure to determine the side effects of proce-
dure calls, even separately compiled procedures.
Without the structure of an external database,
gathering this information would require examin-
ing the source of every procedure in the program -
an expensive process. This is particularly unfortu-
nate since the primary goal of separate compila-
tion is to reduce the amount of recompilation
required in response to incremental changes to the
program.

A software development environment like
changes the compilation process enough to make
computing such information palatable. Since all
modules are developed and all programs are

1Tw o notable exceptions are IBM’s PL/I Optimizing
Compiler and Xerox’s Interlisp-D system. The former com-
putes side effects for a set of procedures compiled as a unit, but
makes no attempt to pass such information between indepen-
dent compilations [19]. The latter provides an interactive query
facility that computes interprocedural information as an aid to
understanding and debugging programs [16].



defined using tools of the environment, these tools
can cooperate to record the information necessary
to do a good job of interprocedural analysis and
optimization. For example, the source editor can
record information about the uses and definitions
of variables that the environment needs to compute
the side effects of each procedure in a program. If
this information is saved in a central database, it
will be available for use by the optimizing com-
piler on demand. Furthermore, since the only
mechanism for changing modules or programs is
through the tools provided by the environment, the
environment can assure that the information the
compiler finds in the database always reflects the
current state of the program and its procedures.

This paper presents an overview of the opti-
mization process as it is designed into the envi-
ronment. From the discussion it should become
clear that the concern for interprocedural analysis
and optimization has profoundly influenced the
design of nearly every component of the environ-
ment.

2. The Programming Environment

The programming environment is designed
to run on a high-performance workstation with bit-
mapped screen and mouse. It is currently being
developed on Sun Microsystems workstations, but
the implementation has been crafted to make it
easy to move toother machines with similar capa-
bilities. The environment is organized as a collec-
tion of command processors running cooperatively
under a singlemonitor program. The monitor
controls interactions between these command pro-
cessors and provides primitives for handling the
mouse, bit-mapped screen, keyboard, menus, and
windows.

The command processors record and use
information in thedatabase. The database is used
as a repository for information about programs
and procedures in the environment. In particular,
it provides a convenient mechanism for communi-
cation between tools. Tw o types of objects are
found within the database: modules and programs.
A module is an editable unit containing one or
more Fortran subprograms. Aprogramis a collec-
tion of modules that can be executed. A single
module may be incorporated into several pro-
grams. The externally known names defined
within a module areentries. Entries usually repre-
sent the names of subroutines that can be called.

The environment provides tools for dealing
with both modules and programs. The principal
components of the current environment are the
module editor, the program editor, and an execu-

tion manager.2 An interactive debugger and an
optimizing compiler are under development.

2.1. Module Editor

The module editor, or intelligent Fortran
editor, combines a knowledge of Fortran together
with access to the data base in order to simplify
the programming process. The module editor
helps the programmer enter syntactically correct
programs by providing commands that generate
templates for the major language constructs. For
example, to insert a DO-loop, the programmer
need only invoke the DO-loop command and the
cursor is replaced by a DO-loop template with
place markers in the positions where further text
should be entered. The editor obviates the need
for a parser by directly constructing an abstract
representation of the program. All components of
the environment use this abstract syntax tree as the
standard program representation.

The editor makes use of information stored
in the project data base to help the programmer
construct subprograms that are consistent with the
program being developed. For example, when a
programmer wishes to insert a call to an external
subroutine, the editor queries the data base to
retrieve the parameter specifications for the called
routine and uses these to prompt the user for
parameters. From the user’s viewpoint, the editor
automatically inserts a template for each actual
parameter that explicitly identifies its name and
type.

2.2. Program Editor

The program editor, or composition editor,
assists the user in defining a consistent and com-
plete version of a program. It helps the user spec-
ify the collection of module-versions that make up
a version of the program and ensures that a defini-
tion of each entry point used in the program-
version is included in this collection. When the
desired specification differs only slightly from an
existing one, the composition editor simplifies the

2The execution manager uses standard tools to compile
and execute a program. We do not discuss it in this paper.



specification process by providing the ability to
edit an existing program-version. Additionally, it
has a library search mechanism to allow an auto-
matic search to complete the composition.

2.3. Interpretive Debugger

The interpretive debuggerwill enable the
programmer to step through parts of a given pro-
gram, allowing him to monitor and interrupt
execution. By cooperating with the compiler, the
interpreter will be able to handle hybrid execution
of a program consisting of both compiled and
interpreted modules. Thus, during debugging, the
programmer can execute stable module-versions in
a compiled form while interpreting modules under
development. This makes interpretive debugging
a practical tool for large programs, by allowing
control to pass quickly through those parts of the
program that are uninteresting to the debugging
process and bringing the full power of the inter-
preter to bear on those parts of the program where
it is needed. We also plan to have the debugger
support reversible execution.

2.4. Optimizing Compiler

In addition to tools designed to help the
numerical programmer develop, test, and maintain
programs, any serious programming environment
for Fortran must pay careful attention to the effi-
ciency of compiled code if it is to satisfy the
numerical community’s strict requirements for
efficient execution. Therefore, the programming
environment will include an ambitious optimizing
compiler. Because much of the work of a tradi-
tional compiler’s front end is performed in the
environment’s module and program editors, its
‘‘compiler’’ consists primarily of an optimizer and
a code generator. In addition to the standard tech-
niques from global optimization, the compiler will
use interprocedural information and attempt inter-
procedural optimizations. In order to effectively
collect and use interprocedural information, we
have divided the optimizing compiler into a pair of
compilers, the module compiler and the program
compiler. The motivation for this subdivision and
the responsibilities of the program compiler are
the subject of much of the rest of this paper.

3. Optimizing Whole Programs

Compiler optimization researchers have
long believed that interprocedural effects are the
last remaining major source of inefficiency in

languages, like Fortran, with mature optimizing
compilers. Why then do so few compilers attempt
interprocedural analysis or optimization? The rea-
son is cost. To effectively deal with interprocedu-
ral effects, the compiler needs access to informa-
tion from every procedure in the program. In
other words, to compile a single module, the sys-
tem would need to read and analyze all the mod-
ules contained in the program. Since the number
of modules can grow quite large, the cost in com-
pilation time would far outweigh the benefits in
improved optimization. This is particularly vexing
in Fortran, because the goal of separate compila-
tion is to reduce the amount of work that must be
done to prepare a large program for execution after
an editing change.

In the context of a sophisticated program-
ming environment like , a  more palatable solution
is possible. If the programmer exclusively uses
the tools of the environment to prepare his pro-
gram for execution, we can have those toolsspyon
him record in the data base the information needed
to support interprocedural data flow analysis. The
environment can then perform interprocedural data

flow analysis over the call graph3 of the program
and save the information in the database, where
the module compiler can reference it, on demand,
to get a precise specification of the side effects of
a called procedure. This permits the module com-
piler to build a more accurate representation of
data flowwithin a module.

An environment also makes it possible to
perform interprocedural optimizations, like in-line
substitution and linkage tailoring, that improve
code across procedure boundaries. Such optimiza-
tions are possible because the environment has
access to the source text for all the component
modules of a program. Furthermore, the notion of
program composition supported in the environ-
ment naturally provides a degree of control over
the consistency of the executable that is difficult to
achieve in traditional compilation schemes.

While using interprocedural analysis and
optimization can result in more efficient object
code, it introduces a new difficulty: therecompila-
tion problem. Whenever the compiler uses

3Actually, the call graph is a multi-graph, with an edge
for each call site. We always refer to it as a graph for the sake
of consistency.



interprocedural information as the basis for com-
pile-time decisions in one procedure, the correct-
ness of the resulting object code becomes a func-
tion of the state of the entire program. To see this,
consider the compilation of a procedure p that
invokes another procedure q. At the call site, the
module compiler refers to the environment’s
database to determine which variables can be
changed as a side effect of executing q. The infor-
mation about q incorporates information about the
side effects of procedures invoked, directly or indi-
rectly, from within q; hence it may encapsulate
knowledge about all of the procedures in the pro-
gram. After p has been compiled, a change to
some other procedure in the program may change
the interprocedural information on which the com-
piler relied to generate correct code for p, requir-
ing a recompilation of p.

The environment addresses the recompila-
tion problem by performing arecompilation anal-
ysis[4] [24] to minimize the number of recompila-
tions actually performed in response to an editing
change. Section 7 will provide an overview of this
approach.

4. Design of the Optimizer

4.1. Interprocedural Analysis

As an introduction to the subject of interpro-
cedural data flow analysis, consider the problem of
computing the interproceduralMOD side effect.
For any statement s,MOD(s) is the set of all vari-
ables that might be changed as a result of execut-
ing s. Usually,MOD(s) is easy to determine. How-
ev er, if s contains a procedure call, the problem is
more complex. Any variable that is passed as a
parameter to the called procedure or any variable
that is global to the called procedure is a candidate
for MOD(s). Conventional optimizing compilers
assume thatMOD(s) consists of all variables that
are either actual parameters at the call site or
global variables of the called procedure. This is
the safest assumption possible in the absence of
information about the called procedure.

To compute a more preciseMOD(s), we need
to look at the variables that might be changed,
directly or indirectly, by the called procedure, q.
Let GMOD(q) be the set of variables that may be
changed by an invocation of q. If we can deter-
mine GMOD(q) for each procedure q in the pro-
gram, thenMOD(s) for an invocation of q can be
determined by seeing which variables in the call-
ing procedure are bound to members ofGMOD(q)

by the call.

Notice thatGMOD(q) consists of two compo-
nents:

• the setIMOD(q) of variables that might be
modified by statements in q other than pro-
cedure calls;

• the set of variables that might be modified
as a side effect of a procedure call from
within q.

The setsIMOD(q) for each entry q in a module are
independent of any other procedures in any pro-
gram in which the module is incorporated. They
are, however, a function of the specific implemen-
tation, or version, of the module. Hence, the sets
can be computed by the editor and stored with the
version of the module which generated them.
From these sets,GMOD(q) can be computed for a
specific version of a program by solving a data
flow problem on the call graph [5] [7]. Since the
setsGMOD(q) depend on the specific call graph,
they must be stored with the version of the pro-
gram for which they are computed.

This observation illustrates an important
aspect of the division of labor which occurs in the
programming environment. In addition to parsing
and type checking, the editor can perform most of
the information gathering (i.e., finding all the vari-
ables used and defined in the body of the proce-
dure) needed to support interprocedural analysis.
An independent process can then compute the
interprocedural side effects for the whole program.
Because the analysis of these side effectsdoes not
depend on output from the compiler, the environ-
ment can compute interprocedural information for
each entry in the program before any module is
compiled.

4.2. Program Compiler

Within the programming environment, the
responsibility for optimization of compiled code is
distributed among several components of the envi-
ronment, rather than remaining the sole responsi-
bility of the optimizing module compiler as it is in
more traditional systems. The module editor is
responsible for producing local information about
the behavior of individual procedures — for exam-
ple, the procedures called and the variables used or
modified. The program editor is responsible for
defining the composition of the program — which
modules are actually included in the program —
and producing the call graph which describes how



they are related. Once interprocedural information
has been computed and stored in the database the
optimizing compiler can use it to produce better
object code.

Absent from this discussion is the compo-
nent that is responsible for truly interprocedural
compilation tasks, such as propagating interproce-
dural information around the call graph or making
decisions about interprocedural optimizations. In
the environment, these tasks are the responsibility
of a new tool - theprogram compiler. Thus the
tasks traditionally assigned to an optimizing com-
piler are divided between the optimizingmodule
compiler, which produces object code from the
source for modules, and the program compiler.

The program compiler is responsible for
directing the construction of an executable image
of a program. Its task is threefold: to determine
which procedures must be recompiled, to ensure
that those compilations have the correct interpro-
cedural information available to them, and to sug-
gest interprocedural optimizations to the module
compiler. Thus, it is a combination of an interpro-
cedural data flow analyzer, a dependence-based
program constructor likemake[11] and its succes-
sors [23], and an optimizing advisor for the mod-
ule compiler. In the role of data flow analyzer, it
uses information saved by the module and pro-
gram editors to compute flow insensitive interpro-
cedural summary information [7], flow insensitive
interprocedural aliasing information [6], and inter-
procedural constant propagation information [24].
As a program constructor, it uses a program’s call
graph and composition to derive dependence rela-
tionships and it uses information from the module
editor, the program editor, and previous compila-
tions to precisely determine which modules need
recompilation. In the role of optimization advisor,
it uses interprocedural information to make deci-
sions about where it is profitable to perform inter-
procedural optimizations like constant folding and
linkage tailoring.

The program compiler is the central tool in
the optimization strategy for the environment.
The remainder of this paper is devoted to dis-
cussing the functions it must perform and algo-
rithms for efficiently accomplishing those func-
tions.

4.3. The Optimization Process

The information flow in the compilation
system is depicted in Figure 1. The program

Figure 1. Compilation System.

editor produces a prescription for composing the
program which is used as the input for compiling
the program. But the program compiler also per-
forms interprocedural data flow analysis. To do
this it requires information about the usage of vari-
ables in the various modules of which the program
is composed. This information is collected and
recorded in the data base by the module compiler
as it edits each of the individual routines. Hence,
the program compiler is invoked after the program
editor and the module editor. Howev er, it is
invokedbeforeany module compilations. Results
of interprocedural data flow analysis are therefore
available for use in the the optimization of individ-
ual modules.

As we shall see, there is also systematic
feedback of information from the program com-
piler to the module and program editors and from
the module compiler to the program compiler.
These effects are primarily related to incremental



program compilation, discussed in Section 7.
However, one application of the interprocedural
data flow information computed in the program
compiler is to perform interactive detection of data
flow anomalies in the module editor. If the user
revises a module by attempting to pass a constant
in a parameter position that might be changed at
run time the editor informs the user of the poten-
tial modification.

5. Interprocedural Optimization

The optimizing module compiler in the pro-
gramming environment will capitalize on the pres-
ence of interprocedural information and module
source code in the database to perform optimiza-
tions that span procedure boundaries. The goal of
all interprocedural optimization is to tailor the
code generated for a procedure to execute more
efficiently by taking into account, at compile time,
facts about the run-time environment in which the
procedure will be executed. The optimizer uses
stored knowledge about the calling procedure and
the values of its variables at the call site, along
with information about the side effects of any call
sites in the procedure being compiled, to generate
less general, more efficient code.

5.1. In-line Substitution

The most straightforward interprocedural
optimization is in-line substitution. While this
type of optimization has been discussed in the lit-
erature since the mid-1960’s [10], few practical
compiling systems have actually implemented it.
To perform in-line substitution, the compiler sim-
ply treats the procedure body as if it were a macro
definition and the call site as an instantiation of the
macro. Actual parameters are used in place of for-
mal parameters in the expanded body, and local
storage for the called procedure is merged with the

local storage for the calling procedure.4 This trans-
formation completely eliminates the overhead
associated with making the procedure call. When
followed by a decent global optimization pass on
the expanded procedure, in-line substitution
results in optimizing both procedures together,
producing the best possible code for them within
the given compiler.

4Of course, the compiler must carefully avoid name con-
flicts and ensure that the parameter binding semantics are pre-
served.

For those procedures which are called from
only one place and those whose body, when com-
piled, is smaller than the linkage code, in-line sub-
stitution is always desirable. In the general case,
however, the optimization benefits must be
weighed against the increased object code size
resulting from multiple copies of a single proce-
dure.

5.2. Linkage Tailoring

Strictly speaking, in-line substitution is a
type of linkage tailoring. However, there are a
number of less radical forms. For example, the
compiler might usesemi-closedlinkages in which
some, but not all, of the code from the called pro-
cedure is moved into the calling procedure at the
call site. The main advantage of doing this is to
simplify the linkage code in the called procedure
by tailoring it to the environment at each call site.

The program compiler will attempt to dis-
cover places wherecloninga procedure can lead to
improved optimization. When the interprocedural
environment in which a procedure is to be
executed differs radically between two sets of call
sites, the program compiler can clone the proce-
dure, tailoring the interface in different ways to the
different call sites. To illustrate the usefulness of
this technique, consider a procedure from a library
that employs an option parameter to specify which
of two different ways the procedure is to be used.
Frequently, the option is specified by a constant
parameter at the point of call. For one of the two
option values, the procedure reduces to a small
fragment of code suitable for in-line substitution;
for the other, the reduced code is much longer.
The program compiler might clone this procedure
into two copies, one called from all sites in which
there is a constant parameter specifying the short
code fragment and the other called from the
remaining sites.

Because, on the surface, it appears that
cloning may cause significant space problems, it is
important to understand its application. Rather
than generating clones to attack specific opportu-
nities, the compiler should generate clones to iso-
late uniquely bad call sites. In the case of an out-
standing opportunity for improvement, in-line sub-
stitution is likely to result in greater improvement
than cloning; in the case of a few disastrously bad
call sites, cloning will allow the optimizer to gen-
erate general code for them while optimizing for
the remaining sites. This optimization, then,



should be considered a technique for isolating
problems rather than a direct means of improving
optimization.

5.3. Other Techniques

Finally, a number of interesting optimization
opportunities arise because the compiler operates
inside a programming environment, where it has
easy access to the text for each procedure and
records of previous compilations. An environment
can perform transformations which are difficult to
implement in a traditional separate compilation
system. One example is cross jumping, in which a
simple pattern matching process is used to unify
identical instances of procedure epilogue code.
Extraneous copies of this code are replaced by
branches into the remaining instance, with a con-
comitant saving in object code size.

6. Interprocedural Algorithms

6.1. Flow Insensitive Side Effects

The problem of computingGMOD(q) for
each procedure q in the program, as described in
Section 4.1, is aflow insensitivedata flow prob-
lem. Intuitively, a data flow problem is flow insen-
sitive if the information being computed does not
depend on the flow of control in the individual
procedure bodies. For example, if we assume that
any path can be executed, the problem of comput-
ing MOD is flow insensitive because a variablemay
be modifiedif there is a statement somewhere in
the procedure body that can modify it as a side
effect. This can be determined by a simple scan of
the procedure source, along with an appropriate
analysis of the indirect effects of calls to other pro-
cedures. By contrast, the computation of the set of
variables thatmust be modifiedas a side effect of a
call is flow sensitive, because a variable is in the
set only if it is modified oneverypath through the
procedure. Determining this will require an analy-
sis of control flow in the procedure.

We restrict our attention to the computation
of flow insensitive side effects, since Myers has
proved that the precise computation of flow sensi-
tive side effects is intractable [18]. In addition, the
flow insensitive problems have the nice property
that the computation of preliminary information
can be achieved without resorting to complex data
flow analysis in the editor. For example, the set
IMOD(q) of variables that may be modified by a
procedure q is simply the set of variables

mentioned on the right hand side of an assignment
or in a read statement.

Although Banning [2] suggests solving flow
insensitive problems by formulating them as data
flow problems on the call graph, the usual fast data
flow algorithms cannot be applied for technical
reasons. However, as a part of our preliminary
research, we have discovered a decomposition of
such problems into two subproblems, each of
which can be solved by fast elimination tech-
niques. In particular, using an algorithm due to
Tarjan [20] we can compute solutions to both
problems for reducible call graphs with recursion
in time O(Eα(E,N)) where E is the number of
edges in the call graph, N is the number of ver-
tices, andα is a function related to an inverse of
Ackermann’s function [7]. This is the best known
time bound for solution of such problems.

6.2. Aliasing

The program compiler also computes infor-
mation about aliasing relationships involving for-
mal parameters and global variables. Whenever a
procedure can access a single storage location
using more than one name, those names are said to
bealiases. It is essential that the module compiler
understand which names are potential aliases; in
the absence of such information it must treatevery
global variable andevery formal parameter as if
they were potential aliases. This implies, for
example, that their values cannot be retained in
registers across statement boundaries.

To understand this, consider the following
sequence of assignment statements:

a = 10
b = 12
c = a * b

In the absence of aliasing, the compiler would
probably retain the values of a and b in registers,
since they are referenced almost immediately after
being computed. If, however, this procedure can
be invoked in a manner such that a and b refer to a
single storage location, this simple optimization to
eliminate apparently redundant stores and loads
would result inincorrectlyassigning the value 120

to c.5

5Strictly speaking, the Fortran standard makes aliases il-
legal in the sense that the compiler need not pay attention to the
problem: if the programmer uses aliases, he may encounter un-
expected results. However, many compilers handle them cor-
rectly, creating an expectation of such handling in programmers



To provide the module compiler with a more
precise understanding of which variables are
potentially aliased, the program compiler solves an
interprocedural data flow analysis problem. For
each procedure p, it computes a setALIAS(p) con-
taining all the aliases that can hold on entrance to
p. Each potential alias is represented by a pair
<x,y>. The presence of the pair <x,y> inALIAS(p)
implies that some sequence of call sites in the pro-
gram results in an invocation of p with both x and
y as names for a single storage location.

The aliasing problem can be solved using
any of sev eral algorithms from global data flow
analysis [6]. In particular, theO(Eα(E,N)) tech-
nique developed for computing flow insensitive
summary information can be used, albeit with a
slightly larger constant than that found in the sum-
mary computation.

6.3. Constant Propagation

Even though the general constant propaga-
tion problem is undecidable [15] and the usual
approximate constant propagation problem is flow
sensitive, hence intractable in an interprocedural
setting [18], it is important to propagate some con-
stants interprocedurally to compensate for the
widespread use of constant parameters in pro-
grams that incorporate routines from common
libraries like LINPACK [9]. For example, inLIN-

PA CK’s BLAS library every routine has a parameter
to hold the stride of elements in a vector passed to
the routine. In practice this parameter is almost
always equal to the constant 1, a fact that would be
enormously useful in optimizing routines from
LINPACK, as Dongarra has shown [8].

In her dissertation, Torczon presents a set of
algorithms that compute useful approximations to
the complete set of interprocedural constants [24].
These algorithms differ in the sets of constants
they detect, in their expected running times, and in
their suitability for application in an incremental
framework. The optimizer will make use of one of
these techniques, based on the notion ofjump
functions. A jump function approximates the
manner in which constants are propagated through
procedures, using techniques which are much less
expensive than performing global constant propa-
gation. Most of the work involved in computing

who use them. Therefore, the environment will generate cor-
rect code in the presence of aliases.

jump functions can be pushed back into the mod-
ule editor, greatly decreasing the cost of repetitive
evaluations of the function during the actual prop-
agation phase.

By using jump functions and by having the
editor determine which parameters are constant at
the point of call to a procedure from within a mod-
ule being edited, we can compute a useful approxi-
mation to the set of interprocedural constants [24].
Our method identifies a set of variables which are
provably constant on entry to each procedure in
the program. While this set is a subset of the
provably constant variables in the program, it does
include many of the constants which are interest-
ing to optimization. In particular, it detects the
loop strides passed around insideLINPACK, our
example above. Giv en this information, the mod-
ule compiler can automatically generate code that
is identical to the hand optimized code used in
Dongarra’s study.

7. Incremental Program Compilation

Although the module compiler is a mono-
lithic program, recompiling from scratch each
time it is invoked, the program compiler must be
able to cope with incremental change in a reason-
ably efficient manner. Otherwise, editing a single
module in a program could lead to recompilation
of every module in the program, an expensive pro-
cess.

Hence, the program compiler must have
ways of limiting the amount of work that is
required in response to changes in the behavior of
individual modules and changes to the composi-
tion of the program. We subdivide these issues
into two categories — incremental updating of
interprocedural information and limiting module
recompilation after change.

7.1. Incremental Update

Once interprocedural information has been
computed for a program, it must be updated in
response to each change of a module incorporated
in the program. To handle this problem, the editor
must record any changes in the interprocedural
sets, such asIMOD, each time a module is changed.
When the program compiler is invoked, it must
find all the modules for which the data flow infor-
mation has changed and propagate the effects of
those changes around the call graph until the val-
ues stabilize. Since program call graphs can be
quite large and since the effect of a small change



begin
worklist ← {p};
while worklist ≠ ∅ begin

remove arbitrary elementq from worklist;
let oldGMOD = saved value ofGMOD(q);
computenewGMOD,the new value ofGMOD(q);
if newGMOD≠ oldGMODthen

add each procedure that callsq to worklist;
end

end

Figure 2. Change Propagation Algorithm.

may be fairly local, it seems unreasonable to
recompute the interprocedural information from
scratch after each change. Some form of directed
incremental change propagation is much more
appropriate.

For example, consider recomputing the
GMOD sets after a change to a single procedure p.
The straightforward strategy would use a worklist
of procedures for whichGMOD must be recom-
puted. The algorithm is given in Figure 2. When
the worklist is finally empty, the change has propa-
gated as far as it can through the graph. Unfortu-
nately, this can also take a significant amount of
time, especially when there are cycles in the call

graph.6

Additionally, we must recognize that having
an incremental algorithm is not enough; we must
structure the development tools to provide the
information needed to drive these incremental
techniques without requiring extensive re-analysis
of the program. We hav e divided the responsibil-
ity for producing this information between the edi-
tors. Recall that the module editor is responsible
for ensuring the syntactic and semantic soundness
of modules; this makes it the obvious place to
detect when a module has been changed in a man-
ner which necessitates recompilation. Changes to
the call graph can also require some degree of
recompilation. The program editor maintains the
program’s call graph; it also constructs a separate
list of additions to and deletions from the call
graph to assist the incremental data flow

6The programming environment supports a recursive
Fortran.

algorithms. This list is reset on every program
compilation.

Using this information, the program com-
piler can incrementally update the interprocedural
summary, aliasing, and constant information
which is kept for each program. When the pro-
gram compiler is invoked, it collects these records
left behind by the two editors and uses them to
understand what significant changes have been
made since the last program compilation for this
program. This allows it to effectively use incre-
mental updates to bring the information into a
state consistent with the new state of the pro-
gram’s source text. In each of our algorithms, we
have taken some care to ensure that an effective
incremental technique can be used to update the
information in response to editing changes in the
program [5] [7]. For example, the algorithm dis-
cussed in section 6.1 can be adapted in a natural
way to efficiently update information on side
effects — for most cases in time linear or nearly
linear in the size of the affected region of the call
graph [7].

7.2. Limiting Recompilation

To make interprocedural analysis and opti-
mization practical for large programs, the compiler
must do a credible job of solving the recompila-
tion problem introduced in Section 3. Without a
good solution to this problem, the compiler can
forfeit nearly all the benefits of separate compila-
tion — effectively requiring a complete recompila-
tion of the program in response to minor editing
changes. One of the major goals of the program
compiler is to eliminate unneeded recompilations.
As a part of the preliminary design work for the
program compiler, Torczon has developed a family



of techniques for limiting recompilations [24] [4].

Each of these techniques is characterized by
a test based upon some method for reasoning
about how interprocedural information is actually
used by the module compiler. For example, con-
sider the flow insensitiveMOD sets described in
Section 4.1. If a variable x∈ MOD(s) for some call
site s, then xcanbe modified as a consequence of
executing statement s. There may, howev er, be
execution paths through the called procedure along
which x is not modified. Thus, the optimizer can
only rely on MOD information as an assertion of
whatmayhappen, not whatmusthappen. Because
of this fundamental fact about the nature of flow
insensitive summary information, no recompila-
tion can berequired by a change that deletes an
element from aMOD set. Since a variable inMOD

may or may not be modified, the code generated
by the compiler must account for either possibility.
The compiler can only rely on the absence of a
variable fromMOD for an optimization.

For a call site s, this observation leads to one
of the simple recompilation tests. A recompilation
is not necessary if

MOD(s) ∩ REFERENCED(p) ⊆ OLDMOD(s)

whereMOD(s) is the new set,OLDMOD(s) is the old
set, andREFERENCED(p) contains the names of all
variables either used or defined in the calling pro-
cedure. Note that this test requires no knowledge
about what the module compiler has done in the
past; it only uses previous versions of the interpro-
cedural sets.

If the compiler records which interprocedu-
ral facts it actually uses, the recompilation analysis
can be made more precise by comparing the
changed information with the information upon
which the module compiler actually relied. This
requires, however, that the module compiler keep
careful records about its compile-time decisions.
In practice, it will require experience to determine
whether the increased precision in the recompila-
tion algorithm compensates for the added cost of
collecting this information.

7.3. Program Compilation Algorithm

We are now ready to provide an overview of
the strategy for program compilation in the envi-
ronment. To accomplish its responsibilities, the
program compiler employs the following algo-
rithm, organized into several distinct passes over
the program.

(1) Using records left behind by the program
editor and module editor, construct an ini-
tial list of modules requiring recompila-
tion. This list contains precisely those
modules where editing has made a seman-
tic change since last compilation, plus any
modules added to the call graph since the
last compilation.

(2) Incrementally update the interprocedural
summary and aliasing information stored
in the database. The updating techniques
have been described in previous papers [5]
[7].

(3) Compute interprocedural constant propa-
gation information. Because this compu-
tation relies on information produced in
the second pass, it cannot be not done con-
currently with the other interprocedural
analysis. The algorithm for this analysis
was sketched in section 6.3.

(4) Examine information about each proce-
dure not already slated for recompilation
and apply recompilation tests like those
described in section 7.2 to determine
which procedures must be recompiled
because of a change to interprocedural
information used in the last compilation.

(5) Examine the complete recompilation list
in search of opportunities for interprocedu-
ral optimization. In particular, identify
call sites where custom linkages appear
profitable, and direct the module compiler
to produce the appropriate linkages.

8. Expected Improvement

While the potential benefits of interprocedu-
ral optimization have long been discussed in the
literature of compiler construction [1] [10], there
is only a small body of published work dealing
with actual implementations which use these tech-
niques. This is probably due to several indepen-
dent factors, including the difficulty of supporting
these techniques in a traditional compiler and the
lack of an adequate solution to the recompilation
problem. Finally, in the few compilers where such
techniques have been tried, the published results
almost always describe total improvements for the
optimizer without attempting to assess the role of
interprocedural analysis or optimization.

In his proposal for an interprocedural opti-
mizer in the PQCC project, Conradi makes a



detailed assessment of the potential improvement
to be had from interprocedural analysis and opti-
mization [3]. He suggests that a well-done inter-
procedural optimizer could result in a 10-20%
speed-up in execution of the resulting object code.
This includes the direct impact of interprocedural
optimizations like in-line substitution and the indi-
rect effects caused by improved precision in global
flow analysis. He arrives at this number by bring-
ing together studies of the empirical properties of
programs, run-time profiling of code generated by
a number of compilers, and close examination of
the numbers actually published for compilers
which implement interesting interprocedural tech-
niques.

9. Summary and Conclusions

Interprocedural optimization has been
largely neglected in commercial compilers
because it would be too costly. Howev er, the
advent of sophisticated software development
environments may make it possible to perform
interprocedural analysis and optimization in a nat-
ural way. We hav e presented the optimization
strategy used in the programming environment as
an illustration of the issues that must be consid-
ered. To our knowledge, is the only environment
project with the support of interprocedural analy-
sis and optimization as a central goal. The discus-
sion in this paper should convince you that adopt-
ing such a goal has a substantial impact on the
design of every component of the environment.

A preliminary implementation of the pro-
gramming environment already exists. Written in
C for the Sun Microsystems line of interactive
workstations, it includes stable versions of the
monitor, the module editor, the program editor,
and the execution manager. A single-user
database has been in use for over a year; the multi-
user version of the database is under construction.
Implementations of the interactive debugger, the
module compiler, and the program compiler are
underway. Finally, a  number of ancillary com-
mand processors, like a calculator, a terminal emu-
lator, aHELP processor, and a documentation edi-
tor are also included in the current system.
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