
Interprocedural Analysis and Optimization

KEITH D. COOPER

MARY HALL

KEN KENNEDY

LINDA TORCZON
Rice University
Houston, Texas

1. Introduction

As machines and languages have become more complicated, compiler tech-
nology has necessarily become more sophisticated. With the advent of vector
and parallel computers, single-procedure analysis will no longer be enough to
produce high-quality parallelized code. In this paper, we introduce some of the
problems that can be solved with the help of an interprocedural analysis and op-
timization system. We also present methods for the solution of these problems,
summarizing research on interprocedural compilation over the past 15 years.

We begin with two definitions. Interprocedural analysis refers to gathering
information about the entire program instead of a single procedure. This is
analogous to the information collected by a single procedure data-flow analyzer.
Examples of interprocedural analysis problems include determining the variables
that might be modified as side effect of a procedure call and finding whether a
given pair of variables might share the same memory location on entry to a given
procedure.

Interprocedural optimization refers to program transformations that involve
more than one procedure in a program. The most familiar example of an interpro-
cedural optimization is inlining, by which the body of a procedure is substituted
at a point of invocation. A broader view might consider any transformation that
uses interprocedural knowledge—gathered by an interprocedural analyzer—as
an interprocedural optimization. For the purposes of this paper, we will adhere
to the more narrow view.

2. Interprocedural Analysis

To illustrate the need for the results of interprocedural analysis, we will in-
troduce several important problems through a series of examples.

2.1. Interprocedural Problems

Modification and Reference Side Effects

We begin with a simple vectorization problem. Suppose we have the following
code fragment:

Communications on Pure and Applied Mathematics, Vol. XLVIII, 947–1003 (1995)
c© 1995 John Wiley & Sons, Inc. CCC 0010-3640/96/090947-57

948 COOPER–HALL–KENNEDY–TORCZON

COMMON X, Y
...
DO 100 I = 1, N

S0 CALL S
50 X(I) = X(I) + Y(I)
100 CONTINUE

Without some sort of interprocedural optimization, it is impossible to vec-
torize the call, but might it be possible to vectorize the assignment at statement
50? Since both x and y are in common, we must be concerned with side effects
to these variables due to the call at s0. A statement can be vectorized if it is
legal to distribute the loop around the two statements s0 and 50. In turn, this
is possible if there is no cycle of dependences involving both statements. We can
be sure that there is no such dependence cycle if the call meets the following
criteria:

1. it neither uses nor modifies x and

2. it does not modify y.

The first condition ensures that there can be no dependence cycle involving
both the call and statement 50 due to variable x. The second condition rules
out a dependence cycle due to y.

To address this problem, we introduce the interprocedural mod and ref

problems.

Definition 1. At a given call site s, the modification side effect set
mod(s) is the set of all variables that may be modified as a side effect
of the call at s. The reference side effect set ref(s) is the set of all
variables that may be referenced as a side effect of the call at s.

With these definitions, we can now formally restate the condition under which
the assignment statement above can be vectorized, namely:

x 6∈ ref(s0) and x 6∈ mod(s0) and y 6∈ mod(s0).

Alias Analysis

Suppose we have the following subroutine:

SUBROUTINE S(A,X,N)
REAL A(*), X, Y
COMMON Y
DO 100 I = 1, N

S0 X = X + Y*A(I)
100 CONTINUE

END

INTERPROCEDURAL ANALYSIS AND OPTIMIZATION 949

In compiling this loop for any machine, it would be efficient to keep both
variables x and y in registers throughout the duration of the loop, without
storing x until the loop is completed. This looks straightforward, but what if
subroutine s is invoked by a call like call s(a,y,n)? This creates a situation
where s has two names for the variable y. We say that x and y are aliases in
s when it is invoked in this way. Because x and y are aliased, not storing x on
every iteration may overlook necessary updates to y within the loop1.

To avoid problems like this one, the compiler must determine when two vari-
ables might be aliased to one another. In this paper, we limit our attention to
aliases that arise from interactions of call-by-reference formal parameters and
global variables. Because these relationships change only at call sites, we can
capture these effects by computing the aliases that might hold on entry to a
given subroutine.

Definition 2. For a procedure p and a formal parameter x passed
to p, the alias set alias(p,x), is the set of variables that may refer to
the same location as x on entry to p.

In the example above, x and y may be kept in registers without storing to
memory if y 6∈ alias(s,x).

Call Graph Construction

The call graph of a program models the calling relationships between proce-
dures in a program.

Definition 3. The call graph of a program is a graph G = (N, E)
where the vertices in N represent procedures in the program and the
edges in E represent possible calls.

It is common for each distinct call site in a program to be represented by
a distinct edge, in which case the call graph is actually a multigraph. We will
adopt this convention in the remainder of the paper.

The accuracy of the call graph directly affects the precision of the data-flow
information produced. However, construction of a precise call graph is in itself
an interprocedural analysis problem. In a language in which each call must be
to a named constant procedure, the call graph is easy to construct—you need
only examine the body of each procedure p, entering for each call site s in p an
edge (p,q) to the procedure q called at s.

However, a precise call graph is more difficult to construct in a language that
permits procedure variables. Even in Fortran, where there are no assignable
procedure variables, problems arise due to procedure parameters—formal param-
eters which may be bound to procedure names at the point of call. Consider the
following example:
1Knowledgeable readers will comment that the Fortran standard defines this usage to be illegal,
saying that if two variables are aliases on entry to a loop then the program is not standard-
conforming if the subroutine stores into either. Although this is an easy escape from the specific
problem presented, it only works for Fortran, as C has no such prohibition.

950 COOPER–HALL–KENNEDY–TORCZON

SUBROUTINE S(X,P)
S0 CALL P(X)

RETURN
END

The question is: What procedure or procedures may be called at statement
s0? In other words, what values can p have at this call site? We could attempt to
answer this question by examining the actual parameters at all the call sites for
subroutine s, but any actual parameter could itself be a procedure parameter.
Thus we must propagate procedure constants through the call graph before we
can finish building it.

Definition 4. For a given procedure p and call site s within p, the
call set call(s) is the set of all procedures that may be invoked at s.

Although it is stated as a property of call sites, call(s) is not a side-effect
problem. It really asks what procedures can be passed to formal parameters
on entry to the procedure containing s. Because it depends on the context in
which the procedure containing s is invoked, it resembles alias analysis more
than the side-effect problems.

Live and Use Analysis

An important data-flow problem that has been studied extensively in the
literature of single-procedure analysis is the analysis of live variables. A variable
x is said to be live at a given point s in a program if there is a control-flow path
from s to a use of x that contains no definition of x prior to the use.

One important application of live analysis is in determining whether a private
variable in a parallel loop needs to be assigned to a global variable at the end of
the loop’s execution. Consider the following code fragment:

DO I = 1, N
T = X(I)*E
A(I) = T + B(I)
C(I) = T + D(I)

ENDDO

This loop can be parallelized by making t a local variable in the loop. How-
ever, if t is used later in the program before being redefined, the parallelized
program must assign the last value of the local version of t to the global version
of t. In other words, the code must be transformed as follows:

PARALLEL DO I = 1, N
LOCAL t
t = X(I)*E
A(I) = t + B(I)
C(I) = t + D(I)
IF (I.EQ.N) T = t

ENDDO

INTERPROCEDURAL ANALYSIS AND OPTIMIZATION 951

We use the typographic convention that compiler-generated variables are rep-
resented in the code by small letters.

This code could be simplified if we could determine that variable t is not live
on exit from the original loop. In this case, the conditional at the end of the
loop could be eliminated to produce:

PARALLEL DO I = 1, N
LOCAL t
t = X(I)*E
A(I) = t + B(I)
C(I) = t + D(I)

ENDDO

Although live analysis can itself be viewed as an interprocedural problem, it
is conveniently dealt with in terms of another interprocedural problem. Use
analysis is the problem of determining whether there is an upwards-exposed use
of a variable on some path through a procedure invoked at a particular call site
s. An upwards exposed use is one that is not preceded by a definition of the
variable on some path to the use from the point of invocation.

Definition 5. For a given call site s, which invokes procedure p,
the use side effect set use(s) is the set of variables that have an
upwards-exposed use in p.

Given this definition, we can give a more formal specification of when a
variable is live. A variable x is live at a call site s if x ∈ use(s) or if there
is a path through the procedure called at s that does not assign a new value to
x and x is live at some control-flow successor of s.

Kill Analysis

Problems like ref, mod and use ask questions about what might happen
on some path through a called subprocedure. It is often useful to ask about
what must happen on every path through a procedure. The following example
illustrates this:

L DO I = 1, N
S0 CALL INIT(T,I)

T = T + B(I)
A(I) = A(I) + T

ENDDO

There are two problems that might keep this loop from being correctly paral-
lelized. First, not knowing what the subroutine init does, we must assume that
it assigns variables in a way that creates a cycle of dependences. One way to do
this would be to use, then assign, a variable that is global to the program. For
example, if init were defined as in the following code, parallelization would be
precluded:

952 COOPER–HALL–KENNEDY–TORCZON

SUBROUTINE INIT(T,I)
REAL T
INTEGER I
COMMON X(100)
T = X(I)
X(I+1) = T + X(1)

END

Here init creates a cycle of dependences involving the common array x, with
respect to the loop in the calling program.

However, even if we can prove that the loop does not modify any global
variables or even any static local (i.e., “save”) variables, the call presents a
more subtle problem. If this loop is to be parallelized, it must be possible to
recognize that variable t can be made private to each iteration. This is possible,
for example, if subroutine init is simply there for the purpose of initializing t,
as in:

SUBROUTINE INIT(T,I)
REAL T
INTEGER I
COMMON X(100)
T = X(I)

END

Here t is initialized before being used on every iteration of the loop. Thus
it is not involved in any kind of carried dependence within the loop and may be
made private.

How can we discover this fact? Certainly, mod can tell us that no global vari-
ables are modified within the subroutine and we assume that a similar analysis
could be used to preclude the possibility that any static local variable in init

is used before being modified. Therefore, the key to determining that the loop
can be parallelized is to establish that variable t is assigned before being used
on every path through init.

The problem of discovering whether a variable is assigned on every path
through a called procedure is known as kill, because an assignment is said to
“kill” a previous value of the variable.

Definition 6. For a given call site s, the kill side effect set kill(s)
is the set of variables that are assigned on every path through the
procedure p invoked at s and any procedures invoked from within p.

Assuming that there are no global variables in mod(s0) and that init does
not use any static local variables before they are assigned, then the loop l can
be parallelized if variable t is killed on every path through init and there is no
path into init on which a use appears before any kill. This can be expressed
formally as

INTERPROCEDURAL ANALYSIS AND OPTIMIZATION 953

t ∈ (kill(s0) ∩ ¬use(s0)).

Assuming that call site s is in a block by itself, it is possible to define live(s)
within the procedure containing s as follows:

(2.1) live(s) = use(s) ∪ (¬kill(s) ∩
⋃

b∈succ(s)
live(b)).

where succ(s) is the set of successors in the control-flow graph for the block
containing s.

This generalizes the live computation to the interprocedural case if we know,
by some additional analysis, the set of variables that are live on exit from the
procedure. Note that the domain of ¬kill(s) is the set of variables visible in
the procedure that contains s.

Constant Propagation

Constant propagation, one of the most important problems in single-proce-
dure data-flow analysis, is also an important interprocedural problem. Consider
the following program, which is abstracted from code in Linpack:

SUBROUTINE S(A,B,N,IS,I1)
REAL A(*), B(*)

L DO I = 0, N-1
S0 A(IS*I + I1) = A(IS*I + I1) + B(I+1)

ENDDO
END

If we wish to vectorize loop l in this subroutine, a problem arises because the
variable is might take on the value 0. If that were so, there would be an output
dependence. In that case, statement s0 would actually be a reduction and could
not be vectorized using the usual techniques. Although we could test for this
situation at run time, we can avoid it entirely if we can determine that, on every
invocation of subroutine s in the program containing it, the value of is is always
1 (the most common case).1

Definition 7. Given a program and a procedure p within that pro-
gram, the set of interprocedural constants const(p) contains the vari-
ables that have known constant values on every invocation of p. For
a variable x∈const(p), valin(x, p) is a function returning the value
of x on entry to p.

Although constant propagation is intractable even in a single procedure, ap-
proximate solutions in single procedures have been shown to be effective [20].
1Barring that, it would be vectorized if it can be established that is6=0 every time the loop
is entered. Analysis of predicates like this can also be handled by a variation of constant
propagation.

954 COOPER–HALL–KENNEDY–TORCZON

A

B

B

A

Region R1 Region R2

FIGURE 1. Call graph subregions.

Similarly, approximate solutions of the interprocedural constant propagation
problem have been shown to determine many facts that are useful for opti-
mization and parallelization [34, 41].

2.2. Interprocedural Problem Classification

We will now explore various classifications of interprocedural data-flow prob-
lems. These classifications are useful, because problems in the same class can
generally be solved by employing similar algorithmic approaches.

May and Must Problems

There is a distinction between problems that ask whether some event “may”
happen or “must” happen. mod, ref and use are may problems because they
compute sets of variables that may be modified, may be referenced or may be
used before being defined, respectively. On the other hand, kill is a must
problem because it computes a set of variables that must be killed.

Although this distinction has been extensively discussed in the literature, it
is not a deep one because the converse of every may problem is a must problem
and vice versa. For example, ¬mod(s) is the set of all variables that are not in
mod(s). Therefore, the ¬mod problem seeks to find those variables that must
not be modified as a side effect of a given call site. Thus ¬mod is a must problem.
Similarly, ¬ref is also a must problem. On the other hand, ¬kill seeks to find
for each call site s in the program the set of variables that may not be modified
on some path through the procedure being invoked. Thus the converse of kill,
a must problem, is a may problem. Since the solution to any set problem may
be converted to the solution of its converse by subtraction from the universal
set, which takes time linear in the number of answer sets, there is no difference
in the complexity of a must problem and its corresponding may problem.

Flow-Sensitive and Flow-Insensitive Problems

Banning introduced a seemingly related notion of flow-sensitive and flow-
insensitive problems. Intuitively, a flow-sensitive problem is one whose precise
solution requires tracing individual control-flow paths through the body of the

INTERPROCEDURAL ANALYSIS AND OPTIMIZATION 955

called subroutine. A flow-insensitive problem, on the other hand can be solved
by examination of the body of the called subroutines without regard to control
flow. Thus, mod and ref are flow-insensitive problems because, assuming all
code in a subroutine is reachable, any modification of a variable x in the body
of a subroutine p means that x∈mod(s) for any call site s that invokes p. On
the other hand, kill is a flow-sensitive problem because, for a given variable x,
its solution requires checking every path through the procedure body to ensure
that it contains a definition of x.

Banning defines flow-sensitive and flow-insensitive problems more formally,
based on how solutions on subregions of a call graph would be composed into
solutions for a larger region [5] Suppose we have mod for each subregion A and
B of regions R1 and R2. Then we can compose these into solutions for the whole
regions as follows:

mod(R1) = mod(A) ∪mod(B)

mod(R2) = mod(A) ∪mod(B)

This is because in either decomposition, a variable may be modified if it may be
modified in either subregion. There is a similar pair of equations for ref:

ref(R1) = ref(A) ∪ ref(B)

ref(R2) = ref(A) ∪ ref(B)

Now let us carry out the same exercise for kill. In the case of region R1, a
variable is killed if it is killed in the first region or if it is killed in the second
region:

kill(R1) = kill(A) ∪ kill(B)

In the case of region R2, a variable must be killed in both regions, to be in
kill(R2):

kill(R2) = kill(A) ∩ kill(B)

The equations for use are equally easy to develop:

use(R1) = use(A) ∪ (¬kill(A) ∩ use(B))

use(R2) = use(A) ∪ use(B)

Only this second equation is the same as the corresponding equation for mod

and ref.

956 COOPER–HALL–KENNEDY–TORCZON

In examining these equations, we notice that the equations for mod and ref

use only set union as a connector, while the equations for kill and use are more
complicated, using other connectors and often other local sets. This leads us to
the following definition.

Definition 8. An interprocedural data-flow problem is flow-insensi-
tive if and only if, on the parameter-free version of the problem, the
value of the solution on both sequentially and alternatively composed
regions (R1 and R2 of Figure 1) is determined by taking the union
of the solutions for the subregions.

The literature on optimization sometimes refers to flow-insensitive analysis
of a flow-sensitive problem. Our interpretation of this term is that it refers
to approximating a flow-sensitive problem with a flow-insensitive one. As an
example, suppose you wished to approximate a solution to the use problem
with the solution to one or more flow-insensitive problems. Note that most
optimizations will be performed when it is known that a variable is not in use(s)
for a particular call site s in the procedure being optimized. Therefore, we wish
any approximation apuse to be conservative in the sense that it contain all of
use:

use(s) ⊆ apuse(s) or ¬apuse(s) ⊆ ¬use(s)

If this is the case we will never depend on an untrue fact. One possible approx-
imation is given by:

apuse(s) = ref(s)

which is clearly a superset of use(s) and can be computed by solving a flow-
insensitive problem. This might be useful because, as we shall see, flow-insensitive
problems are easier to solve than flow-sensitive ones. However, we do not rec-
ommend the use of approximations like this one because more precise approxi-
mations can be computed in reasonable time using flow-sensitive analysis.

Side Effect Problems versus Propagation Problems

A final classification of interprocedural problems is by direction of data flow.
Some interprocedural problems ask what may or must happen as a side effect
of a procedure call that is about to be made. This class, which we refer to as
side-effect problems, includes mod, ref, kill, and use. Problems of this sort
are analogous to the backward data-flow problems of single-procedure analysis.

A second class of problems asks what conditions may or must hold upon entry
to the current procedure (which presumably we are interested in optimizing). We
call these propagation problems. Alias and calls are propagation problems, as
is a simple version of const. (A full version of const accounts for values
returned by functions and subroutines; thus it has data-flow in both directions.)
The method we developed for classifying side-effect problems as flow-sensitive or

INTERPROCEDURAL ANALYSIS AND OPTIMIZATION 957

flow-insensitive will not work for propagation problems, because these problems
look back up the call chain. However, it is generally agreed that the alias

problem for Fortran is flow-insensitive. Control flow inside the procedure is
unimportant, because the set of aliases introduced at a call site is a local, textual
property of the call site itself. Events that happen between procedure entry and
the call site cannot change the set of aliases introduced by the call.

On the other hand, the constant propagation problem for Fortran is flow-
sensitive because, for a constant to propagate to a called procedure, every path
through the calling procedure (and its preceding interprocedural context) must
result in the same constant value arriving at the call site. By the same argument,
alias analysis for languages like C with pointer assignment is also flow-sensitive.

A Problem Classification Table

The breakdown of problems in the two dimensions is summarized in Table 1
below.

propagation side effect

flow-insensitive alias, const mod, ref

flow-sensitive const kill, use

TABLE 1. Interprocedural problem classification

The classification into flow-sensitive and flow-insensitive is an important one
because Banning established, by providing an algorithm, that flow-insensitive
problems can be solved in time that is polynomial in the size of the call graph [5],
while Myers showed that flow-sensitive problems are intractable in the presence
of aliasing, recursion, and arbitrary nesting [57].

2.3. Flow-Insensitive Side-Effect Analysis

We now turn to the solution of the flow-insensitive side-effect analysis prob-
lems. Throughout this section, we use the modification side-effect analysis (mod)
problem as our example. The reference side-effect analysis (ref) problem can
be solved using exactly the same approach.

Assumptions

We begin by establishing a set of assumptions that are representative char-
acteristics of Fortran and, in some cases, C. First, we assume that there is no
procedure nesting—that is, variables are subdivided into local and global sets.
Local variables are known only within their home procedure and global variables
are known in every procedure. Although this might seem restrictive, the methods
we will introduce here have easy extensions to the case of general nesting.

A second assumption is that all parameters are passed by reference and that
there are no pointer variables. The purpose of this restriction is to simplify the
aliasing patterns that the algorithms encounter. Under this restriction, aliases

958 COOPER–HALL–KENNEDY–TORCZON

can only be introduced at call sites. Although both Fortran 90 and C have
pointer variables, this assumption is valid for Fortran 77, which is the input
language for most automatic parallelization systems.

Even though Fortran 77 does not support recursion, the algorithms presented
here work correctly in the presence of recursive procedure calls. We do however
make an assumption about the size of parameter lists to procedures, namely that
the maximum number of formal parameters to a procedure does not grow with
the size of the program. In other words, programmers do not typically deal with
the increasing complexity of a large program by increasing the complexity of the
procedure interfaces. Thus we will assume that there exists a constant µ, such
that the number of formal parameters in any procedure p is less than or equal
to µ.

MOD Problem Formulation

The goal is to compute, for each call site s in the program, the set mod(s)
that contains every variable that may be modified as a side effect of the pro-
cedure call at s. Our first step is to note that we can simplify the problem by
disregarding potential aliases. Specifically, we will compute the set dmod(s), the
direct modification side-effect set, which contains all variables visible at s that
are directly modified as a side effect of the call. dmod(s) may be smaller than
mod(s) because it does not take into account the fact that a variable x that is
directly modified as a side effect may have several possible aliases at the point
of call. Each of these aliases must be in the final mod(s) if the solution is to
be precise. However, once dmod(s) has been computed it can be updated to
mod(s) with the help of the alias sets. Recall that for a given procedure p,
alias(p, x) contains the set of all variables that may be aliased to x on entry
to p. Given these sets, we can update dmod(s) to mod(s) according to the
following formula:

(2.2) mod(s) = dmod(s) ∪
⋃

x∈dmod(s)

alias(p, x)

where p is the procedure containing call site s. Construction of alias(p, x) will
be discussed in Section 2.4.

The computation of dmod(s) is formulated in terms of another set, the gen-
eralized modification side effect set, gmod(p). The difference between these sets
is conceptually simple. The domain of dmod(s) is the name space of the calling
procedure, while the domain of gmod(p) is the name space of the called proce-
dure. Thus, gmod(p) contains the set of global variables and formal parameters
of p that might be modified if p is invoked. This modification can occur directly,
inside p, or indirectly, as a result of some call made by p. Given gmod(p) for each
procedure in the program, we can compute dmod(s) by the following formula:

(2.3) dmod(s) = {z|s invokes p, z
s→ w and w ∈ gmod(p)},

INTERPROCEDURAL ANALYSIS AND OPTIMIZATION 959

where z
s→ w means that, at call site s, actual parameter z is bound to formal

parameter w of the called procedure. Equation 2.3 reduces the problem to com-
puting, for every procedure p in the program, the set gmod(p) of variables that
may be changed as a side effect of invoking p. Generally, gmod(p) will contain
two types of variables:

1. those that are explicitly modified in the body of procedure p and

2. those that are modified as a side effect of some procedure that p invokes.

Let imod(p), the immediate modification side-effect set, denote the set of
variables explicitly modified in p. Then the following formula holds:

(2.4) gmod(p) = imod(p) ∪
⋃

s=(p,q)

{z|z s→ w and w ∈ gmod(q)}

Note that the union is taken over all call sites s within p.

Problem Decomposition

The system of data-flow equations in Equation 2.4 can be solved by the
iterative method of data-flow analysis. However, the solution may take a long
time to converge because the system does not satisfy the conditions under which
the iterative method can be guaranteed to converge rapidly [52]. Furthermore it
is not formulated in a way that permits the use of a fast elimination method [33].
Fast solution methods rely on being able to limit the number of times that
the analysis must traverse a loop in the problem graph. For flow-insensitive
interprocedural analysis, the problem graph is the call graph, so convergence
problems are limited to recursive regions.

A closer examination of the problem with recursion reveals that it is related
to reference formal parameters. Consider the following example:

SUBROUTINE P(F0,F1,F2,...,Fn)
INTEGER X,F0,F1,F2,...,Fn
. . .

S0 F0 = some expression
. . .

S1 CALL P(F1,F2,...,Fn,X)
. . .

END

In this example it is possible to see why, in the general case, the analyzer
must iterate around the recursive cycle an unbounded number of times. The
question being asked is: How many of the parameters of subroutine p may be
modified as a side effect of invoking p? Clearly, F0 can be modified at statement
s0, but we have to examine the recursive call at s1 to discover that F1 is passed
to F0, so it too can be modified. One more time around the recursive loop reveals

960 COOPER–HALL–KENNEDY–TORCZON

that F2 can also be modified. This procedure continues until it is discovered that
Fn—the last parameter—may also be modified. If n is unbounded, the number
of iterations over the recursive cycle is unbounded as well.

These observations make it clear why we assumed an upper bound on the
number of parameters to any subroutine—it permits us to establish a constant
upper bound on the number of iterations required for the process to converge.
However, we can achieve a better time bound by decomposing the problem fur-
ther, treating side effects to reference parameters separately from side effects
to global variables. This is achieved by introducing an extended version of the
immediate modification side effect set imod(p), called imod

+(p), which will con-
tain all of imod(p) plus all those variables that may be modified as a result of
side effects to reference formal parameters of procedures invoked from within p.
In other words, a variable x is in imod

+(p) if

1. x∈ imod(p) or

2. x
s→ z and z∈gmod(q), where s = (p, q).

If we can compute imod
+(p) for every procedure p in the program, we can

solve for gmod(p) using the following simple system of equations:

(2.5) gmod(p) = imod
+(p) ∪

⋃
s=(p,q)

gmod(q) ∩ ¬local

where local is the set of all local variables in the program, so its complement is
the set of all global variables. Since all side effects to reference formal parameters
of p are reflected in imod

+(p), we need only be sure that all side effects to global
variables are added by the union of the gmod sets for successors. If a global
variable is modified as a side effect of invoking p it must be modified directly
in the text of the subroutine, in which case it is in imod(p) ⊆ imod

+(p), or
it is passed as an actual parameter to another subroutine where it is modified,
in which case it is in imod

+(p) by definition, or it is modified as a global by
some subroutine called directly or indirectly from p, in which case it must be in
gmod(q) for some successor q of p, which establishes Equation 2.5.

Thus, we have decomposed the problem into two parts:

1. the computation of imod
+(p) for every procedure p in the program and

2. the propagation of global information according to Equation 2.5.

The next two subsections describe these calculations in more detail.

Solving for IMOD+

To compute the imod
+ sets for each procedure p, we will formulate a final set,

called rmod(p) that contains the formal parameters in procedure p that may be
modified in p, either directly or as a side effect of some call that p makes. Given

INTERPROCEDURAL ANALYSIS AND OPTIMIZATION 961

rmod(p) for each procedure p in the program, the imod
+ can be computed using

an equation that is a direct analog of Equation 2.4:

(2.6) imod
+(p) = imod(p) ∪

⋃
s=(p,q)

{z|z s→ w and w ∈ rmod(q)}

Thus, we can construct imod
+(p) by first constructing rmod(p) for each proce-

dure and then applying Equation 2.6.
To construct the rmod sets, we introduce a new data structure, which we call

the binding graph. It directly represents the parameter-to-parameter bindings
that can occur in the program. It is built as follows:

1. for every formal parameter f of every procedure in the program, create a
vertex in the binding graph

2. if f1 is a formal parameter of procedure p, f2 is a formal parameter of
procedure q, and there is a call site s = (p, q) where f1

s→ f2, then add an
edge (f1, f2) to the binding graph.

An important question to consider is: How large is the binding graph? If N
is the number of vertices in the call graph and E is the number of edges, then
the number of vertices in the binding graph can be no more than µN , where µ is
the upper bound on the number of parameters to any procedure in the program.
This is true because there can be no more vertices than the number of formal
parameters in the entire program, which is clearly bounded by µN . Similarly,
each call graph edge can give rise to no more than µ edges, since no more than
one formal reference parameter can appear in a single actual parameter position.
Thus the total number of edges in the binding graph is no larger than µE and
the binding graph is no more than a constant factor greater in size than the call
graph; that is, its size is O(N + E).

To construct rmod(p), we will use a simple marking algorithm on the binding
graph, in which each vertex is annotated with a logical mark implementable
with a single bit. Initially, all the marks are set to false. Next, for each formal
parameter f of procedure p, if f ∈ imod(p), the corresponding node’s mark is
set to true. True bits are propagated around the graph using the rule that any
formal f1 that is bound to formal f2 with a true mark must also be marked true.
When no more propagation is possible, rmod(p) is the set of formals of p that
are marked true. The algorithm is given in Figure 2.

Define
proc[f]
somewhere

Theorem 2. Algorithm computeRmod in Figure 2 correctly com-
putes the rmod sets—that is, on exit f ∈ rmod[proc[f]] if and
only if f may be modified as a side effect of invoking the procedure
p = proc[f].

Proof. If. Assume that f may be modified. Then either it is modified in
proc[f], in which case it is marked true in statement S1, or there is a path in the

962 COOPER–HALL–KENNEDY–TORCZON

procedure computeRmod(P, NB , EB, imod, proc, rmod)
/* P is the collection of procedures in the program */
/* NB is the collection of formal parameters in the binding graph */
/* EB is the collection of edges in the binding graph */
/* mark[f] maps formal parameters to their mark values */
/* proc[f] maps a parameter to its procedure */
/* imod[p] maps a procedure to its immediate mod side effect set */
/* rmod[p] is the collection of output sets */
/* worklist is a working set of formal parameters */

L1 for each f ∈NB do mark[f] := false od;
worklist := ∅;

L2 for each f ∈NB such that f ∈ imod[proc[f]] do
S1 mark[f] := true;

worklist := worklist ∪ {f}
od;

L3 while worklist 6= ∅ do
f := an arbitrary element in worklist;
worklist := worklist - {f};

L4 for each v such that (v, f) ∈ EB do
S2 if mark[v] = false then
S3 mark[v] := true;

worklist := worklist ∪ {v}
fi

od
od;

L5 for each p ∈ P do rmod[p] := ∅ od;
L6 for each f ∈NB do

if mark[f] then rmod[proc[f]] := rmod[proc[f]] ∪ {f} fi
od

end computeRmod

FIGURE 2. Algorithm for constructing rmod sets.

binding graph to a formal parameter f0 which is in imod[proc[f0]]. Thus f0 is
marked true and added to the worklist in loop L2. Let f = fn, fn−1, ..., f1, f0 be
the sequence of parameters in the binding graph that constitute the path from f
to f0. Suppose f = fn is never marked true. Then there must be a minimum k
such that fk is never marked true by the algorithm but fk−1 is marked true. But
since fk−1 is put on the worklist when it is marked true and it is taken off the
worklist eventually and every incoming edge to fk−1 is examined at that time,
fk must be marked true, a contradiction. Thus every parameter that may be
modified as a side effect of invoking proc[f] is put into rmod[proc[f]].

INTERPROCEDURAL ANALYSIS AND OPTIMIZATION 963

Only if. Suppose f is a parameter that is marked true but cannot be modified.
The algorithm only marks formal parameters true if they are modified within
the body of their procedure or if there is a path in the binding graph to another
parameter which is modified in its procedure. Since the binding graph has an
edge only if the corresponding procedure call exists, it must be the case that the
original parameter f may be modified. 2

Theorem 3. In the worst case, algorithm computeRmod requires
O(N + E) steps, where N and E are the number of vertices and
edges in the call graph, respectively.

Proof. Let NB and EB be the number of vertices and edges, respectively
in the binding graph. We know, by definition, that NB ≤− µN and EB ≤− µE.
Thus, if we can show that the algorithm runs in time proportional to the size of
the binding graph, we will have established the result. Clearly loop L1 requires
O(NB) steps. If the membership test on imod takes constant time and adding
an element to the worklist takes constant time, then loop L2 also runs in O(NB)
steps. Loop L5 takes time proportional to the number of procedures in the
program times the time to initialize the rmod sets. If these sets are implemented
as bit vectors of length µ then this takes O(N ·log2 µ) time. Loop L6 takes O(NB)
assuming that adding to rmod takes constant time. (As an existence proof, we
can meet the time constraints by using bit-vector implementations for imod and
rmod and a linked list for the worklist.)

All that remains is to analyze the running time of loops L3 and L4. If we
assume that choosing an arbitrary element from the worklist takes constant
time, then L3 makes NB iterations, since a vertex appears on the worklist at
most once. If the edges are arranged as predecessor lists, then loop L4 requires
time proportional to the number of predecessors. Taken over all the vertices in
the graph, this takes at most O(EB) time.

Since NB ≤− µN = O(N) and EB ≤− µE = O(E), we have established that
the algorithm takes O(N + E) steps. 2

Given rmod sets for each procedure, we can construct imod
+(p) by visiting

each call site s = (p, q) and each parameter at s to determine if it is bound to
a variable in rmod(q). To construct imod

+ sets, we apply Equation 2.6. The
N imod

+ sets must be initialized; they have at most V + µ elements; this entire
process takes O(NV) time. If the membership test in rmod is O(1), adding
in the elements contributed by the various rmod sets takes O(µE) = O(E)
time. Thus, it takes O(NV + E) time to compute the imod

+ sets, including
initializations.

Solving for GMOD

Once we have constructed imod
+(p) for each procedure p in the program, we

must use it to compute gmod(p) according to Equation 2.5, which we repeat
here:

964 COOPER–HALL–KENNEDY–TORCZON

procedure findGmod(N, E, n, imod
+, local)

integer dfn[n], lowlink[n], nexdfn, p, q, d,
imod

+[n], gmod[n], local;
integer stack Stack;

procedure search(p);
dfn[p] := nexdfn; nexdfn := nexdfn + 1;
gmod[p] := imod

+[p]; lowlink[p] := dfn[p];
push p onto Stack;

for each q adjacent to p do
if dfn[q] = 0 then /* tree edge */

search(q);
lowlink[p] := min(lowlink[p], lowlink[q])

fi;

if dfn[q] < dfn[p] and q∈Stack then
lowlink[p] := min(dfn[q], lowlink[q])

else /* apply equation */
gmod[p] := gmod[p] ∪ (gmod[q] ∩ ¬local)

fi
od;

/* test for root of strong component */
if lowlink[p] = dfn[p] then

/* adjust gmod sets for each member of the SCR */
repeat

pop u from Stack;
gmod[u] := gmod[u] ∪ (gmod[p] ∩¬ local)

until u = p
fi

end search;

/* subroutine body */
nexdfn := 1; dfn[*] := 0; Stack := ∅;
search(1); /* by convention root = 1 */

end findGmod

FIGURE 3. Algorithm for propagation of global modification side effects.

INTERPROCEDURAL ANALYSIS AND OPTIMIZATION 965

L1 for each call site s do
S1 mod[s] := dmod[s];
L2 for each x ∈ dmod[s] do
L3 for each v ∈ alias[proc[s], x]do
S2 mod[s] := mod[s] ∪v

od
od

od

FIGURE 4. Naive alias update of dmod to produce mod.

gmod(p) = imod
+(p) ∪

⋃
s=(p,q)

gmod(q) ∩ ¬local

This equation implies that a variable x is in gmod(p) if it is in imod
+(p) or

x is global and there is a nonempty path in the control-flow graph from p to
procedure q where x∈ imod

+(q). In other words we have reduced the problem
to a variant of the reachability problem in the call graph. It is well known that
reachability can be solved in time linear in the size of the problem graph using
a depth-first search algorithm based on Tarjan’s algorithm for finding strongly-
connected components of a directed graph. Algorithm findGmod in Figure 3
accomplishes this.

Since this is a direct adaptation of depth-first search, it runs in O(N + E)
steps, where each step may involve a bit-vector operation of length V , the number
of variables in the program. Thus the algorithm takes O((N + E)V) elementary
steps in the worst case.

Theorem 4. Algorithm findGmod in Figure 3 correctly computes
the gmod(p) for every procedure p in the program.

Proof. This is a direct adaptation of Tarjan’s algorithm for finding strongly-
connected components. However, as the algorithm backs up in reverse invocation
order, instead of collecting a set of strongly connected regions, it updates the
gmod(p) set at each node. When it reaches the head of a strongly-connected
component, it updates gmod(u), for every u in the component, to include the
nonlocal part of the gmod set for the head. Thus, the global parts of gmod(u)
for every procedure u in the strongly connected region are identical, as they
should be. The gmod sets for nodes that are not in loops are correct by virtue
of the order of visit and the gmod sets for nodes that are in loops are correct
because of the updates of all procedures in the cycle. 2

Taken together the results from this section and the previous one establish
that the entire computation can be done in O((N + E)V) steps. Since dmod

can be computed from gmod in O(NV + E) time, the complete computation of
dmod also takes O((N + E)V) steps. Asymptotically, this cannot be improved,

966 COOPER–HALL–KENNEDY–TORCZON

for each call site s in the program do

t := ∅; /* t is a temporary bit vector of length µ*/
for each global variable x ∈ dmod[s] do /* O(V) iterations */

t := t ∪ {x}; /* constant time */
t := t ∪ alias[proc[s], x] /* O(µ) time */

od;

mod[s] := mod[s] ∪ t; /* O(V) time */

for each formal parameter f ∈ dmod[s] do/* O(µ) iterations */
mod[s] := mod[s] ∪{f}; /* constant time */
mod[s] := mod[s] ∪ alias[proc[s], f] /* O(V) time */

od

od

FIGURE 5. Fast combination of side-effect and alias information.

because the analyzer must evaluate Equation 2.5 at least once at every node in
the call graph, which would require O((N + E)V) time.

2.4. Flow-Insensitive Alias Analysis

Update of DMOD to MOD

Once the direct modification side effect sets have been computed, there still
remains the problem of factoring in aliasing. Recall the formula from Equa-
tion 2.2, which we repeat here:

mod(s) = dmod(s) ∪
⋃

x∈dmod(s)

alias(p, x)

Figure 4 shows a naive algorithm for implementing this conversion. Loop L1 ex-
ecutes O(E) times. The cost of each execution of S1 is proportional to |mod(s)|.
The mod set for a call site can contain the names of every global variable and all
the formal parameters to the calling procedure, so |mod(s)| is O(V). Loop L2

iterates O(V) times per iteration of L1. The body of L2 does one set operation
for each alias involving an element of dmod(s); in the worst case, this entails
O(V) set operations. Thus, the algorithm in Figure 4 requires O(E · (V +V ·V))
time, which simplifies to O(EV 2) in the worst case.

If we cannot improve the running time of alias analysis, it may dominate
the running time of the entire side effect analysis, making it impractical for
use on programs with nontrivial aliasing patterns. However, we can achieve a
significant improvement by carefully classifying aliasing patterns that may arise.

INTERPROCEDURAL ANALYSIS AND OPTIMIZATION 967

First, we note that, in a two-level naming hierarchy, containing only global and
local variables, two global variables can never be aliases of one another. They
can only be aliased to reference formal parameters. Thus, for a global variable
x, alias(p, x) can only contain reference formal parameters of procedure p. This
means that alias(p, x) can be no larger than µ entries, where µ is the maximum
number of formal parameters of any procedure in the program.

On the other hand, for a given formal parameter f , alias[proc[p], f] may
contain any global or any other formal parameter. Thus, it may be of size O(V).

These observations suggest that we break down the update of dmod to mod

into two cases: one for formal parameters and the other for global variables.
When considering the aliases of a particular variable x ∈ dmod(s),

1. if x is a global variable, we will add a very small set (≤− µ elements) to
mod(s); since there are O(V) global variables, we may need to do this
O(V) times, and

2. if x is a formal parameter of the procedure p containing s, we will add
up to O(V) elements to mod(s); but since there can be at most µ formal
parameters, we need only do this µ times.

In each case, the amount of work is O(V), not O(V 2). The entire algorithm is
shown in Figure 5.

It should be clear from the previous discussion that the overall running time of
the combining strategy in Figure 5 is O(V) per call site for a total of O(EV) time.
This is promising because, if we can compute the alias sets in O((N + E)V),
the time bound for the entire mod computation will be O((N + E)V).

Computing Aliases

We now turn to the problem of computing the sets alias(p, x) for each proce-
dure p and each variable x that is either global or a parameter of some procedure.
To do this as rapidly as possible, we will once again take advantage of the ob-
servation that globals can only be aliases of formal parameters. The first step
is to compute, for each formal parameter f in the program, an intermediate set
A(f). A(f) is the subset of alias[proc[f], f] that arises from the binding of
global variables to f , either directly at a site that calls p = proc[f], or through
some chain of bindings:

g → f0 → f1 → f2 → . . .→ fn−1 → fn = f

Thus, A(f) is an approximation to alias(proc[f], f) that contains all the global
variables in that set. To compute A(f), we will use a forward propagation on a
variation of the binding graph in which cycles have been reduced to single nodes.
The algorithm for computing A(f) for each formal parameter in the program is
given in Figure 6. In this algorithm, the set A(f) will be represented by a bit
vector of length O(V).

The first phase of the algorithm performs a forward propagation of global
variables over the binding graph. It requires O((N + E)V) steps. The second

968 COOPER–HALL–KENNEDY–TORCZON

procedure computeA(N, E, NB , EB, A)

for each formal parameter f ∈NB do A[f] := ∅ od;
for each call site s∈E do

for each global g mapped to formal parameter f at s do
A[f] := A[f] ∪ {g}

od
od;

replace every cycle in the binding graph with a single node,
reducing the graph to a directed, acyclic form;

for each f in the reduced graph in topological order do

A[f] := A[f] ∪
⋃

(f0,f)∈EB A[f0]
od;
for each cycle in the original binding graph do

let C be the reduced binding graph node for the cycle;
for each f ∈ C do A[f] := A[C] od

od
end computeA

FIGURE 6. Computing approximate alias sets for formal parameters.

phase derives an acyclic graph from the binding graph and propagates the A
sets along the derived graph. This takes O(N +E) time to derive the graph and
O(E) unions on sets of size V in the propagation. The final phase maps the A
set computed for the node representing a cycle back onto the individual nodes
in the cycle. This requires N operations on sets of length V . Thus, the overall
complexity is O((N + E)V).

Once the sets A(f) are available for every formal parameter in the program,
the alias sets for every global variable can be computed by a simple inversion, as
shown in Figure 7. This computation can be subdivided into two components:
initializing the alias sets and computing the inversion. Recall that we can repre-
sent an alias set for a global variable within a given procedure as a bit vector of
length µ. Therefore the initializations in step S0 of Figure 7 take no more than
O(NV µ) = O(NV) time. However, since an update can be done in constant
time, the total cost of the updates in statement S1 is also O(NV).

All that remains is the computation of aliases for formal parameters. Note
that A(f) is an approximation for alias(p, f), containing all the global aliases
of f . To expand A(f) to alias(p, f), we need only add the formal parameters
that may be aliased to f . In the simple two-level language we are considering,
the only formals that may be aliased to f are other parameters of the same
procedure. Thus there can be no more than µ(µ−1)/2 formal pairs in any given
procedure.

INTERPROCEDURAL ANALYSIS AND OPTIMIZATION 969

for each procedure p do
for each global variable g do

S0 alias[p, g] := ∅
od

od

for each formal parameter f in the program do
for each g ∈ A[f] do

S1 alias[proc[f], g] := alias[proc[f], g] ∪ {f}
od

od

FIGURE 7. Inversion to compute alias[p, g] for each global variable g.

To compute the formals that may be aliased to one another, the algorithm
computePairs in Figure 8 keeps track of the set fpairs(p) of pairs of formal
parameters that may be aliased to one another in a given procedure p. After
initializing all the fpairs sets to the empty set, we examine each call site for
alias introductions, occurring when the same variable is passed to two different
parameters. Whenever one is found, we add the formal parameter pair in the

procedure computePairs
W := ∅;

L1 for each procedure p in the program do fpairs[p] := ∅ od;
L2 for each alias introduction site (e.g., “CALL P(X,X)”) do

insert the resulting formal pair in fpairs[p] and
in the worklist W ;

od;
L3 while W 6= ∅ do

remove 〈f1, f2〉 from W ;
L4 for each call site s in proc[f1] passing both f1 and f2 do

let q be the procedure invoked at s;
if f1 and f2 are passed to f3 and f4 at s and
〈f3, f4〉 6∈ fpairs[q] then
fpairs[q] := fpairs[q] ∪ {〈f3, f4〉};
W := W ∪ {〈f3, f4〉};

fi
od

od
end computePairs

FIGURE 8. Algorithm to compute formal parameter pairs that may be aliased.

970 COOPER–HALL–KENNEDY–TORCZON

alias to a worklist. Then we iterate over the worklist looking for possible alias
propagations, which occur when two parameters that may be aliased are both
passed to another procedure. If the resulting pair of formals in the called pro-
cedure is not already in the fpairs set, the pair is added to the worklist. This
procedure continues until the worklist is empty.

Let us now analyze the running time of the algorithm computePairs. Note
that there can be no more than µ(µ − 1)/2 parameter pairs in any subroutine.
The initialization loop L1 takes O(N) time, since it is constant time for each
procedure. Since it must look at each call site, the loop at L2 takes O(E) time,
but the operations are all constant-time, assuming we use some sort of linked
structure for both W and fpairs. Loop L3 is entered once for each pair that is
put on the worklist. Since there can be at most µ(µ−1)/2 pairs for each call site,
the total number of times L3 is entered is less than or equal to E ·µ(µ− 1)/2, so
L3 is entered O(E) times. Similarly, each call site in the program is examinedIs this right?

no more than µ(µ11)/2 times, so loop L4 is entered O(E) times. Since the body
of L4 takes constant time, the entire process takes O(N + E) time.

Thus, we have established that alias analysis can be done in O((N + E)V)
time, which means that the entire mod solution can be completed in this time.

2.5. Constant Propagation

Constant propagation is the process of discovering, at compile time, ex-
pressions that have known constant values. It has been shown to be an im-
portant and effective optimization in single procedures [20] and across whole
programs [34, 41]. Unfortunately the problem is difficult even in a single
procedure—obtaining a precise solution has been shown to be unsolvable [53].
Even the usual single-procedure approximate problem is flow-sensitive in the
interprocedural setting, hence intractable [57].

One important reason for the difficulty is that constants propagated into a
program region can make it possible to evaluate program expressions in that re-
gion, yielding new constants on exit. An example illustrating the interprocedural
case is shown below.

SUBROUTINE PHASE(N)
INTEGER N,A,B
CALL INIT(A,B,N)
CALL PROCESS (A,B)

END

SUBROUTINE INIT(A,B,N)
INTEGER A,B,N
A = N+1
B = (N*A)/2

END

The purpose of subroutine INIT is to initialize the variables A and B. Thus if N
is a constant 10 on entry to procedure PHASE, A will be a constant 11 and B will

INTERPROCEDURAL ANALYSIS AND OPTIMIZATION 971

unknown

non-constant

••• -3 -2 -1 0 1 2 3 •••

FIGURE 9. Constant propagation lattice.

be a constant 55 on exit from INIT. Hence these constant values will be available
on entry to PROCESS. This section will develop an approach to determine these
facts.

Figure 10 shows an algorithm for constant propagation within a single proce-
dure, modelled after Wegman and Zadeck [72]. This algorithm uses an iterative
process on the use-definition graph or the static single assignment (SSA) form
of the given procedure [31].

The iterative method is guaranteed to converge because it is based on the
constant propagation lattice shown in Figure 9. The algorithm in Figure 10 is
linear in the size of the base graph because an instruction is only put on the
worklist when its output value is lowered, which can happen only twice for each
instruction in the lattice of Figure 9. In addition, each edge out of an instruction
is visited once each time it is removed from the worklist, so the running time
required by the algorithm is proportional to the number of nodes and edges in
the graph.

To use an interprocedural analog of this iterative process, we will need to
construct an interprocedural analog of the use-definition graph, which we call
the interprocedural value propagation graph. In this graph, the vertices represent
“jump functions” that compute values the values of variables passed out of a
procedure (either at a call site or a return) as a function of values passed into
the procedure and known constant values generated inside the procedure. Values
can be propagated from the calling procedure to the called procedure; this is
modelled with a “forward” jump function. Values can also be propagated when
a procedure returns; this is modelled with a “return” jump function.

Let s be a call site within procedure p and x a formal parameter of the
procedure q called at s. The jump function for x at s, denoted Jxs , determines
the value of x in terms of the values known at s. These include the values of
parameters and global variables passed into p, known constant values created
p, and values returned from other procedures that p calls before reaching s.
Because this set of possible inputs is large, we refer to the subset that is actually
used in evaluating Jxs as the support of Jxs .

We now return to the construction of the interprocedural value graph. Here
are the steps:

1. construct a node for each forward jump function Jxs

972 COOPER–HALL–KENNEDY–TORCZON

/* valin(w, s) is the current approximate value of input w to s */
/* valout(v, s) is the current value of output v from s */
/* M(s)(inputs to s) is the result of symbolic interpretation of */
/* statement s over the lattice values of its inputs. The */
/* output is the lattice value of the output of the statement. */
for all statements s in the program do

for each output v of s do valout(v, s) := unknown od;
for each input w of s do

if w is a variable then valin(w, s) := unknown
else valin(w, s) := the constant value of w fi

od
od;
worklist := { all statements of constant form, e.g., X = 5} ;
while worklist 6= ∅ do

pick an arbitrary statement x from worklist;
let v denote the output variable for x;

/* Symbolic interpretation of the statement x */
newval :=M(x)(valin(u, x), for all inputs u to x);
if newval 6= valout(v, x) then
valout(v, x) := newval;

for all (x, y) ∈ defuse do
oldval := valin(v, y);
valin(v, y) := oldval ∧ valout(v,x);
if valin(v, y) 6= oldval then worklist := worklist ∪{y} fi

od
fi

od

FIGURE 10. Constant Propagation Algorithm

2. if x ∈ support(Jyt), where t is a call site in the procedure called at s, then
construct an edge from Jxs to Jyt .

The iterative algorithm shown in Figure 10 can be applied to the resulting graph.
We now present a simple example of this process. Consider the program

shown in Figure 11. From this example we can easily derive the jump functions:

JXα = {1}; JYα = 2

JUβ = {x+y}; JVβ = {x-y}

The call graph and the resulting interprocedural value propagation graph are
shown in Figure 12.

INTERPROCEDURAL ANALYSIS AND OPTIMIZATION 973

PROGRAM MAIN
INTEGER A,B
A = 1
B = 2

α CALL S(A,B)
END

SUBROUTINE S(X,Y)
INTEGER X,Y,Z,W
Z = X + Y
W = X - Y

β CALL T(Z,W)
END

SUBROUTINE T(U,V)
PRINT U,V

END

FIGURE 11. Interprocedural constant propagation example.

MAIN

S

T

A X
B Y

Z U
W V

J
X

J
VJ

U

J
Y

Call Graph Interprocedural
Value Propagation Graph

FIGURE 12. Interprocedural value propagation graph example.

974 COOPER–HALL–KENNEDY–TORCZON

It can easily be seen that the constant propagation algorithm applied to the
interprocedural value propagation graph in Figure 12 will quickly converge to
the constant assignments:

x=1; y=2; u=3; v=-1

To estimate the total cost of the algorithm, recall that the cost of the iterative
constant propagation algorithm on which this is based is proportional to the
number of vertices and the number of edges in the graph, assuming the jump
function evaluations can be done in constant time. However, it is unrealistic
to expect every jump function to be evaluated in constant time because, as we
shall see, different strategies for constructing jump functions produce functions
of varying execution costs.

Thus, we must argue about the number of times that a jump function is
evaluated. A jump function J has support(J) inputs, each of which can be
lowered at most twice. Thus a jump function J can be evaluated no more than
O(|support(J)|) times. Let cost(J) denote the cost of executing jump function
J . For each jump function the total cost of execution will be O(|support(J)| ·
cost(J)). Therefore the total cost of executing the interprocedural constant
propagation algorithm is

(2.7) O

(∑
s

∑
x

|support(Jxs)| · cost(Jxs)

)
where s ranges over the call sites in the program and x ranges over the input
parameters to the subroutine.

Construction of Jump Functions

Jump functions can vary widely in the precision and cost of their approxima-
tions. A jump function could involve full symbolic interpretation of the procedure
it represents. On the other end of the spectrum, it could evaluate only the as-
signments that are on every path through the subroutine and not contained in
any loop. In this case, variables assigned on optional control-flow paths or in
loops would receive the value ⊥ (bottom) in the constant lattice.

The analyzer must construct jump functions for each procedure that has a
call site in its body. Consider the example in Figure 13. To build a jump function
for t at call site γ, we need to know what action will be taken by subroutine
init invoked at call site β. We address this problem by defining “return jump
functions,” which summarize the constants propagated out of a subprogram when
it is called with a particular set of inputs.

If x is an output of the procedure p, the return jump function Rx
p determines

the value of x on return from an invocation of p in terms of the values of input
parameters to p. The support of Rx

p is the same as the support of a forward jump
function. In the simple case of the subroutine init shown in Figure 13 above,
we have the following return jump function:

INTERPROCEDURAL ANALYSIS AND OPTIMIZATION 975

PROGRAM MAIN
INTEGER A

α CALL PROCESS(15,A)
PRINT A

END

SUBROUTINE PROCESS(N,B)
INTEGER N,B,I

β CALL INIT(I,N)
γ CALL SOLVE(B,I)

RETURN
END

SUBROUTINE INIT(X,Y)
INTEGER X,Y
X = 2*Y
RETURN

END

SUBROUTINE SOLVE(C,T)
INTEGER C,T
C = T*10
RETURN

END

FIGURE 13. A complex interprocedural constant folding example.

Rx

init
= {2*y}

and in the case of solve, we have:

Rc

solve
= {t*10}

We can use return jump functions in the construction of forward jump functions
to improve the results of constant propagation. For example, the jump function
for call site γ is as follows

Jt
γ = {if i∈mod (β) then RX

init
(n) else undefined-const}

where undefined-const is used to signify a special value given to uninitialized
variables. To round out the example, we present the remainder of the jump
functions:

Jn
α = {15} and Jy

β = {n}

976 COOPER–HALL–KENNEDY–TORCZON

One important jump function remains to be determined, namely the return jump
function for subroutine process, which is the key to determining whether a
constant can be substituted for the variable a in the print statement in the main
program. This return jump function must invoke the return jump function for
both init and solve but the call to the return jump function for init will be
automatic if we use the forward jump function to determine the value of the
input formal parameter t of solve. The resulting function is given below:

Rb

process =
{if b∈mod(γ)
thenRc

solve
(Jt
γ (n))

else undefined-const}
Using these jump functions we can see that the value of the variable A on

exit from the procedure process is given by

Rb

process
= (2 ∗ (15)) ∗ 10 = 300

The study of scientific Fortran programs by Grove and Torczon [34] suggests
that mod should be computed prior to computing jump functions and prior
to performing a global constant propagation to initialize the interprocedural
propagation. Their results show that lack of mod information stops propagation
of constants within a procedure, and hence, within a jump function. Thus, mod

information improved the results of strictly intraprocedural constant propagation
and the results of jump function evaluation during the interprocedural constant
propagation. Since any variable that is not in mod for a given call site has the
identity function as its return jump function, using mod information can simplify
the forward jump functions. Of course, in a language where aliasing can occur,
using alias information in the analogous manner should help, too. The same
study also established that:

1. increasing the complexity of the jump function implementations beyond
some fairly simple approximations did not increase the set of constants
found in scientific Fortran codes, and

2. return jump functions deliver new constants infrequently, but when they
do, the payoff can be large.

In designing an interprocedural analyzer, the implementor must decide when
to build jump functions. They can be constructed before analysis and opti-
mization by a preliminary phase, as was done in the Rn programming environ-
ment [15, 29] Alternatively, the analyzer can solve the simpler interprocedural
problems first and use the results of mod and alias analysis during the construc-
tion of jump functions [34]. The former approach avoids some phase ordering
difficulty and provides a clean separation between local analysis and interproce-
dural propagation. The jump functions built in this scheme explicitly test the
values of mod and alias sets. The latter approach results in simpler jump func-
tions, but requires the analyzer to examine each procedure between solving mod

INTERPROCEDURAL ANALYSIS AND OPTIMIZATION 977

and alias and performing constant propagation. The jump functions built in
this scheme incorporate the mod and alias information implicitly, so they avoid
explicit tests during propagation. (The examples shown earlier in this subsection
assume the former approach.)

2.6. Kill Analysis

We can adapt some of the ideas used to solve the mod and constant prop-
agation problems to deal with kill analysis as well. For a block b, recall that
kill(b) is the set of all variables that must be modified by execution of b. If
the block is a call site s, then kill(s) is the set of all variables that must be
modified on every path through the procedure called at s. For convenience in
formulating the algorithm, we will compute nkill(s) = ¬kill(s), the set of all
variables that are not killed as a side effect of the call at s. A method similar
to the one presented here can be used to compute use(s) for every call site s in
the program.

Let us begin by considering how we would compute nkill within a single
procedure. Suppose we have, for each extended basic block b and each successor
c of b, the set thru(b, c) of all variables that are not killed on some path through
b to c. Then the following set of data-flow equations can be used to solve for
nkill(b):

(2.8) nkill(b) =
⋃

c∈succ(b)
thru(b, c) ∩ nkill(c)

If e is the exit node for the procedure then

(2.9) nkill(e) = Ω

where Ω denotes the set of all variables. This set of equations can be solved
using the simple iterative method of data-flow analysis.

To improve the precision of these nkill sets, we can compute a set gnkill(p)
for each procedure p in the program. Then, the thru set for any block containing
a call site s can be set to local ∪ nkill(s), where nkill(s) is computed by
projecting the gnkill set for the called procedure back through the bindings
that occur at s. This is more complicated than the single-procedure computation
from Equation 2.8, because the solution for the procedures depend on each other.
It is more complex than the mod calculation because gnkill(p) depends on
control-flow within p.

To model this intraprocedural control flow, we will construct a graph that
we call the reduced control-flow graph Gthru(p) for procedure p. Gthru(p) is
a graph in which each vertex is a call site, the entry node or the exit node for
the procedure. Every edge (x, y) in Gthru is annotated by the set thru(x, y)
of variables that are not killed on some path from x to y not containing a call
site. Gthru is constructed by the algorithm in Figure 14. This algorithm is a

978 COOPER–HALL–KENNEDY–TORCZON

remove all back edges from the control-flow graph;
let b0 denote the procedure entry node;
mark b0 processed;
worklist := ∅;
for each s ∈ successors(b0) do worklist := worklist ∪{(b0, s)} od;

while worklist 6= ∅ do
take an arbitrary element (b, s) from the worklist,

such that all predecessors of s have already been processed
or merged into b;

if s is a call site then
for each t ∈ successors(s) do

worklist := worklist ∪{(s, t)} od;
mark s as processed;

else if s is the exit node then do nothing
else /* s is normal node */

merge s into b;
for each t ∈ successors(s) do

if thru[b, t] is undefined then
thru[b, t] := thru[b, s] ∩ thru[s, t]
worklist := worklist ∪ {(b, t)}

else
thru[b, t] := thru[b, t] ∪ (thru[b, s] ∩ thru[s, t])

fi
od

fi
od

FIGURE 14. Algorithm for constructing the reduced control-flow graph.

variant on topological sort; it is easy to see that it requires time linear in the
size of the control flow graph.

Once we have the reduced control-flow graph, the algorithm shown in Figure
15 can be used to compute gnkill(p) for a procedure p given gnkill values for
all procedures that can be called from within p.

A simple iterative data-flow analysis algorithm, employing the procedure in
Figure 15, can be used to compute gnkill, assuming that there are no call-by-
reference formal parameters. Although this algorithm can take O(N2V) time
in the worst case, if the call graph is reducible, the algorithm will require only
O((N +E)d) bit-vector steps, where d is the maximum number of back edges in
any noncircular path in the call graph [46]. The total time required in this case
is O((N + E)dV). In practice, iterative methods converge quickly.

The algorithm described so far computes gnkill(p) rapidly for programs
with no call-by-reference formal parameters. The algorithm can be adapted

INTERPROCEDURAL ANALYSIS AND OPTIMIZATION 979

for each b in Gthru(p) in reverse topological order do
if b is the exit node then nkill[b] := Ω
else if b is a call site then

nkill[b] := ∅;
for each successor s of b in Gthru(p) do

nkill[b] := nkill[b] ∪ (thru[b, s] ∩ nkill[s])
od;
nkill[b] := nkill[b] ∪ gnkill[q]

where q is the procedure called at b
else /* b is the entry node for Gthru(p) */

nkill[b] := ∅;
for each successor s of b in Gthru(p) do

nkill[b] := nkill[b] ∪ (thru[b, s] ∩ nkill[s])
od;
gnkill[p] := nkill[b]

fi
od

FIGURE 15. Computing gnkill(p).

to produce the correct answers for programs with reference formal parameters
if the appropriate actual-to-formal mappings are observed. However, it may
take significantly longer to converge because of the possibility of the “shift-
register effect” in which parameters are passed to other parameters in a recursive
loop. This is the same problem we observed in dealing with the mod problem
in Section 2.3. Fortunately, we can use the same general technique—use of a
formal parameter binding graph—to ameliorate this problem. We will construct
a binding graph and mark it as shown in Figure 16.

This algorithm is simply a variation on the iterative algorithm, except that
we update gnkill(p) for a procedure only if we discover that the status of one
of its parameters might have changed to “killed” because a parameter that it
is passed at some call site has changed its status. Since each parameter can be
added to the worklist only once and since the algorithm visits each predecessor
of a parameter taken from the worklist, the total number of gnkill updates
is limited to O(Eb + Nb) = O(E + N), where Eb and Nb are the number
of edges and vertices in the binding graph, respectively, and E and N are the
number of edges and vertices in the call graph. The number of updates can be
further reduced by carefully selecting the order of extraction of elements from
the worklist.

Given gnkill sets for every procedure in the program, we can derive a set
nkill(s) for each call site s that invokes p by projecting gnkill(p) back through
the bindings that occur at s. This is done with a formulation that is analogous
to Equation 2.3:

980 COOPER–HALL–KENNEDY–TORCZON

initially, let the binding graph consist of a vertex
for each formal parameter in the program;

worklist := ∅;

for each procedure p in the program do
let gnkill0[p] be the result of applying the algorithm in

Figure 15 with gnkill[q] = Ω(q)
for each successor q of p,
where Ω(q) denotes the set of formal parameters of q;

gnkill[p] := gnkill0(p);
for each formal parameter f of p do

if f ∈ gnkill0[p] then
killed(f) := false;
for each formal parameter g to which f is passed

at a call site within p do
add an edge (f, g) to the binding graph

od
else

killed(f) := true;
worklist := worklist ∪{f};

fi
od

od;
while worklist 6= ∅ do

select an arbitrary element f ∈ worklist;
worklist := worklist - { f} ;
for each g such that there is an edge (g, f) in the binding graph

and killed(g) = false do
let q be the procedure of which g is a formal;
gnkill[q] := the result of applying the algorithm in

Figure 15 with the current nkill sets
for its successors;

if g 6∈ gnkill[q] then
killed(g) := true;
worklist := worklist ∪{g};

fi
od

od

FIGURE 16. Construct and mark the binding graph for gnkill.

INTERPROCEDURAL ANALYSIS AND OPTIMIZATION 981

(2.10) nkill(s) = {v|s invokes p, v
s→ w and w ∈ gnkill(p)}

Of course, the nkill sets should also account for aliasing. What does it mean
if, for some call site s = (p, q), v ∈ nkill(s), w 6∈ nkill(s) and w ∈ alias(p, v)?
Because v ∈ nkill(s), we know that there is at least one path through q, and
any procedures that it calls, along which v is not redefined. For w, the opposite
is true; we know that every path through q, and any procedures that it calls,
contains at least one redefinition of w. Because the alias set contains may

information, we do not know that v and w are aliases in every invocation of p.
Thus, the sets are consistent. If we had must sets for alias, the situation would
be different. If v ∈ nkill(s), w 6∈ nkill(s) and w ∈ mustalias(p, v), then we
should remove v from nkill(s).

2.7. Advanced Analysis

In addition to the basic analysis problems discussed so far, successful program
parallelization requires that some more sophisticated interprocedural problems
be solved. Two that are especially important are symbolic analysis and array
section analysis [44, 41].

Symbolic Analysis

Although constant propagation provides valuable information about variables
on entry to a procedure, it is usually not possible to establish that a given variable
is constant because, in most cases, it is not. However, it may not be necessary to
prove a variable constant to improve global program analysis. It may be enough
to establish bounds on its values or to prove that its value can be expressed as
a function of the values of other variables at the same point in the program.
Such symbolic relationships can be used to prove facts, such as the absence of a
dependence. For example, consider the sample code below:

SUBROUTINE S(A,N,M)
REAL A(N+M)
INTEGER N, M
DO I = 1, N

A(I+M) = A(I) + B
ENDDO

END

If we could prove that n=m on entry to s, we could show that the loop within
the subroutine carries no dependence.

The goal of interprocedural symbolic analysis is to prove facts about the values
of variables that may hold on entry to a given subroutine or on return from a
given call site. There are three types of symbolic analyses that are often carried
out:

982 COOPER–HALL–KENNEDY–TORCZON

1. symbolic expression analysis, which seeks to determine a symbolic expres-
sion for the value of a variable in terms of the values of other variables at
the same point in the program;

2. predicate analysis, which seeks to establish a relationship between values
that a pair of variables may have at a given point in the program and

3. range analysis, which seeks to establish a range of values with known con-
stant lower and upper bounds (and possibly strides) that a variable may
take on at a given point in the program.

Often, the results of these analyses can be substituted for one another. For
example, the fact that m=n in the example above, could be established by either
symbolic expression analysis or predicate analysis. The distinction between the
two is that expression analysis can produce values that involve many other values,
while predicate analysis typically relates only pairs of variables. On the other
hand, the analysis that produces symbolic expressions can be more complicated
than the analysis required for simple predicates.

Range analysis can be used effectively in program analysis to rule out certain
possibilities. For example, consider the subroutine:

SUBROUTINE S(A,N,K)
REAL A(0:N)
INTEGER N, K
DO I = 2, N

A(I) = A(I) + A(K)
ENDDO

END

If we can prove that k ∈ [0:1] on entry to the subroutine, we can establish
that the loop carries no dependence.

Within a single procedure, symbolic expression analysis is typically performed
using some form of value numbering [4, 59], which uniquely numbers each ex-
pression so that expressions with equal value numbers at a given point will have
equal values at run time. Since global program value numbering is likely to be
complex, it is typically used only within a procedure. Interprocedurally, a re-
stricted set of relationships, such as those represented by predicates involving
only two variables, are propagated across procedure boundaries [43].

It is easy to see that range analysis and symbolic expression analysis can be
handled by variations on the constant propagation algorithm from Section 2.5.
To use this algorithm, we will need to define three things:

1. the process by which new symbolic information is introduced in a program;

2. jump functions which produce information at a call site from information
at the entry to a procedure containing that call site; and

3. return jump functions which determine the relationships on output from a
procedure given the relationships that hold on entry.

INTERPROCEDURAL ANALYSIS AND OPTIMIZATION 983

[-∞ 60 [50:∞][1:100]

[-∞:100] [1:∞]

[-∞,∞]
FIGURE 17. Simple value lattice for range analysis.

Let us consider how these three functions could be put together to compute
range information. Range information is typically introduced at control-flow
points in the program. For example, in a loop headed by

do i = 1,n

it is safe to assume that i ∈ [1:N]. Similarly, conditional statements introduce
partial ranges that can be composed to produce full ranges.

In all the symbolic analysis methods, jump functions compute values in lat-
tices that are significantly more complex than the simple constant propagation
lattice. For example, in the case of range analysis, we might use a lattice in which
the meet operation picks the larger upper and smaller lower bound of the pair of
ranges on the two joining control-flow branches. A fragment from such a lattice
is depicted in Figure 17. If we bound the number of times that an upper bound
can be increased before being taken as∞ and we similarly bound the number of
times a lower bound can be decreased, this lattice can be used anywhere a finite
descending chain lattice is required, such as in an iterative algorithm.

Symbolic predicate analysis is more complicated than range analysis because
it examines the relationship between a pair of variables. For example, it is useful
to know whether two variables x and y are related by equality or are offset from
one another by a constant. This might be represented as

x− y = c

where c is a compile-time constant. A more general linear relationship between
variables can be characterized as:

c1x + c2y = c0

where c0, c1 and c2 are all constants. Note that this relationship is transitive—if
variables y and z are related by

d1y + d2z = d0

984 COOPER–HALL–KENNEDY–TORCZON

then we can find constants e0, e1 and e2 such that

e1x + e2z = e0

In particular,

c1d1x− c2d2z = c0d1 − c2d0

Thus, at any point in the program, we can find groups of variables that are
linearly related to one another. The goal of symbolic predicate analysis is to
propagate these sets throughout the program. This can also be done by employ-
ing a variant of interprocedural constant propagation.

Array Section Analysis

The analysis presented so far does not address one of the most important
problems we need to solve if we are to automatically parallelize programs—
namely, how to analyze dependences in loops that contain procedure calls. Con-
sider the following code:

SUBROUTINE S
DIMENSION A(100,100)
. . .
DO I = 1,N

S1 CALL SOURCE(A,I) ! assigns to A
S2 CALL SINK(A,I) ! uses A

ENDDO
RETURN

END

If we wish to parallelize the loop in this subroutine, we must determine
whether any dependence is carried by the loop. Interprocedural information
of the sort described in previous sections only tells us that array a is modified
by source and used by sink. Without better information, we must assume
that there is an assignment in source to a location that is used by SINK on a
later iteration of the loop–in other words, we must assume that the loop carries
a dependence and cannot be parallelized.

The situation would be different if we were able to show that the accesses
to a in both routines are confined to the i

th column, which is suggested by the
use of i as a parameter to both routines. Then we know that different iterations
of the loop deal with distinct portions of the array, so no carried dependence is
possible. We would like to refine interprocedural analysis methods to be able to
establish conditions like this, which means that our analysis needs to be able to
recognize subarrays of the whole array.

Suppose that we are able to compute the set Ma(i) of locations within the
array that may be modified within source on the i

th iteration of the loop and the
set Ua(i) of locations that may be used in SINK on iteration i. These quantities

INTERPROCEDURAL ANALYSIS AND OPTIMIZATION 985

might by computed by array versions of mod and use respectively. Then the loop
carries true dependence if and only if there exist indices i1 and i2, 1 ≤− i1 < i2 ≤−N,
such that

Ma(I1) ∩ Ua(I2) 6= ∅
In order to reason about subarrays, we need a method of representing them. The
representation should be such that unions and intersections are reasonably easy
to represent as well.

It is straightforward to extend the standard data-flow algorithms, which work
on vectors of bits in which each bit can represent only two states (e.g., may be
modified or must be preserved), to vectors of more general lattice elements. If
we can find a lattice that represents subarrays accurately enough, we can use
this lattice in our interprocedural data-flow analysis routines to determine side
effects to subarrays.

Some important properties that a lattice representation should have are as
follows:

1. the representation should be as accurate as possible;
2. the meet operation, which is invoked whenever two control-flow paths

merge, must be efficient;
3. the dependence test, which usually involves intersection of region represen-

tations, should also be efficient;
4. it should be possible to handle recursion in the analysis framework, which

implies that the lattice should have the finite descending chain property—
that is, every descending chain in the lattice must reach a lattice minimum
after a finite number of steps; and

5. it should be possible to deal with the parameter transformations that occur
at call sites.

Let us consider one possible lattice for subarrays, depicted in Figure 18 below,
that satisfies a number of these requirements. The elements of this lattice are
referred to as simple regular sections because they can represent a very limited
number of regular subarrays, namely points, rows, columns and the entire matrix.

Note that this lattice may extend to an infinite size because we can use
arbitrary variables and constants in the subscripts. However, it has the finite
descending chain property because no element in the lattice can be “lowered”
more than three times.

Evaluating this lattice representation, we find that meet, which represents
union in a case like the mod calculation, has the following properties:

1. The depth of the lattice is k+1, where k is the number of subscript positions
in the array represented.

2. The cost of a meet operation is O(k), because each subscript position must
be examined and compared for the two references to determine what the
meet must be.

986 COOPER–HALL–KENNEDY–TORCZON

A(I,L) A(K,J)A(I,J)

A(I,*) A(*,J)

A(*,*)
FIGURE 18. Simple regular section lattice.

3. Intersection, which is essential to the dependence test, is a limited form
of unification, which can also be done in linear time in the number of
subscripts.

To see this last claim, note that each subscript position in the lattice is either
a symbolic expression or a constant or “∗” which represents an entire row or
column. Thus, if the two subscripts are symbolic expressions then the resulting
subscript should be the same expression if they are equal and “∗” otherwise. If
one is an expression and the other is “∗”, the resulting subscript should be “∗”.

An important question remains: How accurate is this representation? It turns
out that in practice this representation is too simple because it does not allow
subarrays whose extents are bounded. Thus in an array a(100,100) the best
approximation to subarray a(1:10,1:10) is a(∗, ∗). A much better representation
is bounded regular sections, in which upper and lower bounds for each dimension
are permitted. These can be thought of as any section represented by Fortran 90
triplet notation in which the stride is 1. Extensions that have been proposed in
the literature include arbitrary stride triplet notation and triangular subarrays.

Interprocedural algorithms like the mod solution can be directly adapted
to deal with vectors of lattice elements, as long as the lattice has the finite
descending chain property. The component of the mod algorithm on the binding
graph will converge because no formal parameter can be put on the worklist more
than k times, where k is the maximum depth of the lattice. The reachability
portion of the algorithm converges because, when a strongly-connected region is
found, the element-vector for each element of the region is set to the minimum
lattice element in the region.

Note that in the four side-effect problems described so far—mod, ref, nkill

and use—we always want to over-approximate the array section involved because
we will optimize only when we know a variable cannot be in one of those sets for
the call site in question. Recall the privatization example from the discussion of
live and use in Section 2.1. We will be able to make a variable p private to a
loop if we discover that, for the call site s0 at the beginning of the loop:

INTERPROCEDURAL ANALYSIS AND OPTIMIZATION 987

p ∈ (kill(s0) ∩ ¬use(s0)).

In other words, we optimize when

p 6∈ (nkill(s0) ∪ ¬use(s0))

so we must overestimate rather than underestimate those sets to ensure that
inaccuracy results only in missed opportunities, not in incorrect code.

2.8. Call Graph Construction

So far, we have assumed a precise call graph on which to solve interprocedural
data-flow analysis problems. Constructing such a graph seems to be easy—
simply examine each procedure in the program and, for each call site, construct
an edge from the calling procedure to the called procedure. This simple approach
works well, as long as there are no procedure parameters. Procedure parameters
can add significant complications to the problem, as the following example shows:

SUBROUTINE SUB1(X,Y,P)
INTEGER X, Y

S0 CALL P(X,Y)
RETURN

END

The problem here is determining what the called procedure might be at call
site s0. If there is only one invocation sequence for sub1 it may be simple
to follow the call chain back to determine the procedure passed to parameter
p. However, we cannot assume that a single chain exists, because procedure
parameters were added to the language to ensure that many different procedures
could be passed to p, even in the same program.

To solve this problem, we must be able to determine, for each procedure
parameter p, the names of procedures that may be passed to p, directly or
indirectly. However, we must be careful to avoid loss of precision in cases where
more than one procedure parameter is passed. Consider the following example:

SUBROUTINE SUB2(X,P,Q)
INTEGER X

S1 CALL P(X,Q)
RETURN

END

Suppose we have the following two calls:

CALL SUB2(X,P1,Q1)
CALL SUB2(X,P2,Q2)

where p1 and p2 simply invoke their procedure parameter on their integer pa-
rameter and return:

988 COOPER–HALL–KENNEDY–TORCZON

SUBROUTINE P1(X,Q)
INTEGER X

S2 CALL Q(X)
RETURN

END

Then at call site s1 in subroutine SUB2, we can pass procedure Q1 to procedure
P1 or we can pass procedure Q2 to procedure P2. We can never pass Q1 to P2
or Q2 to P1. In other words, P1 can only call Q1 and P2 can only call Q2 in this
program. However a naive procedure-tracking scheme that simply maintains lists
of procedures that could be passed to a given parameter might report edges from
P1 to Q2 and from P2 to Q1 because the list for possible procedures passed to
parameter q in P1 includes both Q1 and Q2.

To overcome this problem, a precise call graph construction algorithm must
keep track of which pairs of procedure parameters may be simultaneously passed
to the procedure formal parameters in S2. This suggests a general algorithm for
call graph construction.

Suppose we collect, for every procedure p that accepts procedure parameters,
a set procparms(p) of tuples of procedure names that may simultaneously be
passed to p, where the order of the procedure names in the tuple corresponds
to the order of the procedure parameters in the parameter list of p. Then the
iterative algorithm in Figure 19 can be used to determine the correct set of
procedure parameter tuples passed at each call site.

Theorem 5. For every procedure p in the program, the algorithm
in Figure 19 produces procparms(p) such that 〈N1, N2, . . . , Nk〉 ∈
procparms(p) if and only if there exists a call chain that passes
parameter names N1, N2, . . . , Nk in that order, to the procedure pa-
rameter positions for p.

The proof of this theorem, which we do not include here, takes advantage
of the fact that only a finite number of tuples of procedure calls can be in
procparms(p) for any given procedure p [61, 14]. The maximum number is
given by the formula

(2.11)
∑
p

N
νp
P

where νp is the number of procedure parameters to p.
We saw above that the number of tuples is given by the summation in

Equation 2.11. Let νmax = maxp(νp), let NC be the number of procedures
with at least one procedure parameter, and let NP be the number of procedure
names that are passed to a procedure somewhere in the program. Then the
running time can be approximated as

(2.12)
∑
p

N
νp
P = O(NCNνmax

P) ≤− O(NNνmax) = O(Nνmax+1)

INTERPROCEDURAL ANALYSIS AND OPTIMIZATION 989

for each procedure p in the program do procparms[p] := ∅ od;
W := ∅;
for each call site s in the program do

if the call site passes procedure names to all procedure
parameters of the called procedure do
let t = 〈N1, N2, . . . , Nk〉 be the tuple of procedure names passed

in order of the parameters to which they are passed;
W := W ∪ {〈t, p〉}, where p is the procedure called

fi
od;
while W 6= ∅ do

let 〈t = 〈N1, N2, . . . , Nk〉, p〉 be an arbitrary element of W ;
W := W − {〈t, p〉};
procparms[p] := procparms[p] ∪{t};
let 〈P1, P2, . . . , Pk〉 be the set of procedure parameters to which

the elements of the tuple t = 〈N1, N2, . . . , Nk〉 are mapped;
for each call site s within p where Pi for some i, 1 ≤− i ≤− k,

is passed as a procedure parameter do
let u = 〈M1, M2, . . . , Mk〉 be the set of procedure names

passed to the procedure q called at s, where each Mi is either
the procedure name in the ith position or
Nj if Pj is passed in the ith position;

if u 6∈ procparms[q] then W := W ∪ {〈u, q〉} fi
od

od

FIGURE 19. Algorithm for computing procedure parameter tuples.

where N is the number of procedures in the program. In the special case where
there is no more than one procedure parameter to any procedure in the pro-
gram, the running time is O(N2). In typical Fortran usage, the running time
will not be a significant factor, because the use of procedure parameters is lim-
ited. However, for languages with more complex usage patterns, there exist
approximate algorithms that run in linear or near-linear time in the size of the
call graph [36, 38].

3. Interprocedural Optimization

3.1. Inline Substitution

The most familiar interprocedural optimization is inline substitution, by
which the text of a subroutine is substituted at the point of call, with formal
parameters replaced by actual parameters in the substituted text.

An example of inline substitution is presented below:

990 COOPER–HALL–KENNEDY–TORCZON

PROGRAM MAIN
REAL A(100)
CALL INPUT(A,N)
DO I = 1,N

CALL PROCESS(A,I)
ENDDO
CALL REPORT(A,N)

END
SUBROUTINE PROCESS(X,K)

REAL X(*)
X(K) = X(K) + K
RETURN

END

If we inline subroutine process, substituting a and i for x and k respectively,
we get the following code:

PROGRAM MAIN
REAL A(100)
CALL INPUT(A,N)
DO I = 1,N

A(I) = A(I) + I
ENDDO
CALL REPORT(A,N)

END

This code illustrates several well-known advantages of inline substitution:

1. procedure call overhead can be eliminated;
2. procedure body code can be tailored to the environment at the point of

call, for example by using the index variable i from a register rather than
memory; and

3. optimizations that would not be possible before substitution can be carried
out—in this case, the loop can be vectorized.

The advantages of inlining are so compelling that many have suggested it as a
generalized alternative to interprocedural analysis methods—if all the procedures
in a program are inlined, ordinary single-processor analysis methods can be used
to optimize the result.

However, overuse of inlining can cause a number of problems:

1. The massive substitution required can overwhelm the compilation sys-
tem, since procedures after substitution might grow to unmanageable size,
straining the capabilities of single-module compilers [45].

2. The object code generated from an inlined program may run slower because
optimizing compilers do not handle codes resulting from systematic inlining
well [25].

INTERPROCEDURAL ANALYSIS AND OPTIMIZATION 991

3. Any code that is changed inside an inlined subroutine will force the re-
compilation of every procedure into which it has been substituted. In the
limit, any change could require recompilation of the entire program.

4. Some subroutines are difficult to inline because of problems in substituting
actual parameters for formals. This is illustrated by the example below:

PROGRAM MAIN
REAL A(100, 100)
. . .
CALL S(A(26,2),N)
. . .

END
SUBROUTINE S(X,M)

REAL X(*)
DO I = 1, M

X(I) = X(I) + M
ENDDO
RETURN

END

The difficulty in this example arises because the two-dimensional actual
parameter a is treated as a one-dimensional array in subroutine s. We
could introduce an equivalence between array A in the main program and
a single-dimensional array, to produce the following code:

PROGRAM MAIN
REAL A(100, 100), a$(10000)
EQUIVALENCE (A(1,1),a$(1))
. . .
DO I = 1, N

a$(I+125) = a$(I+125) + N
ENDDO
. . .

END

The main problem with this approach is that it loses the information about
the independence of different rows and columns, which can be critical to
dependence analysis. Furthermore, this fix would not be available to us if
the call to s were in another procedure which was passed a as a parameter.

Instead of systematic inlining, we recommend a selective, goal-directed in-
lining that uses global program analysis to determine when inlining would be
profitable [7].

992 COOPER–HALL–KENNEDY–TORCZON

3.2. Procedure Cloning

Often the main benefit of inlining is the ability to take advantage of some
specific optimizations that are possible at some but not every call site for that
procedure. Consider the following example:

PROCEDURE UPDATE(A,N,IS)
REAL A(N)
INTEGER N, IS
DO I = 1,N

A(I*IS-IS+1) = A(I*IS-IS+1) + PI
ENDDO

END

At first glance, this code looks vectorizable and it would be were it not for
the possibility that the step size is = 0, in which case the computation would
become a sum of n*pi into a(1).

The obvious solution to this problem is to tailor the code to different specific
versions based on the value of a. This could be done by a run-time test, but if
we know the value of is at compile time in every calling context, we can produce
two versions of the program, one for the case is 6= 0 and another for the case
is = 0. The compiler would be able to replace the call to update at the point
of call with a call to one of the cloned procedures whenever it could determine
the value at compile time.

Cloning is a particularly useful way to enhance the impact of constant prop-
agation by treating parameters that are called with different constant values as
constants in different clones of the original version of the procedure. This is
the goal of cloning in the Convex Applications Compiler, the only commercial
compiler we know that performs this optimization [56].

3.3. Hybrid Optimizations

There are cases where transformations involving more than one procedure
can be used to gain some of the benefits of inlining without suffering the dis-
advantages. One such hybrid optimization is loop embedding, in which a loop is
moved from one procedure to another [39].

Consider the original example for inlining in Section 3.1. If we interchanged
the loop into subroutine process, we would get the following code inside that
routine, which would vectorize well:

SUBROUTINE PROCESS(X,N)
REAL X(*)
DO K = 1,N

X(K) = X(K) + K
ENDDO
RETURN

END

INTERPROCEDURAL ANALYSIS AND OPTIMIZATION 993

Local
Analysis

Inter-

Analysis
Optimizationprocedural

Once for each
procedure

Once for each
procedure

Once for
program

FIGURE 20. Interprocedural compilation process.

Note that the subroutine interface has changed to include the loop upper
bound as a parameter instead of the loop index.

Interprocedural optimizations like this have been found useful in a number of
cases, although there is as yet limited evidence as to their generality.

4. Managing Whole-Program Compilation

Using the results of interprocedural analysis and performing interprocedu-
ral optimizations complicates the compiler’s job. Obviously, the compiler must
perform additional tasks—at least, the analysis and optimization. More subtly,
the use of these techniques introduces compilation dependences between the code
produced for procedures of the compiled program. In a conventional compilation
system, the object code for any single procedure is a function only of the source
code for that procedure. In an interprocedural compilation system, the object
code for a procedure may depend on the source code for the entire program.
Thus, a change in source code could force recompilation of every procedure. To
ensure correctness of the compiled code, the compiler must understand the com-
pilation dependences that it introduces and ensure that they are respected. To
satisfy users, the compiler must try to minimize the amount of recompilation
performed in response to small changes in the source program.

We might expect that the interprocedural effects of changes made during
the maintenance phase of a program’s life would be somewhat limited. Thus,
global program analysis methods that can examine the effects of interprocedural
information flow might be useful in reducing the amount of recompilation.

We begin by subdividing the procedural compilation into two distinct phases,
one that depends on interprocedural information and one that does not. The
first of these phases, which we shall call local analysis, includes many of the
usual compilation tasks—lexical analysis, parsing, and semantic analysis. At
the same time, it examines the procedure for input to interprocedural analysis,
determining the local sets used in each of the interprocedural analysis algorithms,
such as the imod sets in mod analysis. With this subdivision, the compilation
process is structured as shown in Figure 20.

994 COOPER–HALL–KENNEDY–TORCZON

Module
Editor

Program
Compiler

Module
Compiler

Composition
Editor

IMOD list of procedures

MOD

FIGURE 21. Interprocedural compilation system.

This organization permits interprocedural compilation, but does not solve the
recompilation problem. However, if intermediate representations are saved, the
local analysis phase will not need to be reinvoked for any unchanged procedures.

To allow us to conveniently compute and save intermediate information, we
could organize our compilation system as shown in Figure 21. In this scheme,
the job of lexical analysis is performed by a separate system component, which
could reside in the module editor or in an importing tool. Information about
each source procedure is stored in an intermediate representation that includes
the parsed source. Programs are defined in this system by specification of a
program composition via a composition editor, which can be viewed as an editor
for lists of procedure names. The program compiler is the system component
responsible for the compilation of the whole program. It reads all the local infor-
mation for procedures in the program and carries out the various interprocedural
analyses and optimizations required by the user. Once all interprocedural infor-
mation is available, the module compiler, which is just a classic single-procedure
optimizing compiler, optimizes each procedure and generates final code. Note
that by separating the local analysis from the optimization, we have eliminated
compilation-order dependences between the various procedures in the program.

This system, by itself, does not solve the recompilation problem. It must
be coupled with a feed-back system from the individual module compilations
that indicates which interprocedural analysis facts have been relied upon by
the module compiler. To illustrate this process, consider the interprocedural
recomputation of mod sets, depicted in Figure 22.

INTERPROCEDURAL ANALYSIS AND OPTIMIZATION 995

Module
Editor

Program
Compiler

Module
Compiler

Composition
Editor

MUSTNOTMOD

FIGURE 22. Recompilation analysis.

We define the set mustnotmod(p, s) to contain all the variables that must
not be modified as a side effect of the procedure call at site s within p if the
code generated for procedure p is to remain correct. Thus if the source code
of procedure q called at s is changed so that a variable in mustnotmod(p, s)
is modified in q, then p must be recompiled. Think of mustnotmod(p, s) as
a record of the actions of the optimizing module compiler when it was last
invoked on p. Whenever the optimizer used the fact that a variable was not
modified at call site s to perform some optimization, it entered that variable
into mustnotmod(p, s).

In focusing on mustnotmod, we are relying on the observation that an opti-
mizer will make program transformations based upon information only when it is
sure that an undesirable event that would invalidate the optimization is not pos-
sible. Thus optimizations are based upon the absence of variables from mod(s)
because that absence means that the variable cannot possibly be modified as a
side effect of the call. Similarly, optimizations would be based on the absence
of a variable from ref(s), so mustnotref(p, s) would be the corresponding re-
compilation set of interest. On the other hand, we will make optimizations like
privatization based on the knowledge that a variable must be killed by a proce-
dure call so mustkill(p, s) could be used to hold recompilation information.

In the case of mod, let us consider what must be done by the program compiler
to ensure correctness after a change to some procedure in the program.

1. First, the program compiler must recompute the mod sets for every call
site in the program.

996 COOPER–HALL–KENNEDY–TORCZON

2. For each call site s∈p in the program, if

mustnotmod(p, s) ∩mod(s) 6= ∅

then recompile procedure p.

The computation of mustnotmod sets is dependent on the optimizations
used in the module compiler, which may be burdensome to collect accurately.
However, simple approximation methods often work well in practice. Here are
two such approximations for mustnotmod:

1. mustnotmod(p, s) = ¬mod(s) on the most recent compilation of p. Cer-
tainly, the module compiler cannot have depended on anything that was
not true at the last compile.

2. mustnotmod(p, s) = ¬mod(s) ∩ ref(p). This approximation goes one
step farther than the previous one in that it does not force recompilation
as a result of changes in status to variables that are merely passed through
p.

The second of these approximations was used by the designers of the Rn

programming environment [17, 11].

5. Some Implementations

The authors have been personally involved with several interprocedural com-
pilation systems:

1. The vectorization and parallelization system pfc [3], developed at Rice
University, used interprocedural constant propagation and array side effect
analysis to improve its dependence analysis. The results of dependence
analysis could be displayed in a special browser called ptool. pfc was
also used as a dependence server by later systems, including ParaScope
described below.

2. The Rn programming environment [17, 29], also developed at Rice, was
the first one designed to support interprocedural analysis in a practical
compilation system. Recompilation analysis, discussed in Section 4 was
first tried in the Rn system, which implemented constant propagation,
alias, mod and ref.

3. ParaScope [22], a successor to Rn, was designed to use interprocedural
information in program parallelization. The fiat interprocedural analy-
sis framework [40] was originally developed for ParaScope, before being
adapted for the suif compiler system (see below). Although it computed
solutions to several interprocedural problems, ParaScope initially used pfc

as a server for interprocedural array section analysis.

INTERPROCEDURAL ANALYSIS AND OPTIMIZATION 997

4. The D System [1], which was initially based on ParaScope, is intended to
support programming in High Performance Fortran. It includes a frame-
work that extends fiat to perform interactive recompilation of interpro-
cedural information when the user is editing in the context of a given
program. In addition to classical analyses and optimizations, the D Sys-
tem propagates array distribution information interprocedurally to support
compilation of Fortran D and High Performance Fortran [22].

5. The Stanford suif compiler was constructed with the aid of the inter-
procedural framework fiat, a tool that facilitates rapid prototyping of
interprocedural systems [40]. It performs a complete set of interprocedu-
ral analyses including constant propagation, kill analysis for arrays and
live analysis. In a recent experiment, programs from the nas, Spec-92
and Perfect benchmark suites were run through the compiler without any
modification to the original source code. For the 27 programs in this test,
16 of them yielded more parallel loops as a result of interprocedural opti-
mization. For 4 of these, significant speedups have been obtained only as
a result of interprocedural optimization [37].

6. The Convex Application Compiler [56], which was modeled after the Rn

and ParaScope systems, is the first commercial system to perform inter-
procedural analysis on whole programs represented by multiple files. The
Application Compiler does a complete job of interprocedural analysis and
optimization for parallelization, computing the solutions to flow-sensitive
interprocedural problems, cloning based on interprocedural constants, and
employing array section analysis.

In addition to these, a number of commercial and research systems employ
interprocedural information.

6. Historical Comments and References

Interprocedural analysis was introduced in a number of works published in
the 1970s. Allen showed how interprocedural data-flow analysis could be carried
out on programs without recursion [2]. In an unpublished abstract, Allen and
Schwartz later extended these techniques to programs with recursion. Spillman
described the interprocedural analysis that was available in the IBM PL/I com-
piler for procedures in a single file [66]. A principle goal of this implementation
was analysis of pointer targets.

Barth was the first to publish a paper that discussed may and must prob-
lems [6]. Banning introduced the notion of flow-sensitive and flow-insensitive
problems and presented a polynomial-time algorithm for solving such prob-
lems [5]. Myers presented a general algorithm for flow-insensitive problems,
which he proved to be Co-NP Complete in the presence of aliasing [57].

Algorithms for flow-sensitive analysis have been described by Myers [57],
Sharir and Pnueli [62], Harrison [42], Landi and Ryder [54], Choi, Burke and
Carini [19], and Hall, Murphy and Amarasinghe [41]. The algorithm for flow-

998 COOPER–HALL–KENNEDY–TORCZON

insensitive interprocedural analysis presented in Section 2.3 is due to Cooper
and Kennedy [26, 27] as is the alias analysis algorithm in Section 2.4 [28]. The
flow-sensitive constant propagation algorithm presented in Section 2.5, is based
on the work of Callahan, Cooper, Kennedy and Torczon [15]. The flow-sensitive
kill analysis algorithm is modeled after an algorithm proposed by Callahan [13],
although this particular formulation is new.

Interprocedural symbolic analysis has been discussed by a number of re-
searchers, including Haghighat and Polychronopoulos [35], Irigoin, Jouvelot,
and Triolet [50],and Hall, Murphy, and Amarasinghe [41]. The treatment in
Section 2.7 follows Havlak [43].

Array section analysis, discussed in Section 2.7, has been the subject of
work by a number of authors including Triolet, Irigoin and Feautrier [68], Burke
and Cytron [10], Callahan and Kennedy [12, 16], Li and Yew [55], Havlak and
Kennedy [44], Irigoin, Jouvelot, and Triolet [50], and Hind, Burke, Carini, and
Midkiff [47]. Several researchers have developed algorithms for flow-sensitive ar-
ray analysis, including Irigoin [49], IItsuka [48], Tu and Padua [69], and Hall,
Murphy and Amarasinghe [41].

Call graph analysis has been studied by Walter [70], Weihl [73], Spillman [66],
Burke [9], and Shivers [63, 64, 65] The call graph construction algorithm in
Section 2.8 is based on an algorithm due to Ryder [61]. The proof that the
same algorithm converges in the recursive case is due to Callahan, Carle, Hall
and Kennedy [14]. An algorithm that is not precise but which generates its
approximation in time linear in the size of the resulting call graph is given by
Hall and Kennedy [36, 38].

Inline substitution has been widely studied [32, 58]. Cooper, Hall and Tor-
czon noted its disadvantages [25]. Cloning was studied by Cooper, Hall and
Kennedy [21, 23, 24] Hybrid optimizations have been studied by Hall, Kennedy,
and McKinley [39]. Techniques and algorithms closely related to cloning as de-
scribed in this paper have been studied by Wegman [71] for intraprocedural
analysis, Bulyonkov [8] and Ruf and Weise [60] for partial evaluation, John-
ston [51] for dynamic compilation of APL, and Chambers and Ungar [18] for the
language SELF.

The approach to program management described in Section 4 was pioneered
in the Rn programming environment [67, 29, 17]. Recompilation analysis was
developed by Burke, Cooper, Kennedy and Torczon [30, 11].

7. Summary

Although interprocedural analysis has limited applicability in optimizing code
for uniprocessors, it is important for automatic parallelization systems. To be
totally effective, a variety of analysis problems must be addressed. These include
two types of problems:

1. forward propagation problems that determine the context in which a given
procedure is called and

INTERPROCEDURAL ANALYSIS AND OPTIMIZATION 999

2. backward propagation problems which determine side effects of procedure
calls.

In addition, interprocedural analysis problems can be classified as:

1. flow-insensitive problems, for which a precise solution does not require
tracing control flow through the procedures down the call chain, and

2. flow-sensitive problems, which require control-flow tracing for a precise
solution.

It has been shown that flow-insensitive forward and backward problems can
be solved in O((N + E)V) time, where N is the number of procedures in the
program, E is the number of call sites and V is the number of global variables
and parameters in the program.

In the most general case, flow-sensitive problems have been shown to be
intractable. However, for typical programming languages, good approximations
can be achieved in time that is polynomial in the size of the call graph. In
practice, these algorithms perform in near linear time.

Interprocedural problems for single variables can be extended in a natural
way to handle analysis of value ranges and symbolic values. In addition they can
also be extended to analyze side effects to regular sections of array variables. In
both cases, the running time will be expanded by a factor proportional to the
maximum depth of the lattice of approximations used.

To be usable, an interprocedural analysis system needs to minimize the num-
ber of procedures that must be recompiled as a result of local program changes.
Users will not tolerate a recompilation system that requires recompiling an entire
program after a simple change to one procedure. The functions required to do
this may be best embedded in a more general program management system.

Bibliography

[1] V. Adve, A. Carle, E. Granston, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer,

J. M. Mellor-Crummey, C.-W. Tseng, and S. K. Warren. The d system: support for
data-parallel programming. Technical Report CRPC-TR94-378, Center for Research on

Parallel Computation, Rice University, Jan. 1994.
[2] F. E. Allen. Interprocedural data flow analysis. In Proceedings of the IFIP Congress

1974, pages 398–402, Amsterdam, 1974. North Holland.
[3] J. R. Allen and K. Kennedy. PFC: a program to convert FORTRAN to parallel form.

In K. Hwang, editor, Supercomputers: Design and Applications, pages 186–203. IEEE
Computer Society Press, Aug. 1984.

[4] B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality of variables in programs.
In Conference Record of the Fifteenth ACM Symposium on the Principles of Programming

Languages, pages 1–11, San Diego, California, Jan. 1988.
[5] J. P. Banning. An efficient way to find side effects of procedure calls and aliases of

variables. In Proceedings of the Sixth Annual Symposium on Principles of Programming
Languages, pages 29–41, San Antonio, Texas, Jan. 1979.

[6] J. M. Barth. A practical interprocedural data flow analysis algorithm. Communications
of the ACM, 21(9):724–736, Sept. 1978.

1000 COOPER–HALL–KENNEDY–TORCZON

[7] P. Briggs, K. Cooper, M. W. Hall, and L. Torczon. Goal-directed interprocedural opti-

mization. Technical Report TR90-148, Dept. of Computer Science, Rice University, Nov.
1990.

[8] M. A. Bulyonkov. Polyvariant mixed computation for analyzer programs. Acta Informat-
ica, 21:473–484, 1984.

[9] M. Burke. An interval-based approach to exhaustive and incremental interprocedural
data-flow analysis. ACM Trans. Prog. Lang. Syst., 12(3):341–395, July 1990.

[10] M. Burke and R. Cytron. Interprocedural dependence analysis and parallelization. SIG-
PLAN Notices, 21(7):162–175, July 1986. Proceedings of the ACM SIGPLAN 86 Sympo-

sium on Compiler Construction.
[11] M. Burke and L. Torczon. Interprocedural optimization: Eliminating unnecessary recom-

pilation. ACM Trans. Prog. Lang. Syst., 15(3):367–399, July 1993.
[12] D. Callahan. A global approach to the detection of parallelism. PhD thesis, Department

of Computer Science, Rice University, Houston, TX, Dec. 1987.
[13] D. Callahan. The program summary graph and flow-sensitive interprocedural data flow

analysis. SIGPLAN Notices, 23(7):47–56, July 1988. Proceedings of the ACM SIGPLAN

‘88 Conference on Programming Language Design and Implementation.
[14] D. Callahan, A. Carle, M. W. Hall, and K. Kennedy. Constructing the procedure call

multigraph. IEEE Transactions on Software Engineering, 16(4):483–487, Apr. 1990.
[15] D. Callahan, K. D. Cooper, K. Kennedy, and L. Torczon. Interprocedural constant propa-

gation. SIGPLAN Notices, 21(7):152–161, July 1986. Proceedings of the ACM SIGPLAN
’86 Symposium on Compiler Construction.

[16] D. Callahan and K. Kennedy. Analysis of interprocedural side effects in a parallel pro-
gramming environment. Journal of Parallel and Distributed Computing, 5:517–550, 1988.

[17] A. Carle, K. D. Cooper, R. T. Hood, K. Kennedy, L. Torczon, and S. K. Warren. A
practical environment for Fortran programming. IEEE Computer, 20(11):75–89, Nov.

1987.
[18] C. Chambers and D. Ungar. Customization: Optimizing compiler technology for self, a

dynamically-typed object-orientedprogramming language. SIGPLAN Notices, 24(7):146–
160, July 1989. Proceedings of the ACM SIGPLAN ‘90 Conference on Programming

Language Design and Implementation.
[19] J.-D. Choi, M. Burke, and P. Carini. Efficient flow-sensitive interprocedural computation

of pointer-induced aliases and side effects. In Conference Record of the Twentieth Annual
ACM Symposium on Principles of Programming Languages, pages 232–245, Charleston,

South Carolina, Jan. 1993.
[20] J. Cocke and P. Markstein. Measurement of program improvement algorithms. InProceed-

ings of Information Processing 80, pages 221–228. North Holland Publishing Company,
1980.

[21] K. D. Cooper. Interprocedural Data Flow Analysis in a Programming Environment. PhD
thesis, Department of Mathematical Sciences, Rice University, Houston, Texas, Apr. 1983.

[22] K. D. Cooper, M. Hall, R. T. Hood, K. Kennedy, K. McKinley, J. M. Mellor-Crummey,
L. Torczon, and S. K. Warren. The ParaScope parallel programming environment. Pro-

ceedings of the IEEE, 81(2):244–263, Feb. 1993.
[23] K. D. Cooper, M. W. Hall, and K. Kennedy. Procedure cloning. In Proceedings of the

IEEE International Conference on Computer Languages, pages 96–105. IEEE, Apr. 1992.
[24] K. D. Cooper, M. W. Hall, and K. Kennedy. A methodology for procedure cloning.

Computer Languages, 19(2):105–118, Apr. 1993.
[25] K. D. Cooper, M. W. Hall, and L. Torczon. An experiment with inline substitution.

Software-Practice and Experience, 21(6):581–601, June 1991.
[26] K. D. Cooper and K. Kennedy. Efficient computation of flow-insensitive interprocedural

summary information—a correction. SIGPLAN Notices, 23(4):35–42, Apr. 1988.
[27] K. D. Cooper and K. Kennedy. Interprocedural side-effect analysis in linear time. SIG-

PLAN Notices, 23(7):57–66, July 1988. Proceedings of the ACM SIGPLAN ‘88 Confer-
ence on Programming Language Design and Implementation.

INTERPROCEDURAL ANALYSIS AND OPTIMIZATION 1001

[28] K. D. Cooper and K. Kennedy. Fast interprocedural alias analysis. In Conference Record of

the Sixteenth Annual ACM Symposium on Principles of Programming Languages, pages
49–59, Austin, Texas, Jan. 1989.

[29] K. D. Cooper, K. Kennedy, and L. Torczon. The impact of interprocedural analysis
and optimization in the rn programming environment. ACM Trans. Prog. Lang. Syst.,

8(4):491–523, Oct. 1986.
[30] K. D. Cooper, K. Kennedy, and L. Torczon. Interprocedural optimization: Eliminating

unnecessary recompilation. SIGPLAN Notices, 21(7):58–67, July 1986. Proceedings of
the ACM SIGPLAN ‘86 Symposium on Compiler Construction.

[31] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently
computing static single assignment form and the control dependence graph. ACM Trans.

Prog. Lang. Syst., 13(4):451–490, Oct. 1991.
[32] J. W. Davidson and A. M. Holler. A study of a c function inliner. Software-Practice and

Experience, 18(8):775–790, Aug. 1988.
[33] S. L. Graham and M. N. Wegman. A fast and usually linear algorithm for global data

flow analysis. Journal of the ACM, 23(1):172–202, 1976.

[34] D. Grove and L. Torczon. Interprocedural constant propagation: A study of jump function
implementations. SIGPLAN Notices, 28(6):90–99, June 1993. Proceedings of the ACM

SIGPLAN ‘93 Conference on Programming Language Design and Implementation.
[35] M. Haghighat and C. Polychronopoulos. Symbolic analysis: A basis for parallelization,

optimization, and scheduling of programs. In Proceedings of the Sixth Workshop on
Languages and Compilers for Parallel Computing, Portland, OR, Aug. 1993.

[36] M. W. Hall. Managing Interprocedural Optimization. PhD thesis, Department of Com-
puter Science, Rice University, Houston, Texas, Apr. 1991.

[37] M. W. Hall, S. Amarasinghe, B. Murphy, and M. S. Lam. Interprocedural analysis for par-
allelization: preliminary results. Technical Report CSL-TR-95-665, Stanford Computer

Systems Laboratory, Mar. 1995.
[38] M. W. Hall and K. Kennedy. Efficient call graph analysis. ACM Letters on Programming

Languages and Systems, 1(3):227–242, Sept. 1992.
[39] M. W. Hall, K. Kennedy, and K. S. McKinley. Interprocedural transformations for parallel

code generation. In Proceedings of Supercomputing ’91, Albuquerque, NM, Nov. 1991.
IEEE Computer Society Press.

[40] M. W. Hall, J. M. Mellor-Crummey, A. Carle, and R. G. Rodriguez. Fiat: a framework
for interprocedural analysis and transformation. In Proceedings of the Sixth Workshop on

Languages and Compilers for Parallel Computing, Portland, OR, Aug. 1993.
[41] M. W. Hall, B. Murphy, and S. Amarasinghe. Interprocedural analysis for parallelization:

A case study. In Proceedings of the Seventh SIAM Conference on Parallel Processing for
Scientific Computing, San Francisco, CA, Feb. 1995.

[42] W. L. Harrison. The interprocedural analysis and automatic parallelization of scheme
programs. Lisp and Symbolic Computation, 2(3/4):179–396, Oct. 1989.

[43] P. Havlak. Interprocedural Symbolic Analysis. PhD thesis, Department of Computer
Science, Rice University, Houston, Texas, May 1994.

[44] P. Havlak and K. Kennedy. An implementation of interprocedural bounded regular section
analysis. IEEE Transactions on Parallel and Distributed Systems, 2(3):350–360, July

1991.
[45] M. S. Hecht. Flow Analysis of Computer Programs. Elsevier North-Holland, 1977.

[46] M. S. Hecht and J. D. Ullman. A simple algorithm for global data flow analysis of
programs. SIAM Journal of Computing, 4:519–532, 1975.

[47] M. Hind, M. Burke, P. Carini, and S. Midkiff. An empirical study of precise interprocedural
array analysis. Scientific Programming, 3(3):255–271, 1994.

[48] T. IItsuka. Flow-sensitive interprocedural analysis method for parallelization. In IFIP
TC10/WG10.3 Working Conference on Architectures and Compilation Techniques for

Fine and Medium Grain Parallelism, Jan. 1993.
[49] F. Irigoin. Interprocedural analyses for programming environments. InNSF-CNRS Work-

1002 COOPER–HALL–KENNEDY–TORCZON

shop on Environments and Tools for Parallel Scientific Programming, Sept. 1992.

[50] F. Irigoin, P. Jouvelot, and R. Triolet. Semantical interprocedural parallelization: An
overview of the pips project. In Proceedings of the 1991 ACM International Conference

on Supercomputing, Cologne, Germany, June 1991.
[51] R. Johnston. The dynamic incremental compiler of apl \ 3000. In Proceedings of the APL

’79 Conference, pages 82–87. ACM, June 1979.
[52] J. Kam and J. D. Ullman. Global data flow analysis and iterative algorithms. Journal of

the ACM, 23(1):159–171, Jan. 1976.
[53] J. Kam and J. D. Ullman. Monotone data flow analysis frameworks. Acta Informatica,

7(3):305–318, 1977.
[54] W. Landi and B. G. Ryder. A safe approximate algorithm for interprocedural pointer

aliasing. SIGPLAN Notices, 27(7):235–248, July 1992. Proceedings of the ACM SIGPLAN
‘92 Conference on Programming Language Design and Implementation.

[55] Z. Li and P.-C. Yew. Efficient interprocedural analysis for program parallelization and
restructuring. SIGPLAN Notices, pages 85–99, July 1988. Proceedings of the ACM SIG-

PLAN Symposium on Parallel Programming: Experience with Applications, Languages,

and Systems (PPEALS).
[56] R. Metzger and S. Stroud. Interprocedural constant propagation: An empirical study.

ACM Letters on Programming Languages and Systems, 2(1–4):213–232, March–December
1993.

[57] E. W. Myers. A precise interprocedural data flow algorithm. In Conference Record of
the Eighth Annual ACM Symposium on Principles of Programming Languages, pages

219–230, Williamsburg, Virginia, Jan. 1981.
[58] S. Richardson and M. Ganapathi. Interprocedural analysis versus procedure integration.

Information Processing Letters, 321(3), Aug. 1989.
[59] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers and redundant

computations. In Conference Record of the Fifteenth Annual ACM Symposium on Prin-
ciples of Programming Languages, pages 12–27, San Diego, California, Jan. 1988.

[60] E. Ruf and D. Weise. Using types to avoid redundant specialization. SIGPLAN No-
tices, 26(9):321–333, Sept. 1991. Proceedings of the PEPM ’91 Symposium on Partial

Evaluation and Semantics-Based Program Manipulation.
[61] B. G. Ryder. Constructing the call graph of a program. IEEE Transactions on Software

Engineering, SE-5(3):216–225, 1979.
[62] M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis. In

S. Muchnick and N. Jones, editors, Program Flow Analysis: Theory and Applications.
Prentice Hall, Englewood Cliffs, NJ, 1981.

[63] O. Shivers. Control-flow analysis in Scheme. SIGPLAN Notices, 23(7):164–174, July
1988. Proceedings of the ACM SIGPLAN ‘88 Conference on Programming Language

Design and Implementation.
[64] O. Shivers. Control-Flow Analysis of Higher-Order Languages. PhD thesis, School of

Computer Science, Carnegie Mellon University, Pittsburg, PA, May 1991.
[65] O. Shivers. The semantics of scheme control flow analysis. SIGPLAN Notices, 26(9):190–

198, Sept. 1991. Proceedings of the Symposium on Partial Evaluation and Semantics-
Based Program Manipulation.

[66] T. C. Spillman. Exposing side-effects in a PL/I optimizing compiler. In Proceedings of
the IFIP Congress 1971, pages 376–381. North Holland, 1971.

[67] L. Torczon. Compilation Dependences in an Ambitious Optimizing Compiler. PhD thesis,
Department of Computer Science, Rice University, Houston, Texas, Apr. 1985.

[68] R. Triolet, F. Irigoin, and P. Feautrier. Direct parallelization of call statements. SIGPLAN
Notices, 21(7):176–185, July 1986. Proceedings of the ACM SIGPLAN ‘86 Symposium

on Compiler Construction.
[69] P. Tu and D. Padua. Automatic array privatization. In Proceedings of the Sixth Workshop

on Languages and Compilers for Parallel Computing, Portland, OR, Aug. 1993.
[70] K. Walter. Recursion analysis for compiler optimization. Communications of the ACM,

INTERPROCEDURAL ANALYSIS AND OPTIMIZATION 1003

19(9):514–516, 1976.

[71] M. N. Wegman. General and Efficient Methods for Global Code Improvement. PhD
thesis, University of California, Berkeley, CA, Dec. 1981.

[72] M. N. Wegman and F. K. Zadeck. Constant propagation with conditional branches. ACM
Trans. Prog. Lang. Syst., 13(2):181–210, Apr. 1991.

[73] W. E. Weihl. Interprocedural data flow analysis in the presence of pointers, procedure
variables and label variables. In Conference Record of the Seventh Annual ACM Sym-

posium on Principles of Programming Languages, pages 83–94, Las Vegas, Nevada, Jan.
1980.

Received February 1995.

