
Goal-Directed Interprocedural Optimization∗

Preston Briggs
Keith D. Cooper

Mary W. Hall
Linda Torczon

Abstract – Previous work on interprocedural optimization has focused on accumulating small improvements

by eliminating procedure call overhead and improving global optimization. In our experience, this pro-

duces modest improvements while incurring substantial compile-time costs. We propose a new approach

to interprocedural optimization – a goal-directed strategy. Our approach is conceptually simple: only use

interprocedural transformations when they can enable a high-payoff intraprocedural transformation. This

paper describes our approach and presents several worked examples.

Index terms – Optimization, interprocedural transformations, inline substitution, procedure cloning, inter-

procedural analysis, loop transformations

1 Introduction

Trends in microprocessor design and system design are shifting an increasing share of the burden for perfor-

mance onto the compiler. Microprocessor features like superscalar instruction issue and longer pipelines force

compilers to use more aggressive optimization and scheduling [1, 2]. System features like multilevel memory

hierarchies and multiprocessor parallelism force compilers to adopt aggressive dependence-based restructur-

ing schemes [3, 4, 5]. The net result is to make application performance increasingly sensitive to compiler

effectiveness. This makes code optimization technology a critical contributor to system performance.

As pressure on code optimization increases, so does interest in interprocedural optimization. This is

natural. The history of code optimization suggests that increasing the context available to the optimizer

leads to better code. Unfortunately, interprocedural optimization can have negative effects.

• The resulting code can run slower than the original [6].

• Compilations can take much longer [7].

• Using any interprocedural transformation introduces a recompilation problem [8].

These negative effects are particularly pronounced in compilers that perform extensive optimization. The

heart of the problem is the compile-time expense of interprocedural optimization compared with payoffs,

∗This work has been supported by IBM Corporation and by DARPA through ONR contract N00014-91-J-1989.

1



which are typically modest and sometimes are negative. A common solution is to avoid interprocedural

transformations entirely; we advocate a more aggressive approach – a goal-directed approach.

Our strategy is to use interprocedural transformations to enable the application of high-payoff opti-

mizations – optimizations that routinely improve program run-time by a factor larger than the potential

degradation. By targeting high-payoff optimizations, we can reasonably expect that the benefits after inter-

procedural optimization will be significant enough to outweigh any secondary effects in the optimizer. At

the same time, we incur the compile-time costs of interprocedural transformations only when the compiler

can expect a large payoff.

This paper focuses on two specific interprocedural transformations. Inline substitution is a simple form of

interprocedural code motion [9]. It replaces a procedure call with a copy of the code for the called procedure.

Of course, names must be translated to model the effects of parameter binding and to merge the name

spaces. Procedure cloning lets the compiler produce multiple implementations of a single procedure [10].

The compiler creates several copies of the procedure and distributes the calls among them. By connecting

similar calls to a distinct implementation, the compiler can generate code tailored to the environment at

those calls.1

The paper is organized into three principal sections. In the next section, we present an overview of our

goal-directed approach to managing interprocedural optimization. In Section 3, we provide several examples

of target optimizations suitable for use with our strategy. The final section gives a detailed algorithm for

one goal-directed strategy and describes two experiments that have used the techniques.

2 Strategy

The key contribution of this paper is a framework for using interprocedural analysis and interprocedural

transformations to improve the running time of the program. Previous approaches have focused on accu-

mulating small improvements by eliminating call overhead and improving global optimization. Our strategy

selects a few high-payoff intraprocedural transformations and uses a combination of interprocedural analysis

and transformations to create new opportunities for applying them.

This strategy is the result of a long search for an effective approach to managing interprocedural op-

timization. A turning point in our quest was a study on the efficacy of inline substitution. We used

source-to-source transformation and five commercial FORTRAN optimizing compilers [6]. The results were

disappointing. With each of the five compilers, we found cases where the side effects of inline substitu-

tion overwhelmed improvements, resulting in a net slowdown of the code. This happened even in cases

where inline substitution eliminated effectively all the call overhead. To make matters worse, there was no

1Procedure cloning is similar to the notion of customization in Self [11].

2



consistency between compilers; the code that provoked one compiler’s worst degradation produced another

compiler’s best improvement.

This experience, along with other experiments [12], has led us to propose a goal-directed strategy. Our

approach can be stated simply. The compiler should only apply interprocedural transformations when the

potential profit outweighs the potential problems. To implement this notion, the optimizer should:

1. Locate focus points in the program. A focus point must have two properties:

(a) the target intraprocedural transformation might be profitable if only it could be applied, and

(b) supplying more context from other procedures would make application possible.

2. Use a combination of interprocedural data-flow information, interprocedural code motion, and proce-
dure cloning to transform the focus point in a way that makes it possible to apply the target optimiza-
tion.

3. Apply the target optimization.

This scheme only applies interprocedural transformations when they enable application of one of the target

optimizations. By targeting high-payoff optimizations, we expect that the improvement from the target

transformation will outweigh any degradation introduced by the interprocedural transformations.

3 Target Optimizations

To make this discussion concrete, a few examples of target optimizations are needed. To work well in our

strategy, a target optimization must satisfy two requirements:

1. It must produce a relatively large improvement when applied. The study on inline substitution suggests
an expected payoff of 20% may be needed to overcome possible side effects [6].

2. It must require some surrounding context for application. If this is not the case, then the interproce-
dural techniques will not create new sites where it can be used.

We have experimented with two target optimizations: register blocking and loop parallelization. Several

others suggest themselves, including specialization of polymorphic procedures based on type information

and memory hierarchy management (e.g., blocking for cache).

Simply identifying a target optimization is not enough. We must determine how much context is required

to establish both safety and profitability and how interprocedural techniques might create a context in which

it can be applied. Finally, we must be able to locate a focus point (at compile-time) where the optimization

would be profitable if applied. The following sections explore some specific target optimizations.

3.1 Register Blocking

In scientific computation, the performance of inner loops often determines the overall performance of

the program. As memory latencies rise relative to instruction times, the presence of loads and stores in

3



do i← 1, 2n
do j ← 1, m

x[i]← x[i] + y[j]
end

end

⇓
do i← 1, 2n, 2

do j ← 1, m
x[i]← x[i] + y[j]

end
do j ← 1, m

x[i+ 1]← x[i+ 1] + y[j]
end

end

⇓
do i← 1, 2n, 2

do j ← 1, m
x[i]← x[i] + y[j]
x[i+ 1]← x[i+ 1] + y[j]

end
end

⇓
do i← 1, 2n, 2

x0← x[i]
x1← x[i+ 1]
do j ← 1, m

t← y[j]
x0 ← x0 + t
x1 ← x1 + t

end
x[i]← x0

x[i+ 1]← x1

end

Figure 1 Register blocking transformations

4



these inner loops becomes an increasingly important factor in determining run-time speed. Of course, any

performance problem can be viewed as an opportunity for code optimization; the rise in relative latency of

memory has led to effective techniques for eliminating array references in loops [13]. For our purposes, we

consider loop fusion, scalar replacement, and unroll-and-jam as a single class of optimizations that we term

register blocking.

Loop fusion Adjacent loops are merged if their iteration spaces are identical and the loops reference the
same memory locations. By moving definitions and uses into the same loop, we can create new
opportunities for scalar replacement to eliminate memory accesses.

Scalar replacement The optimizer uses the results of dependence analysis to find array element values
that are reused within a loop and replaces references to them with references to compiler-generated
scalar temporaries. This allows the values to be placed in registers, eliminating loads and stores in the
loop.

Unroll-and-jam After scalar replacement, many loops use only a small fraction of the floating-point reg-
isters. If a loop nest contains at least two loops and loop interchange is safe, then the compiler can
apply unroll-and-jam – outer loop unrolling followed by fusing the new inner loop bodies. If the outer
loop carries reuse, then unroll-and-jam eliminates additional loads and stores.

Figure 1 shows the effect of each transformation. The first code fragment is a simple doubly-nested loop.

The second fragment depicts the first step of unroll-and-jam – the outer loop has been unrolled. The third

fragment shows the result of fusing the two inner loop bodies. The final fragment displays the effect of scalar

replacement. It encodes the reuse of array elements in scalar temporary variables.

When it can be applied, register blocking is quite effective at converting a memory-bound loop into a

compute-bound loop. To determine if a loop is memory-bound, we compute the balance of both the loop

(βl) and the machine (βm):

βl =
flops/iteration

memory accesses/iteration

βm =
flops/cycle

memory accesses/cycle

If βl < βm, the loop is memory-bound. If βl ≥ βm, the loop is compute-bound (the machine’s floating-point

units are 100% busy) and blocking would have no major effect [14].

Carr has shown that register blocking often produces speedups by factors of 2 to 3 on the SPARC and

MIPS machines [13]. Because of the high payoff, register blocking is an obvious candidate for our goal-

directed approach. Further, register blocking meets the second criterion since unroll-and-jam requires a loop

that is at least doubly-nested and fusion requires two adjacent loops. Interprocedural transformations can

provide opportunities for register blocking by exposing loop nests to these transformations. In Section 4.2,

we show an example where a goal-directed interprocedural strategy to register blocking produces speedups

5



of 2 to 3 on a code that defies the intraprocedural techniques. Carr has reported a factor of 6.4 improvement

on an IBM RS/6000 with the same code [15].

3.2 Improving Parallelism

An area that has received much attention in both the literature and in practice is the automatic detection

of parallelism. Typical parallelizing compilers search for loops that can be run in parallel. The key to

profitable parallel code generation is having enough granularity, or useful computation, inside each parallel

loop to offset the synchronization costs. Otherwise, parallelizing a loop can lead to significant performance

degradation.

Sometimes, transformations can be applied to a loop nest to increase granularity of a parallel loop. For

example, loop interchange swaps two loop headers in a perfect loop nest, reordering the iterations of the

nest. If a parallel inner loop is interchanged with a sequential outer loop, the amount of computation in

the parallel loop may be significantly increased. Interchange is just one of many transformations applied to

loop nests to increase granularity, expose parallelism, or match the number of parallel processes to available

processors.

Procedure calls impede parallel code generation in two different ways. First, calls may interrupt a loop

nest. As an example, the standard tests for safety of loop interchange are difficult or impossible to apply when

the loops of a nest are split between two or more procedures; it is also difficult to apply the transformations

correctly. Second, calls may hide an opportunity. If the routine containing the inner loop is called from

multiple places, it may not always execute inside another loop. In each of these cases, our strategy may

remedy the problem.

• Reformulating the safety and profitability tests for a transformation to incorporate interprocedural
information in place of program text allows these tests to be applied to loop nests spanning multiple
procedures.

• Moving the loops into a single procedure creates a context where transformations on the loop nest may
be applied.

• Cloning multiple copies of the called procedure can create the necessary context in the call graph. This
works by constructing a path through the call graph that ends with the desired environment for the
parallel region.

Hall, Kennedy, and McKinley used a goal-directed strategy to transform loops in several programs from

the PERFECT benchmark suite [16]. They introduced two new forms of interprocedural code motion –

loop embedding and loop extraction. Loop extraction is a form of partial inline substitution, while loop

embedding is the inverse operation. These transformations were combined with interprocedural analysis and

procedure cloning to enable interchange and fusion of loops spanning multiple procedures. They followed

these with loop parallelization. Interprocedural optimizations were applied only when fusion, interchange,

6



and parallelization were enabled and performance estimation predicted that the transformed loops would

have a better execution time.

4 Examples

To solidify the picture, this section presents a series of examples. The first section explores the use of goal-

directed techniques for register blocking. The second section briefly describes two experiments that applied

goal-directed techniques to real programs.

4.1 A Register Blocking Strategy

Not all memory-bound loops are amenable to intraprocedural register blocking. Sometimes, the compiler

can use interprocedural techniques to transform the code so that these loops can be blocked. To find and

transform these sites, the compiler should employ a goal-directed strategy.

Interprocedural techniques can improve the results of register blocking in two ways. First, knowledge

about interprocedural constants can sharpen the dependence information used to test for safety and prof-

itability. Second, moving code across procedure calls may create new places where the transformations can

be applied. To create a goal-directed strategy, we must tie the application of interprocedural transformations

directly to our target optimization, register blocking.

Thus, our overriding goal is to improve the balance of loops, as described in Section 3.1. To achieve this

goal, we establish sub-goals. Figure 2 gives an overview of the entire process. The following paragraphs

provide more detail on each sub-goal.

Find the opportunities To implement a goal-directed strategy successfully, we must have an effective way

of identifying points in the code where the strategy can pay off. For register blocking, the key is to recognize

memory-bound inner loops that cannot be blocked in their intraprocedural contexts. Thus, for each inner

loop, we compute βl. If βl < βm, the loop is memory bound. When we find a memory-bound loop contained

in an obvious loop nest, we can directly block the loop with scalar replacement and unroll-and-jam.

If, in its current procedure, the loop is not nested inside another loop, we mark it as a candidate for

interprocedural help. (The word “candidate” is chosen carefully; procedure cloning and inline substitution

will only help if a call to the current procedure originates inside another loop. Subsequent steps in the

algorithm discover such nesting.) For each candidate loop, we make note of all critical parameters – that is,

parameters to the procedure whose values may be important to the blocking transformations.

Compute interprocedural information For our strategy to improve the object code, two conditions must be

met. First, a combination of procedure cloning and inline substitution must create a multiply-nested loop; at

least two loops are required for unroll-and-jam. Second, the compiler must have enough information about

7



1. find the opportunities
(a) identify memory-bound loops
(b) if > 2 loops in nest ⇒ block it
(c) if single loop, identify critical parameters

2. compute interprocedural information
(a) build an initial call graph
(b) propagate loop nesting summaries
(c) propagate interprocedural constants

3. refine the information
for each procedure p, in topological order,

(a) partition calls to p by critical constants
(b) clone a copy of p for each partition
(c) propagate exposed constants through p

4. inline to deepen loop nests
for each shallow, memory-bound loop

(a) if call is in a loop ⇒ inline the call
(b) block the newly created loop nest

Figure 2 Goal-directed register blocking

the loop nest to let it determine questions of safety and profitability. Thus, the second step of the algorithm

performs interprocedural analysis to discover the necessary facts. The compiler uses a three-step process. It

builds a call graph for the program as written [17]. It creates a summary for each loop that represents the

iteration space – loop index, bounds, and stride – and propagates these around the call graph. It performs

interprocedural constant propagation [18].

Refine the information Our goal is to change the interprocedural structure of the program in a way that

enables additional register blocking. Thus, the third sub-goal is to create an equivalent program that exposes

more information. When multiple call sites invoke the same procedure, the compiler must rely on only those

facts that hold across all of the call sites. Thus, when paths through the call graph merge, information

may be lost. For example, if one site passes the value 3 to parameter x and another passes the value 4, the

compiler cannot rely on either value. By cloning a separate implementation for each call, the compiler can

create an environment where it can use both facts. This may lead to better optimization.

To capitalize on this observation, the compiler examines the procedures in topological order.2 It partitions

calls to a procedure p by constants passed to the critical parameters identified in step 1. Next, it clones a

copy of p for each partition. To refine later procedures, the compiler then propagates any newly exposed

2This discussion ignores recursion. Cooper, Hall, and Kennedy present a more detailed discussion of procedure cloning [19].
They discuss procedure cloning to refine arbitrary forward interprocedural data-flow sets and how to handle recursive cycles.

8



constants and loop summary information through the body of p so that they can serve as a basis for the

cloning of procedures that p calls.

Note that this new program is equivalent to the original program. Along each execution path, the same

sequence of statements occurs. It differs from the original because the paths share less code. This eliminates

some of the information loss described earlier.

Inline to deepen loop nests The final step is simple. For each candidate loop, the compiler examines the

loop summaries and interprocedural constants. If the interprocedural information reveals a call site where

inline substitution would produce a loop nest amenable to blocking, the compiler inlines that call site and

blocks the loop.

4.2 Experiments

This section describes two experiments that led to the development of our goal-directed strategy. Both target

register blocking. A third experiment targeting parallelism is described by Hall, Kennedy and McKinley [16].

Matrix300 Our approach was initially inspired by an attempt to optimize the program matrix300, from

Release 1 of the SPEC benchmark suite. From this experience, we learned the value of procedure cloning

and inline substitution to enable unroll-and-jam.

Most of the computation in matrix300 is located in the leaf procedure daxpy. Unfortunately, daxpy

contains a single loop in which every value is used only once, so there is no potential for reuse. To expose

reuse, a compiler must inline daxpy into its caller dgemv and perform unroll-and-jam. The left side of Figure 3

tme

main

dgemm

dgemv

daxpy

prnt

?

?

?

�����)
PPPPPq

before

main

tme prnt

dgemm0 . . . dgemm3 dgemm4 . . . dgemm7

dgemv0
+

daxpy

dgemv1
+

daxpy

�������)
�

�
�

�
�
�	

�
�
�
�
��

B
B
B
B
BBN

@
@
@
@
@
@R

PPPPPPPq

@
@R

�
�	

@
@R

�
�	

after

Figure 3 Call graph for matrix300

9



shows the call graph for the program as written.

Unfortunately, directly inlining daxpy results in subscripts that are too complex for current dependence

analyzers. This effectively rules out unroll-and-jam, since it relies on dependence information to prove safety.

Applying our strategy, however, creates a version of the code that can be optimized.

Procedure cloning based on critical parameters exposes enough additional information to allow simpli-

fication of the subscript expressions. Specifically, it exposes the size of the leading dimension of an array

that is passed to daxpy as a formal parameter. This parameter receives it value indirectly from a formal

parameter of dgemm. Main invokes dgemm from eight distinct call sites, each passing a different constant

value in that parameter position. Cloning dgemm and subsequently dgemv enabled daxpy to be inlined into

the two copies of dgemv with simple subscript expressions for the reshaped array. At this point, it was

possible to apply unroll-and-jam. The right side of Figure 3 shows the call graph that resulted from this set

of transformations.

To see the effects of the interprocedural transformations, we applied them by hand to matrix300 to create

the new call graph. Next, we applied register blocking to the new loop nests in the two inlined versions

of dgemv. We compiled the two versions of the program on the Sparc-1, the MIPS M/120 and the IBM

RS/6000-540. The results were outstanding.

SUN MIPS RS/6000

matrix300 Sparc-1 M/120 Model 540

speedup 2.0 3.3 6.4

Most of the improvement is due to eliminating nearly 500,000,000 memory accesses – almost half the loads

and nearly all the stores in the program. Of course, this program is essentially a kernel; improvements on

real programs will typically be much smaller.

Other experimenters have since achieved similar results on matrix300 with user-specified inline substi-

tution. The goal of our work is to produce a decision procedure that automatically selects focus points

and derives a strategy to improve them. The strategy presented in Section 4.1 would lead the compiler to

produce the code depicted in Figure 3.

Ocean Experimentation with programs in the PERFECT benchmark suite suggested using inline substi-

tution to enable loop fusion. In particular, five of the PERFECT programs contain points where this kind of

fusion exposes reuse. These programs are adm, dyfesm, ocean, spec77 and track.

To understand the potential, we hand-simulated the actions of a goal-directed optimizer on ocean to

produce the fused loop nests. Then, we applied scalar replacement to take advantage of the reuse exposed

by loop fusion. In all, sixteen fused loops appeared in the transformed program.

10



We executed the original and transformed version of the program on an IBM RS/6000-540. The execution

times and associated speedups for the whole program are summarized in the table below:

ocean optimized portion program

Original 18.5 s 202.1 s

Fused 15.2 s 199.0 s

Speedup 1.22 1.02

The column labeled “optimized portion” reflects the improvements achieved in the fused loops. The “pro-

gram” column reflects the improvement over the entire program. Note that the low overall improvement

is partially due to an “apples-and-oranges” comparison. We have applied a higher level of optimization to

the sixteen fused loops than to the rest of the program. A similar level of optimization on the rest of the

program might decrease total execution time, increasing the importance of optimizing these sixteen loops.

5 Conclusions

This paper presents a strategy for goal-directed interprocedural optimization of programs. Our approach

is conceptually simple: only use interprocedural transformations when they enable a high-payoff intrapro-

cedural transformation. We have used this technique in several experiments where we hand-simulated its

application. The results are promising. Other researchers intend to employ this strategy in a source-to-source

parallelizer for shared-memory multiprocessors [20].

References

[1] M. Lam, “Software pipelining: An effective scheduling technique for VLIW machines,” SIGPLAN No-
tices, vol. 23, pp. 318–328, July 1988. In Proceedings of the ACM SIGPLAN ’88 Conference on Pro-
gramming Language Design and Implementation.

[2] A. Aiken and A. Nicolau, “Perfect pipelining: A new loop parallelization technique,” in Proceedings of
the 1988 European Symposium on Programming, Springer Verlag Lecture Notes in Computer Science,
Mar. 1988.

[3] M. E. Wolf and M. S. Lam, “A data locality optimizing algorithm,” SIGPLAN Notices, vol. 26, pp. 30–
44, June 1991. In Proceedings of the SIGPLAN ’91 Conference on Programming Language Design and
Implementation.

[4] S. Carr and K. Kennedy, “Blocking linear algebra codes for memory hierarchies,” in Proceedings of the
Fourth SIAM Conference on Parallel Processing for Scientific Computing (J. Dongarra, P. Messina,
D. C. Sorensen, and R. G. Voight, eds.), pp. 400–405, 1990.

[5] M. Wolfe, Optimizing Supercompilers for Supercomputers. PhD thesis, University of Illinois, Urbana-
Champaign, 1982.

11



[6] K. D. Cooper, M. W. Hall, and L. Torczon, “An experiment with inline substitution,” Software –
Practice and Experience, vol. 21, pp. 581–601, June 1991.

[7] S. Richardson and M. Ganapathi, “Interprocedural analysis versus procedure integration,” Information
Processing Letters, vol. 32, Aug. 1989.

[8] M. Burke and L. Torczon, “Interprocedural optimization: Eliminating unnecessary recompilation,”
ACM Transactions on Programming Languages and Systems, 1992. to appear.

[9] F. E. Allen and J. Cocke, “A catalogue of optimizing transformations,” in Design and Optimization of
Compilers (J. Rustin, ed.), Prentice-Hall, 1972.

[10] K. Cooper, K. Kennedy, and L. Torczon, “The impact of interprocedural analysis and optimization in
the Rn environment,” ACM Transactions on Programming Languages and Systems, vol. 8, pp. 491–523,
Oct. 1986.

[11] C. Chambers and D. Ungar, “Customization: Optimizing compiler technology for SELF, a dynamically-
typed object-oriented programming language,” SIGPLAN Notices, vol. 24, pp. 146–160, July 1989. In
Proceedings of the SIGPLAN ’89 Conference on Programming Language Design and Implementation.

[12] M. Hall, Managing Interprocedural Optimization. PhD thesis, Rice University, Houston, Texas, Apr.
1991.

[13] D. Callahan, S. Carr, and K. Kennedy, “Improving register allocation for subscripted variables,” SIG-
PLAN Notices, vol. 25, pp. 53–65, June 1990. In Proceedings of the ACM SIGPLAN ’90 Conference on
Programming Language Design and Implementation.

[14] D. Callahan, J. Cocke, and K. Kennedy, “Estimating interlock and improving balance for pipelined
architectures,” Journal of Parallel and Distributed Computing, vol. 5, pp. 334–358, Aug. 1987.

[15] S. Carr, 1991. Personal communication about RS/6000 register blocking results for matrix300.

[16] M. W. Hall, K. Kennedy, and K. McKinley, “Interprocedural transformation for parallel code genera-
tion,” in Proceedings of Supercomputing ’91, pp. 424–434, Nov. 1991.

[17] D. Callahan, A. Carle, M. W. Hall, and K. Kennedy, “Constructing the procedure call multigraph,”
IEEE Transactions on Software Engineering, vol. 16, Apr. 1990.

[18] D. Callahan, K. D. Cooper, K. Kennedy, and L. Torczon, “Interprocedural constant propagation,”
SIGPLAN Notices, vol. 21, pp. 152–161, July 1986. In Proceedings of the ACM SIGPLAN ’86 Symposium
on Compiler Construction.

[19] K. D. Cooper, M. W. Hall, and K. Kennedy, “Procedure cloning,” in Proceedings of the IEEE Interna-
tional Conference on Computer Languages, pp. 96–105, Apr. 1992.

[20] K. S. McKinley, Automatic and Interactive Parallelization. PhD thesis, Rice University, May 1992.

12


