
Efficient Computation of Flow-Insensitive
Interprocedural Summary Information

— A Correction

Keith D. Cooper
Ken Kennedy

Department of Computer Science†

Rice University
Houston, Texas 77251-1892

1. Introduction

In this note we present the correction for a significant error contained in our paper ‘‘Efficient Compu-
tation of Flow Insensitive Interprocedural Summary Information’’, which was published in theProceedings
of the ACM SIGPLAN ‘84 Symposium on Compiler Construction[CoKe 84]. That paper presented an algo-
rithm for solving flow-insensitive interprocedural side effects problems, as exemplified by the problem of
determining the variables that may be modified as a side effect of a procedure call in a given program.
These problems have been widely discussed in the literature[Spil 71, Alle 74, Bart 78, Bann 79, Myer 80, CoKe 84,

Burk 84, CaRy 86].

The fundamental insight in theSIGPLAN ‘84 paper was that the problem can be subdivided into two
subproblems: the side effects to parameters passed by reference and the side effects to variables passed as
global variables. Each of these subproblems can then be solved using algorithms adapted from single-
procedure data-flow analysis.

The actual formulation of the subdivision was flawed in two ways. First, a step was omitted in the
algorithm for computing the side effects to reference parameters. This oversight can be easily corrected.
However, the second problem is more fundamental. TheSIGPLAN ‘84 paper asserted that the two subprob-
lems can be solved independently and the solutions merged later. This is not the case. To correctly com-
pute the answer, one must solve the reference parameter problemfirst, then use the result in the solution of
the global variable problem.

These problems have been noted in the literature[Burk 84, CaRy 86]and in private communications
[Alle 87, Ryde 87]. A number of fixes have been proposed[Burk 84, Ryde 87]. The correction we present here,
which has been incorporated into a revised version of the paper prepared for submission to a journal
[CoKe 87], is essentially equivalent to one developed independently by Carroll and Ryder[Carr 87, Ryde 87].

Rather than attempt to patch the text of the original paper, we present below a new formulation of the
problem decomposition that avoids the errors in the original, then we relate the solution method to the
material in the original paper. The interested reader is encouraged to read the full revised treatment, which
is available as a technical report[CoKe 87].

† This research has been supported by the National Science Foundation and by IBM Corporation.

2. The Problem

The problem is to determine, for each call site, which variables can have their values modified by its
execution. To represent this information concisely, we annotate each call sites in the program with the set
MOD(s) defined as follows. For a call sites and a variablev:

v ∈ MOD(s) ←→ executings may change the value ofv

The problem of computing this set is calledflow-insensitivebecause it must conclude that a procedure call
has a side effect, likev ∈ MOD(s), if that side effect can occur onsomepath through the called procedure or
any procedure that it, in turn, invokes. By contrast, theflow-sensitiveformulations of these problems would
conclude that the call has the side effect if and only if the analyzer can determine that the side effect occurs
oneverypath through the called procedure and all procedures that it, in turn, calls.

Rather than computeMOD sets directly, Banning[Bann 79]1 breaks the problem down into component
parts. Aliasing is ignored until late in the computation; the method assumes that simple sets of alias pairs
are available for each procedure. Define:

DMOD The computation ofMOD(s) is complicated by aliasing effects. The treatment can be
simplified by first computingDMOD(s), the set of variables that may be modified by ex-
ecution of s, ignoring any aliasing effects in the procedure containings, and factoring
aliasing in later. In other words,MOD(s) can be computed by adding toDMOD(s) any
variable that may be aliased to a member ofDMOD(s). We call DMOD(s) the directly
modified setfor statements.

GMOD The problem can be further simplified by observing thatDMOD for any call site can be
easily computed once we determine, for each procedurep in the program, a set
GMOD(p) that contains all variables, including variables local to p, that might be modi-
fied as the result of an invocation ofp. We callGMOD(p) thegeneralized modification

setfor procedurep.2 Once it is computed,DMOD for any call site that invokesp can be
computed by identifying the variables known at the call site that are bound by the call
to variables inGMOD(p).

The virtue of these observations is thatGMOD(p) can be formulated as the solution to a system of data-flow
equations on the call graph. To introduce this formulation, we need some more definitions.

LOCAL For a procedurep, LOCAL(p) contains the names of all variables declared inp.

FORMAL For a procedurep, FORMAL(p) contains the names ofp’s formal parameters. Note that
FORMAL(p) ⊆ LOCAL(p).

LMOD For a statements, LMOD(s) contains those variables that might be modified by an execution ofs,
exclusive of any procedure calls ins. We callLMOD(s) the locally modified setfor statements.

IMOD For a procedurep, IMOD(p) contains those variables that might be modified by an execution ofp,
exclusive of any procedure calls inp. We callLMOD(p) the initially modified setfor procedurep.
Note that

IMOD(p) =
s∈p
∪ LMOD(s).

1 This formulation is based on Banning’s, but with different notation.
2 In theSIGPLAN ‘84 paper we restrictedGMOD to contain no local variables except for formal parameters. However, a careful

reread- ing of Banning’s original paper shows that he intended local variables to be included (except for the main program, whose
GMOD set was defined to be empty) so we have revised our definition to be consistent with his. In fact, this definition leads to a
much simpler formulation of the equations. The additional local variables inGMOD do not affect theMOD sets, since these variables
are filtered out in theDMOD calculation. A clever implementation might avoid introducing them at all; however, we consider this an
implementation de- tail.

We are now ready to introduce the system of equations forGMOD(p).

(1)GMOD(p) = IMOD(p) ∪ [
e=(p,q)
∪ be(GMOD(q))]

Here, be is a function that maps names fromq into names fromp according to the name scoping and
parameter binding that happens at the call sitee = (p, q). We callbe(x) theprojectionof x under thebind-
ing of e. It should be noted thatbe factors out all variables that are local toq and maps the formal parame-
ters ofq to the actual parameters at the call site.

OnceGMOD(p) is known for eachp, theDMOD set for a statements can be computed by the follow-
ing formula.

(2)DMOD(s) = LMOD(s) ∪ [
e=(p,q)∈s

∪ be(GMOD(q))]

DMOD(s) contains those variables that are modified locally ins plus any variables that are modified as a
result of executing any procedure calls contained ins. Thus, if s doesn’t contain any procedure calls,
DMOD(s) is identical toLMOD(s). If it does contain procedure calls, each such call contributes the projec-
tion of theGMOD set of the called procedure under the binding defined by the call site.

3. The Decomposition

TheSIGPLAN ‘84 paper decomposed the problem into two subproblems: solving for effects due to ref-
erence parameter passing and solving for effects due to global variables.

Let us defineIMOD+(p) to be the set of all variables that are either directly modified inp or passed as
a reference parameter to another procedure and modified as a side effect of the invocation of that procedure.
In other words,IMOD+(p) is IMOD(p) augmented to include all variables modified at call sites inp through
side effects to reference parameters. If we can computeIMOD+(p) for each procedurep in the program,
then we can reduce the problem of computingGMOD(p) to the solution of a system of equations analogous
to equation (1).

(3)GMOD(p) = IMOD+(p) ∪ [
e=(p,q)
∪ be(GMOD(q))].

However, since we now hav e already solved for the effects of reference formal parameters, the functionbe

takes on a particularly simple form. If procedurep calls procedureq, be only needs to model modifications
to variables that still exist afterq returns. Clearly this means everything that is not local toq, because all of

the local variables ofq are deallocated on return3. Hence, equation (3) reduces to

(4)GMOD(p) = IMOD+(p) ∪ [
e=(p,q)
∪ (GMOD(q) ∩ LOCAL(q))].

The following theorem establishes correctness of this system of equations for languages without nested pro-
cedures — in other words languages that have only local and global variables. Correctness in the general
case will be established later, after a discussion of lexical scoping.

Theorem 1. For languages without procedure declaration nesting, equation
system (4) is a correct formulation forGMOD.

Proof. Clearly, we must have

GMOD(p) ⊇ IMOD+(p) ∪ [
e=(p,q)
∪ (GMOD(q) ∩ LOCAL(q))],

since any variable inIMOD+(p) must be inGMOD(p) and so must any global variable inGMOD(q) for q

3 In a block structured language like Pascal, all of the variables visible inq that are not local toq or some procedure defined in
q are visible from withinp. Howev er, in Fortran a global variable modified byq may not be visible inp; nev ertheless, it should be in-
cluded inGMOD(p).

called from withinp. We need only show that the equation accounts for all variables inGMOD(p). Suppose
not. Then there exists somex that can be modified as a result of invokingp that is not in the right hand
side of equation (4). The variablex can be modified in one of three ways: (1) it is directly modified inp,
in which case it must be inIMOD(p) by definition; (2) it is passed as a reference parameter to a call site
within p and modified as a side effect of the call, in which case it must be inIMOD+(p) by definition or (3) it
is a global variable that is modified along some call chain originating fromp. In this call chain, there must
be a first procedureq to which x is passed as a global — case (2) eliminated the possibility of its being
passed as a reference parameter. Sincex is not a member of the set defined by the right hand side of equa-
tion (4), it must not be a member of

GMOD(q) ∩ LOCAL(q)

and sincex is global toq, we must conclude thatx is not a member ofGMOD(q). But this is impossible
because we have already established the existence of a call chain throughq to a modification ofx. Q.E.D.

Thus, we have reduced the problem to the computation of theIMOD+ sets. To this end, we further
decompose the problem by introducing a new setRMOD(p) that contains all formal parameters top that are
modified as a side effect of invokingp. If we can compute this set for each procedure in the program, then
IMOD+(p) can be computed by the following equation.

(5)IMOD+(p) = IMOD(p) ∪ [
e=(p,q)∈E

∪ be(RMOD(q))]

where the functionbe is restricted to mappings arising from actual-formal parameter bindings.

Theorem 2. Equation system (5) is a correct formulation forIMOD+.

Proof. This is a self-evident adaptation of equation (1), sinceRMOD(p) is the subset ofGMOD(p) that
contains only formal parameters ofp. The only way variables can be bound to formal parameters of a
called routine is by reference.Q.E.D.

The problem, then, becomes one of computingRMOD(p) correctly and efficiently. The significant
correctness issue is whether or not theRMOD sets can be computed without any interaction with the global
variable problem. This issue is easy to resolve in languages without nested procedure declarations. Post-
poning the discussion of lexical scoping, we present the following correctness result.

Theorem 3. For languages without procedure declaration nesting, there ex-
ists an algorithm for computingRMOD sets that makes no use of information
about side effects to global variables.

Proof. We present such an algorithm. The key observation is that every variable inRMOD(p) is a for-
mal parameter ofp. Formal parameters are local variables. In a language with no lexical scoping (one that
has only local and global variables), formal parameters cannot be passed to other procedures as globals.
Hence, if x ∈ RMOD(p), then there must exist a sequence of formal parameters (f0, f1,

. . . , fn) such that
f0 = x, fn ∈ IMOD(q), whereq is the procedure to whichfn is a parameter, and for eachi , 1 ≤ i < n, there
is a call site at whichfi−1 is passed by reference tofi . This suggests an algorithm based on transitive clo-
sure.

As in theSIGPLAN ‘84 paper, we establish a matrix calledmapthat has a row and column position for
each formal parameter in the program, where each of these has a unique index assigned it. The matrix is
initialized such thatmap[i , j] = 1 if and only if i is the index of a formal parameter in the program that is
passed at some call site directly to the formal parameter indexed byj . It is possible to compute the reflex-

iv e transitive closuremap* of this matrix and then determineRMOD as follows:RMOD(p) contains each for-
mal parameterx of p for which there exists a formal parametery of some other procedureq such that

map*[index(x), index(y)] = 1 andy ∈ IMOD(q).

In this algorithm, all the initial quantities can be constructed by direct examination of the program
and no information about global interprocedural effects is required. The algorithm clearly computes the

desired quantity, because a 1-bit inmap* represents exactly the sequence of formal parameters specified

above.Q.E.D.

Section 4.2 of ourSIGPLAN ‘84 paper presented an efficient algorithm for computing themap* and the
RMOD sets, which were calledGMODR sets in that work. However, that treatment failed to observe the
ordering of subproblem solutions embodied in equations (3) and (4) above and omitted the step that trans-
latesRMOD sets toIMOD+ sets, as in equation (5). The error in formulation also affects the handling of lexi-
cal scoping proposed in Section 7 of theSIGPLAN ‘84 paper. The following section discusses this issue.

4. Lexical Scoping

The method described thus far handles the case in which there are only two kinds of storage: local
and global. C andFORTRAN are both in this class. However, languages like Pascal, which permit nested
declaration of procedures, present a special problem because the algorithm we have presented determines
effects to global variablesafter it determines effects to formal parameters. In a language with nested proce-
dure declarations, a local variable for one routine is global to procedures declared within the body of that
routine. This can affect the computation ofRMOD in two ways:

1) The computation ofIMOD sets is complicated because a variable local to procedurep may be modified
inside a nested procedure, where it is a global variable. These effects must be modeled in theIMOD

sets if theRMOD calculation is to work correctly.

2) A formal parameter of one procedure may be passed as a global to a call site within a nested proce-

dure. This must be reflected in the construction ofmap* described above and in section 4.2 of theSIG-

PLAN ‘84 paper.

Fortunately, these two problems can be solved easily. Assume that every procedure in the program is
reachable by some call chain. If this is not the case, a linear-time algorithm that eliminates unreachable
procedures can be invoked. Now any procedureq nested within a procedurep is reachable by a call chain
starting atp because no procedure outside ofp can invokeq directly, since it is not visible outside ofp.
Hence, ifq is reachable, it is reachable fromp. This means that ifp is invoked, we must assume thatq
may be invoked.

Given these observations and the fact that we are solving flow-insensitive problems, the first problem
above issolved by treating the bodies of procedures nested inp as extensions of the body ofp. This is no
different than assuming that each branch at a conditional statement is possible.

We extend theIMOD(p) sets to include variables that are visible withinp (global or local top) and
are directly modified within the body ofp or passed as globals to some procedure whose declaration is
nested withinp and directly modified there. If we letIMOD0(p) be the set of variables directly modified in
the body ofp, andNest(p) be the set of procedures declared inp, we can formulate the following defini-
tion for IMOD(p).

(6)IMOD(p) = IMOD0(p) ∪
q∈Nest(p)

∪ [IMOD(q) ∩ LOCAL(q)]

The IMOD sets can then be computed in a bottom up fashion — first for the most deeply-nested procedures
and then for the procedures containing those. TheIMOD computation is still linear in the size of the pro-
gram.

The redefinition ofIMOD leads to a corresponding redefinition ofIMOD+: a variable is inIMOD+(p) for
one of four reasons:

1) it is directly modified in the body ofp,

2) it is passed as an actual parameter at some call site and that parameter is modified as a side
effect of the procedure invocation,

3) it is passed as a global to a procedureq whose declaration is nested withinp and modified
directly inq, or

4) it is passed as a global to a procedureq whose declaration is nested withinp then passed as
an actual parameter to some call site inq and that parameter is modified as a side effect of
the procedure invocation.

Assuming we can computeIMOD+ correctly, then the following theorem establishes the correctness of equa-
tion (4) in the general case.

Theorem 4. Equation system (4) is a correct formulation forGMOD.

Proof. To extend the proof of Theorem 1, we need to do two things. First, we need a more complex
argument to establish that

GMOD(p) ⊇ IMOD+(p) ∪ [
e=(p,q)
∪ (GMOD(q) ∩ LOCAL(q))].

The only issue is whether variables inGMOD(q) that are not local toq are visible inp. By the rules of visi-
bility in procedure declaration nesting,q may be in one of two categories: (1) declared withinp, (2)
declared in some procedurer that either contains the declaration ofp or contains a nest of procedure decla-

rations in whichp is declared. In either case, all variables global toq are visible withinp.4 Note that it
may also be the case that some variables local toq may be visible withinp, as when the declaration ofp is
nested inq. Howev er, since all variables local toq are deallocated on return top, modifications to these
variables inq cannot affect theGMOD set forp.

Second we must show that every variable inGMOD(p) is represented on the right hand side of equa-
tion (4). Let x be a variable inGMOD(p) that is not in the set specified by the right hand side of equation
(4). Now x can be modified in one of five ways: (1) directly in the body ofp, (2) as a side effect to a refer-
ence parameter at a call site inp, (3) directly in the body of some procedure declared withinp, (4) as a side
effect to a reference parameter at a call site in the body of a procedure declared inp, or (5) as a side effect
of a procedure to which it is passed as a global. It should be easy to see that the new definitions ofIMOD

andIMOD+ insure that cases (1-4) are taken care of, so these must be assumed impossible. The remainder of
the proof follows the proof of Theorem 1.Q.E.D.

The problem of formal parameters passed as global variables is easily handled by a careful initializa-

tion of basic data structures in themap* calculation.

Theorem 5. There exists an algorithm for computingRMOD sets that makes
no use of information about side effects to global variables.

Proof. The proof is basically the same as the one for Theorem 3, except we must show that the case
of formal parameters passed as globals can be handled. Note that a formal parameter can only be passed as
a global to a more deeply nested procedure, so the linear time scan of procedures to developIMOD can also
notice when a call site passes a formal parameter of an enclosing procedure as an actual parameter. Since
themapmatrix has positions for every formal parameter in the program, it is easy to set the appropriate bits
in mapto reflect this information. In other words, whenever a call site is encountered that passes a formal
parameter with indexi to a formal parameter with indexj , setmap[i , j] = 1, regardless of which procedure
in the upwards nesting structure hasi as its formal parameter. The remainder of the proof follows the proof

4 This is not strictly true in a language likeFORTRAN, where global variables (COMMON blocks) are visible only if named. How-
ev er, the correct observation is that theycanbe visible.

of Theorem 3.Q.E.D.

Thus, the problems caused by lexical scoping are surmountable and the same time bounds pertain.

5. Summary

We hav e shown how to correct a significant error in one of our previously-published conference
papers. The corrections preserve the time bounds stated in the original paper, because the time bounds for
the subproblems still hold, and the subproblems are solved in sequence.

6. Acknowledgements

Barbara Ryder and Frances Allen both corresponded with us about the problem with our original for-
mulation. Barbara also suggested several corrections, one of which is essentially the same as the one we
had developed independently and which we reported here. Our colleagues at Rice, particularly Linda Torc-
zon and David Callahan, provided stimulating discussions on these issues.

References

[Alle 74] F.E. Allen, ‘‘Interprocedural data flow analysis’’,Proceedings of the 1974 IFIPS Congress, 1974.

[Alle 87] F.E. Allen, private communication, September 1987.

[Bann 79] J.P. Banning, ‘‘An efficient way to find the side effects of procedure calls and the aliases of vari-
ables’’,Proceedings of the Sixth POPL, Jan., 1979.

[Bart 78] J.M. Barth, ‘‘A practical interprocedural data flow analysis algorithm’’,CACM21(9), Sept., 1978.

[Burk 84] M. Burke, ‘‘An interval analysis approach toward interprocedural data flow’’, Report RC 10640,
IBM T.J. Watson Research Center, Yorktown Heights, N.Y., July, 1984.

[Carr 87] M.D. Carroll, ‘‘Dataflow update via attribute and dominator update,’’ Ph.D. Dissertation, Rutgers
University, expected 1987.

[CaRy 86] M.D. Carroll and B.G. Ryder, ‘‘An incremental algorithm for software analysis’’,Proceedings of
theSIGSOFT/SIGPLANSoftware Engineering Symposium on Practical Software Development Envi-
ronments,SIGPLANNotices22(1), Jan., 1987.

[CoKe 84] K.D. Cooper and K. Kennedy, ‘‘Efficient computation of flow insensitive interprocedural sum-
mary information’’, Proceedings of theSIGPLAN84 Symposium on Compiler Construction,SIG-

PLANNotices19(6), June, 1984.

[CoKe 87] K.D. Cooper and K. Kennedy, ‘‘Complexity of interprocedural side-effect analysis’’, TR87-61,
Department of Computer Science, Rice University, October 1987.

[Myer 80] E. Myers, ‘‘A precise and efficient algorithm for determining existential summary data flow infor-
mation’’, Technical Report CU-CS-175-80, Department of Computer Science, University of Col-
orado, March, 1980.

[Ryde 87] B. Ryder, private communication, July 31, 1987.

[Spil 71] T.C. Spillman, ‘‘Exposing side-effects in a PL/I optimizing compiler’’,Proceedings of the IFIPS
Congress, 1971.

This paper also appears as Computer Science Technical Report 87-60, Rice University, October, 1987.

