
A Methodology for Procedure Cloning∗

Keith D. Cooper† Mary W. Hall‡ Ken Kennedy†

May 24, 1999

Abstract

Procedure cloning is an interprocedural transformation where the compiler creates specialized copies
of procedure bodies. The compiler divides incoming calls between the original procedure and its copies.
By carefully partitioning the calls, the compiler ensures that each clone inherits an environment that
allows for better code optimization.

This paper presents a three-phase algorithm for deciding when to clone a procedure. The algorithm
seeks to avoid unnecessary code growth by considering how the information exposed by cloning will be
used during optimization. We present a set of assumptions that bound both the algorithm’s running
time and code expansion.

Keywords: cloning, specialization, interprocedural data-flow analysis, interprocedural optimization

1 Introduction

Compiler developers have long understood that procedure calls pose a barrier to code optimization. The

problem shows up in two distinct ways: the overhead of the call itself and its impact on the code around

each call site, and a degradation in the quality of information that the compiler derives. It has been widely

assumed that call overhead is the more significant effect; a recent study of Fortran suggests that call overhead

may play less of a role in run-time performance than believed [9].

Traditionally, two approaches have emerged for breaking down the call-site barrier. The first, inline

substitution, replaces call sites with distinct copies of the body of the called procedure. The code is then

optimized in the context of the calling procedure. The second, interprocedural data-flow analysis, estimates

the set of compile-time provable facts about the environments passed and returned at procedure calls.

This information is used, in turn, to optimize the individual procedures. Each technique has limitations.

Inlining can lead to code growth, increased compile time, and degradation in code quality [9]. Using only

interprocedural analysis lets the structure of the program constrain the compiler; it assumes that each

procedure should be implemented once.

To improve the latter approach, an aggressive compiler can consider procedure cloning — creating multiple

implementations of a single procedure and partitioning the calls among them [10].

∗This research has been supported by the National Science Foundation, IBM Corporation, the Defense Advanced Research
Projects Agency, and the State of Texas.
†Department of Computer Science, Rice University, Houston, TX 77251
‡Center for Integrated Systems, Stanford University, Stanford, CA 94305

1



• Cloning differs from straightforward application of interprocedural data-flow analysis. It changes the

structure of the underlying graph used by the data-flow problem, removing some of the points where

paths in the graph merge — it allows the compiler to solve a “nearby” problem that exposes a more

useful set of facts for code optimization.

• Cloning differs from inlining. The actual code that implements the call is left intact. The compiler can

map multiple calls onto a single copy of the procedure.

In its full generality, cloning can produce exponential growth in program size.

This paper examines how the compiler can apply cloning to expose information useful to optimiza-

tion while avoiding exponential code growth. Our approach finds potential improvements in forward inter-

procedural data-flow solutions, considers their impact on optimization, and clones procedures leading to

sharper information that will benefit optimization. The remainder of the paper is organized into five sec-

tions and a conclusion. The next section discusses similar techniques from intraprocedural optimization,

partial evaluation and dynamic compilation. Section 3 presents an example from which we derive key in-

sights for the cloning algorithm. Section 4 presents the three-phase algorithm for deciding when to clone. In

Section 5, we provide bounds for both the time complexity of the algorithm and the resulting code expansion.

Section 6 addresses how to further restrict cloning in pathological cases that exceed the assumed bounds.

2 Related Work

Techniques and algorithms very closely related to ours appear in intraprocedural optimization [19] and partial

evaluation [4, 18]. Similar techniques appear in dynamic compilation of APL [15] and compilation of the

dynamically-typed, object-oriented language self [8].

Wegman’s node distinction replicates basic blocks in a procedure’s control flow graph based on intra-

procedural data-flow solutions and incrementally propagates the more precise solutions [19]. His algorithm

uses heuristics to avoid some unnecessary replication. In partial evaluation, specialization involves replicat-

ing code in order to tailor copies to particular variable values or types [4]. Bulyonkov describes an abstract

interpretation approach to locate program points where specialization improves analysis information, both in

the interprocedural and intraprocedural settings. Ruf and Weise present an algorithm to reduce the amount

of specialization in a partial evaluator [18]. Their algorithm merges specialized copies if they generate the

same result at every statement even though the analysis information for the two copies is different (similar

to Phase 2 of the algorithm described in Section 4.2).

Dynamic compilation also includes techniques similar to procedure cloning. Johnston presents the earliest

such approach in his APL\3000 Dynamic Incremental Compiler [15]. When a statement is invoked for the

first time, the compiler creates a compiled version specialized to the invocation environment. Environments

for subsequent invocations are compared to the compiled version, and if necessary, the code is generalized

to accomodate both environments so that only a single compiled version exists for that statement.

The self compiler combines dynamic and static compilation techniques [8]. Customization dynamically

creates a specialized copy of a method based on the receiver type for a message invoking that method, which

may generate copies for every possible receiver type in the program. A static technique, message splitting,

replicates code at a point where two control flow paths merge; copies of the code are moved up into the

2



individual control paths if this will allow the copies to be specialized according to the unique environments

of the separate paths.

The APL dynamic compiler creates only a single compiled version of a statement, relinquishing opti-

mization benefits in favor of efficient compilation. There are techniques in both node distinction and partial

evaluation that reduce the amount of replication, but neither will eliminate the possibility of exponential

code growth. The techniques in the self compiler clearly have the potential for exponential code growth.

Our work improves on these by recognizing and bounding the potential for exponential code growth while

only cloning when there is a perceived optimization benefit.

3 Background and Motivation

To motivate our work on cloning, we summarize an experiment aimed at improving the performance of the

program matrix300 from release one of the Spec benchmark suite. We derive some key insights for the

algorithm.

3.1 The Experiment

Matrix300 computes eight variants on matrix multiplication, selectively transposing the input and output

matrices. The goal of the experiment was to apply a series of transformations to the program to improve

its execution time [3]. These transformations reorder the iteration space of a loop to expose reuse of values

in registers and decrease cache misses. The most important of these optimizations, unroll and jam, has

demonstrated dramatic improvements on linear algebra kernels [6].

Unroll and jam cannot be applied directly to the key computational kernel of matrix300 because of the

program’s structure. Unroll and jam transforms a nest of two or more loops; in matrix300, each loop is in a

different procedure. The leaf procedure, daxpy, only contains a single loop. The code in daxpy reveals little

or no reuse of values in either registers or cache. This loop is a good candidate for memory optimization,

but needs to be inlined into the caller dgemv to expose an outer loop.

Unfortunately, the call in dgemv performs an array reshape — the actual and formal parameters have dif-

ferent dimension sizes. Inlining daxpy translates the reference A(1,i) to the linearized form A(k+(i-1)*ii,1),

where the value of ii is unknown at compile time. The multiplication by ii makes this subscript expression

too complex for dependence analysis, upon which these transformations rely [16]. The memory optimizations

rely on precise dependence information to locate reuse and to prove safety conditions. Thus, directly inlining

the call creates the necessary loop structure, but leaves the code in a form where the transformations cannot

be applied. In fact, all the calls in matrix300 must be inlined before enough information is exposed to simplify

this subscript expression.

Applying cloning prior to inlining alleviates these problems. To illustrate these points, the call graph for

matrix300 is shown in Figure 1, annotated with the relevant pieces of code. The value of ii — the dimension

size of array A — passed at the call to daxpy depends only on the evaluation of the if condition in dgemv,

which in turn, depends only on the value of the input parameter job. The value of job depends solely on

dgemm’s input parameters jtrpos and job. Jtrpos takes on the integer values from 0 to 7, while job always

has the value 1.

Taken together, this suggests cloning the eight calls from main to dgemm to expose unique constant

3



values for jtrpos. This results in dgemv’s formal job receiving a value of either 1 or 3. By making two

copies of dgemv, we can finally determine the value of ii, the dimension size passed at calls to daxpy. For

the case where job has the value 1, the value of ii is 1, so the reference to A after inlining daxpy becomes

A(k+i,1). When job has the value 3, no reshape of A occurs at the call so the translated reference is A(k,i).

Finally, we can inline daxpy and perform the memory optimizations. The resulting call graph for matrix300

is shown in Figure 2.

3.2 Key Insights

The algorithm described in this paper was motivated by four key insights, presented in this section. The

first three of these were derived from the preceding example.

3.2.1 Propagation

Cloning changes the structure of the call graph in a way that allows interprocedural constant propagation

to proceed along distinct paths. More precisely, cloning removes some of the points of confluence — those

points where the constant propagation algorithm uses a meet function to approximate the facts that are

true along two converging paths. By avoiding these approximations, cloning may sharpen the results of

the analysis. We can exploit the change in graph structure by cloning a procedure with invocations that

contribute significantly different interprocedural information. In our example, we applied cloning when

calls contributed different constant values for variables in a called procedure. We propagated the effects of

cloning to descendants in the graph since cloning a procedure may in turn expose opportunities for cloning

its descendants.

We would like to generalize cloning to improve the results of other interprocedural data-flow analysis

problems. Data-flow information provides a good basis for cloning decisions. It is easily manipulated; these

problems are formulated as systems of equations on a lattice framework. It has path-specific components,

but they can be readily merged to represent aggregations of multiple paths. Finally, it has a direct impact

on the quality of the code generated by the compiler. The cloning algorithm should select modifications that

result in data-flow information that more precisely models the events that happen at run-time.

In general, our algorithm can be used to clone based on partial solutions to any forward interprocedural

data-flow analysis problem (i.e., a problem where a node inherits information from its predecessors in the

graph, rather than its successors). Examples of forward interprocedural problems are constant propagation,

alias analysis and type analysis. This approach directly sharpens the solution to the forward interprocedural

problem used as the basis for cloning.∗

3.2.2 Goal-directed Cloning

The above discussion suggests that we calculate solutions to the forward interprocedural problems and use

these directly as the basis for cloning decisions. Unfortunately, compilers cannot capitalize on every new

data-flow fact that is exposed. For example, it would not be profitable to clone based on different constant

∗Note that the change in the graph may also indirectly sharpen solutions to backward data-flow problems. For example, changes
in the results of alias analysis or constant propagation (both forward problems) can change the results of side-effect analysis (a
backward problem). However, it is unclear how to predict the impact a cloning decision will have on the solution to a backward
data-flow problem.

4



values of a string passed to an error printing routine. Thus, a good cloning technique should try to distinguish

between facts that have an impact on code quality and those that do not.

We can avoid unnecessary code growth by restricting cloning to those cases where important information

is exposed. We describe such a strategy as goal-directed [3]. In the matrix300 example, we clone only to

expose constants needed to improve the results of dependence analysis. These constants fall into three

categories: (1) they specify the dimension size of an array parameter; (2) they determine control flow; or,

(3) they appear in a subscript expression. These constants expose sufficient information to perform inlining

and unroll and jam.

We detect important constants by examining each dimension statement, control flow test and subscript

expression in a procedure. Suppose such an expression could be evaluated assuming all global variables and

formal parameters in the expression enter the procedure with constant values. If we can clone to expose

constant values for these variables, then it is likely that more precise dependence information will result. A

bottom-up pass over the program propagates these variables, translating from formal to actual parameters

at calls. This approach derives ImportantVariables(p), the variables of procedure p that, if constant, might

improve dependence information in this procedure or one of its descendants [3, 12].

For other forward data-flow problems, a goal-directed approach depends both on the problem and the

desired optimization effects. Designing a strategy for a specific compiler necessarily involves experimentation

to understand how well the compiler takes advantage of the kind of facts that cloning can expose. By

understanding what data-flow information results in profitable optimization, the compiler can filter potential

cloning opportunities to only expose these data-flow facts.

3.2.3 Merging Equivalent Clones

As described above, we can avoid unnecessary cloning by ignoring information about variables that cannot

have an important effect on optimization. In some cases, we can further reduce the amount of unnecessary

cloning by merging clones that produce the same effects on optimization. In matrix300, eight copies of dgemm

were made corresponding to the eight possible constant values of one of its input parameters. However, only

two copies were needed to tailor the two versions of daxpy in order to apply inlining and unroll and jam. By

evaluating important expressions in the program based on the constant values provided by cloning, we can

determine if two clones generate the same values for these important program points. If so, then the two

clones are “equivalent” from the standpoint of the target optimization and can be merged.

The second phase of the cloning algorithm locates equivalent clones and merges them. We discuss this

phase in the context of constant propagation. It turns out that this phase is only necessary for some

interprocedural problems, which we characterize in Section 4.2.4.

3.2.4 Exponentiality

The final insight about cloning is perhaps the most important. In its full generality, cloning can result in

exponential growth in compile time and object code size. The example shown in Figure 3 demonstrates this

point. In the initial program, shown in 3(a), there are n procedures in the program, p1, p2, . . . , pn. Each

procedure pi invokes pi+1 at two call sites. At one call, the procedure pi passes as a parameter (2i−1)∗input.
The other call passes the value 2i ∗ input. By producing clones for each unique value of the input parameter

at p2, we produce the call graph shown in 3(b). By doing the same for p3, the call graph shown in 3(c)

5



results. After cloning all calls in the program, the final call graph has 2n − 1 nodes and 2n − 2 edges. The

original call graph has only n nodes and 2(n− 1) edges.

Because cloning can exhibit exponential behavior, our algorithm must anticipate this possibility and

impose restrictions when necessary. However, based on experience, the amount of useful cloning on a

program is likely to be small [12]. For this reason, we expect that the restrictions on cloning will rarely be

necessary. Nevertheless, the algorithm will perform well even in the event of pathological behavior.

4 Cloning Algorithm

This section presents a polynomial-time algorithm for procedure cloning. The algorithm has three phases.

First, we propagate vectors of interprocedural information describing the possible cloning that can be per-

formed on the program. In the second phase, we merge vectors representing clones with “equivalent” effects.

In the third phase, we actually transform the code until program growth exceeds some threshold. This

section provides more detail on each of these phases.

4.1 Phase 1: Calculating Cloning Vectors

4.1.1 Motivation

The first phase explores all cloning opportunities that will sharpen the results of a particular forward inter-

procedural data-flow analysis problem. The algorithm essentially solves the data-flow problem with one

important change. Rather than conservatively approximating information when multiple paths converge

(i.e., applying a meet function), it retains the unique interprocedural sets contributed by each path.

The propagation of cloning information proceeds in topological order in a single pass over the call graph,

with cycles in the graph handled specially. By structuring the analysis in this way, the effects of a cloning

decision at a procedure will reach its descendants by the time their cloning opportunities are evaluated.

A key aspect of the Phase 1 algorithm is that it considers potential cloning opportunities but does not

actually clone. This feature allows us the freedom to merge potential clones in subsequent phases after we

have evaluated their impact on optimization.

4.1.2 Definitions

A few definitions are needed before presentation of the algorithm in Figure 4. Each potential clone can

be represented by a cloning vector, a unique solution to the data-flow problem being used as the basis for

cloning. A cloning vector may represent either information obtained by propagating along a single path

through the call graph or information along multiple paths that result in the same solution. As an example,

a cloning vector for interprocedural constant propagation would be a set of 〈variable name, constant value〉
pairs.

In the algorithm, S identifies the interprocedural problem being used as the basis for cloning. The set

CloningVectors(S, p) contains, upon termination, the collection of cloning vectors for problem S at the node

in the graph representing procedure p. Thus, the goal of the algorithm is to compute CloningVectors(S, p)

for a particular problem S and for every procedure p in the program.

6



The function Translate(c, cv), for some call site c with caller p and callee q, maps elements in the vector

cv of p to the corresponding variables in q based on parameter passing at c. The result is the creation of a new

CloningVector set for q. This mapping function is similar to the one used in the underlying interprocedural

problem to map variables from the caller to the callee.

Another function Filter(cv,S,p) extracts from the cloning vector only the data-flow facts that will be

important to optimization. The existence of a filtering function makes the cloning approach goal-directed.

Note, however, that the filter can simply be an identity function on cv. For the constant propagation

example, the filter would reduce the set of constants to only include values for variables appearing in Impor-

tantVariables(p), as described in Section 3.2.2.

4.1.3 Propagation Algorithm

/* Initialization */
Locate cycles and replace with representative nodes and edges
foreach node n in representative graph

CloningV ectors(S, n)← ∅

/* Propagation */
foreach node n in topological order

foreach call site c invoking n
let p represent the procedure invoking n at c
foreach vector cv in CloningV ectors(S, p)

CloningV ectors(S, n) ← CloningV ectors(S, n) ∪ F ilter(Translate(c, cv), S, p)
if n represents a recursive cycle then

foreach vector cv in CloningV ectors(S, n)
Iteratively propagate cv within procedures in cycle until information stabilizes

Figure 4 Phase 1 – Calculating CloningVectors.

The algorithm computes and propagates CloningVectors sets in topological order. At each propagation

step, the Translate function renames the variables in each cloning vector according to the parameter passing

at its corresponding call. Since CloningVectors(main) is initialized to ∅, Translate adds facts to the sets for

procedures called from the main routine. The Filter function extracts from the vector returned by Translate

only the important data-flow facts. The union (∪) only adds the resulting vector to the CloningVectors

collection if it is unique.

For call graphs containing cycles, usually representing recursion, we locate strongly-connected regions

and replace the cycle with a representative node. When the algorithm reaches a representative node, it

propagates each incoming cloning vector within the nodes in the cycle until the information stabilizes [17].

This approach to cycles has two important benefits. Most importantly, it prevents the algorithm from

analyzing the clones generated by unrolling the recursion, which can generate an infinite number of possible

clones. Secondly, it enables the algorithm to complete in only a single pass over the nodes in the reduced

graph. For a node representing a cycle with multiple cloning vectors, the final phase of the cloning algorithm

will replicate all nodes in the cycle for each incoming cloning vector. Thus, our simple approach to recursion

will generate clones when the cycle contains unique initial values that remain constant within the body of

the cycle.

7



This phase of the cloning algorithm can generate an exponential number of cloning vectors. In practice

we have not seen this behavior and do not expect to encounter it. Section 5 presents an argument that the

number of cloning vectors is polynomial under a plausible set of assumptions. Section 6 describes a strategy

for restricting the number of cloning vectors that it actually generates.

4.2 Phase 2: Merging Equivalent Cloning Vectors

4.2.1 Motivation

The previous phase produces the CloningVectors collections that represent all the interesting opportunities

for cloning in the program. If we have filtered the information in the cloning vectors to consider only

important data-flow facts, these sets may fairly precisely indicate the clones that must be produced to perform

the targeted optimizations. However, for certain interprocedural problems including constant propagation,

it is still possible for two unique cloning vectors to produce the same effect on optimization.

For example, we may be interested in the result of a control flow test that compares whether a variable’s

value is greater than 1. There may be many different constant values for that variable represented among the

cloning vectors that are greater than 1, all effecting the same simplification of the control flow test. Thus,

rather than the value of the variable, we would really like to capture during cloning the effects distinct values

have on optimization.

The second phase of the cloning algorithm locates cloning vectors producing equivalent effects on op-

timization and merges them. Identifying that two cloning vectors are equivalent requires a goal-directed

strategy. It is necessary to locate specific targets of optimization, so that the effects of a particular cloning

vector on the targets of optimization can be ascertained. Then, the effects of a pair of cloning vectors can

be compared to determine if they are equivalent.

The following discussion presents an algorithm for merging equivalent cloning vectors of interprocedural

constants. A similar approach could be taken for related problems, like type analysis. In Section 4.2.4, we

characterize the interprocedural data-flow problems for which this phase is necessary.

4.2.2 Definitions

Suppose we want to evaluate the effects a particular cloning vector of constants has on the important

expressions appearing in a procedure, i.e., the control flow tests, subscript expressions and array dimensions.

We use jump functions to describe the value of each such expression as a function of the external variables

for which constant propagation and cloning may potentially uncover a constant value [7]. A jump function,

JE1(f), describes the value of expression E1 as a function of external variable f . These jump functions can

be constructed by examination of the procedure prior to any interprocedural analysis.

By applying the values described by a cloning vector to the jump functions for a procedure’s important

expressions, we arrive at a state vector . StateVector(p, cv) maps a cloning vector cv for procedure p to values

of important expressions in p. It is the state vector that captures how the values in a cloning vector will

affect optimization within the procedure.

The example in Figure 5 illustrates these points. The Phase 1 algorithm calculates the CloningVectors

collections for procedures p and q. Procedure p does not contain any important expressions; procedure q

contains three of them, E1, E2 and E3. By applying the values represented by three incoming cloning

8



program main
call p(10, 1)
call p(10, 2)
call p(10, 3)

subroutine p(f1, f2)
call q(f1, f2 + 4)

subroutine q(f1, f2)
E1:dimension A(f1, 1)
E2: if (f2 mod 2 = 1) then . . .
E3: A(f1 + 2, 1) = . . .

Jump functions for q:
JE1(f1) = f1

JE2(f2) = (f2 mod 2 = 1)
JE3(f1) = f1 + 2

CloningVectors(constants, p) = { {〈f1, 10〉, 〈f2, 1〉}, {〈f1, 10〉, 〈f2, 2〉}, {〈f1, 10〉, 〈f2, 3〉 } }
CloningVectors(constants, q) = { {〈f1, 10〉, 〈f2, 5〉}, {〈f1, 10〉, 〈f2, 6〉}, {〈f1, 10〉, 〈f2, 7〉 } }

StateVector(p, {〈f1, 10〉, 〈f2, 1〉}) = StateVector(p, {〈f1, 10〉, 〈f2, 2〉}) = StateVector(p, {〈f1, 10〉, 〈f2, 3〉}) = ∅

StateVector(q, {〈f1, 10〉, 〈f2, 5〉}) = 〈10, true, 12〉
StateVector(q, {〈f1, 10〉, 〈f2, 6〉}) = 〈10, false,⊥〉
StateVector(q, {〈f1, 10〉, 〈f2, 7〉}) = 〈10, true, 12〉

Figure 5 Example illustrating StateVector calculation.

vectors for procedure q to the jump functions for q’s important expressions, we obtain only two distinct state

vectors.

4.2.3 Partitioning Algorithm

The algorithm for merging equivalent cloning vectors appears in Figure 6. It is related to the algorithm for

minimizing the number of states in a Deterministic Finite Automaton (DFA) [14]. It is also similar to an

algorithm used to minimize the number of implementations of a procedure required when multiple definitions

of the same procedure occur in a program [11].

The algorithm partitions the cloning vectors for a procedure according to the values for their state vectors.

It begins by assuming all cloning vectors for a procedure are equivalent. It proceeds to distinguish between

cloned versions of a procedure based on their state vector and the partitioning of procedures they invoke.

Two clones can be merged if they have the same StateVector mapping, and for corresponding call sites in the

cloned versions, the invoked procedures are in the same partition of cloning vectors. Upon termination of the

algorithm, clones remaining in the same partition can be merged and represented by a single implementation.

Nodes are visited in a single reverse topological pass so that the clones of a procedure have been partitioned

9



1. Initially, all cloning vectors for a particular procedure are placed in the same partition.

2. In reverse topological order, visit the partition π corresponding to each node n:

(a) Partition cloning vectors vi of π based on the value of StateVector(n, cvi).

(b) For each partition πi of π consisting of multiple cloning vectors:

Form partitions of elements of πi such that if two cloning vectors a and b in πi result in
invocations at some call site c with cloning vectors x and y of the called procedure, then
a and b are in different partitions if x and y are in different partitions.

Figure 6 Phase 2 – Merging CloningVectors.

before any of its callers are considered. In this algorithm as in the previous one, recursion is handled

by considering a cycle in the call graph as a single procedure unit. The jump functions and state vector

calculations must summarize all the procedures in the cycle.

To clarify the algorithm presentation, consider the example in Figure 5. Procedure q has three unique

cloning vectors. Partitioning these according to state vector values results in two partitions, one partition

for the cloning vector {〈f1, 10〉, 〈f2, 6〉} and another partition containing the remaining two cloning vectors.

Proceeding to partition the cloning vectors for p, there are three distinct cloning vectors. Each one generates

the same state vector. However, {〈f1, 10〉, 〈f2, 2〉} is placed in its own partition since it invokes a partition

of q that is separate from that invoked by the other two partitions of p.

This approach is very similar to work by Ruf and Weise, but differs in two important ways. First, while

both algorithms consider the state resulting from a cloning decision, their algorithm does not perform the

state minimization over the program. It would presumably maintain separate specializations when two copies

have function calls passing different parameters, even if the net effect results in identical specializations in

all descendant procedures. Second, by targeting specific points of interest, our approach can use significantly

less space than maintaining information about each statement.

4.2.4 When is Phase 2 Necessary?

Consider why this phase is necessary for interprocedural constant propagation. The unbounded number

of potential constant values for a variable appearing in an important expression makes it impossible to

enumerate all possible values and determine which ones are important. Instead we locate the variables

involved in important expressions prior to cloning. We evaluate only the constant values that appear in

the cloning vectors. If two cloning vectors have unique constant values that produce the same effect on

optimization, they are merged.

Other interprocedural problems exist for which this merging phase is unnecessary. As an example, we

briefly consider cloning based on alias analysis[2]. Two variable names are aliases in a procedure if they

can refer to the same memory location. A compiler uses alias information to verify the safety of certain

optimizations. The two data-flow analysis problems differ in that the lattice for constant propagation is

infinite (i.e., has an unbounded number of possible set values), while the lattice for the alias problem is finite.

Thus, the most precise approach to filtering aliases — enumerating all the possible aliases and evaluating

10



their effects on optimization — is tractable because the lattice is finite. The algorithm can perform this

enumeration prior to analysis for cloning and use the resulting important aliases to filter the cloning vectors

in Phase 1, eliminating the need for the Phase 2 algorithm.

For lattices with a reasonably small number of values, it may be practical to filter the cloning vectors

as they are produced. However, when the underlying data-flow problem has an infinite lattice, the merging

phase is both necessary and practical. In fact, it may also be desirable in cases where the lattice is finite but

large enough to make enumeration expensive.

4.3 Phase 3: Perform Cloning

4.3.1 Motivation

As suggested in Section 4.1, we expect the number of cloning vectors to be polynomial. If all of this cloning

were performed, the final program size could be a polynomial of its original size. The polynomial bound on

the number of cloning vectors is acceptable during analysis, but a polynomial growth in program size may

be intolerable due to its effects on compile time. Thus, as an additional safeguard to the costs of cloning, we

only clone until program growth exceeds some threshold. However, we expect the desired amount of cloning

will be achieved for most programs without exceeding the threshold.

4.3.2 Final Cloning Algorithm

originalSize ← programSize
foreach node n in topological order

CloneProcedure(n)
if (programSize > originalSize ∗ threshold) then

exit
endfor

CloneProcedure (n)
foreach partition πn of n

let p be the procedure (or procedures) represented by n
create a copy newp of the procedure p
annotate representation of newp in the call graph with the set of CloningVectors in πn
identify the call sites in the call graph invoking newp
programSize ← programSize + newp.size

endfor
end /* CloneProcedure */

Figure 7 Phase 3 – Transforming program.

The final phase, given in Figure 7, performs the cloning indicated by the partitions of cloning vectors

produced in the previous step. The algorithm clones until the program size reaches some threshold factor

of its original size. Since decisions at a procedure are affected by cloning of its ancestors in the call graph,

it is critical that the cloning be performed in topological order. An ideal ordering of cloning decisions

would also take into account how a decision would affect performance. A simple approach is to estimate the

execution frequency of procedures and perform cloning along paths leading to the most frequently executed

11



procedures [12]. We could also use a strategy similar to the merging of vectors for an individual procedure

(see Section 6).

We need to do two things for the newly created clone. First, we annotate newp with the cloning vectors

from its partition; these annotations direct the optimizer to apply the desired optimizations. Second, we

locate in the call graph the call sites formerly invoking p that should now be invoking newp. We identify

these call sites by examining the cloning vectors associated with each caller. This step allows the compiler to

rename the procedure invoked at the call to now invoke newp. As a final point, when the algorithm reaches

a node representing a cycle in the graph, it will clone all the procedures in the cycle.

5 Time Complexity

Phase 1. In the algorithm from Figure 4, the outer loop iterates over procedures, and the inner loop

iterates over cloning vectors at a call site. Assume the maximum number of elements in a cloning vector is

L, and the maximum number of values for each element is V . N is the number of procedures in the program,

and E is the number of call sites. Then, the algorithm is bounded by O((N +E)V L) time.†

The actual sizes of V and L depend on the interprocedural set being used and the possible values of the

set elements. Since we are dealing with interprocedural information, the size of L is related to the number

of externally accessible variables in the scope of the procedure. This is the number of formal parameters of a

procedure and global variables in the program. Based on experience, the number of formals is a small constant

and the number of globals increases more slowly than program growth. For the sake of this presentation, let

us assume that this number is bounded by c logN .

Let vi be the number of distinct values that the ith element in a CloningVector can have. For each vi,

there is a ki such that 2ki−1 < vi ≤ 2ki. For a given procedure, an upper bound on the number of unique

CloningVectors is defined by the following equation:

∏L
i=1 2ki = 2

∑L
i=1 ki.

Taking the average of ki over its L possible values, we arrive at some value kp. 2kp gives an average

number of values for each element, so 2Lkp is an upper bound on the number of cloning vectors for procedure

p. Assuming L ≤ c logN , we know that the number of cloning vectors for a procedure p ≤ 2kp(c logN). The

total number is bounded by the following:

∑N
p=1 2kp(c logN) ≤ N ∗ 2kmax(c logN) = N ckmax .

Here, kmax is the maximum value of kp over all procedures p. Thus, given reasonable values for L and

kmax, the complexity is O((N +E)N ckmax), a polynomial.

†When a program contains recursive cycles, propagating cloning vectors within the nodes in the cycle contributes a factor I,
where I is the number of times the iterative algorithm visits a node in the cycle. This factor is ignored in subsequent discussion
because it is completely dependent on the interprocedural problem being solved. However, the amount of iteration required for
cloning vector propagation will not be worse than that required by the underlying data-flow problem.

12



Phase 2. Cloning vectors are partitioned in a single reverse pass over the call graph. Assume that the

StateVector representation is a string with some canonical order imposed on its elements. If we test for

equality by hashing the strings, the partitioning step for each procedure has an expected time linear in the

number of its cloning vectors. (An approach based on state minimization would yield O(n logn) time, even

for worst-case performance [14].)

Phase 3. The final phase of the cloning algorithm is accomplished by a single top-down pass over the call

graph. The number of clones created is less than the total number of cloning vectors. Thus, Phase 3 is also

bounded by the number of cloning vectors.

Given that the time required by each of the phases is bounded by the total number of cloning vectors, the

entire algorithm has an expected time complexity of O((N + E)N ckmax).

6 Rationing Cloning Vectors

We have argued that real programs will produce a polynomial number of cloning vectors; in practice, we

expect the number to be manageable. Nonetheless, it is still possible for programs to produce impractically

large numbers of cloning vectors. When the compiler encounters such a program, the cloning algorithm must

be prepared to limit the number of vectors stored and propagated. A practical approach to this problem

is to adopt a rationing scheme for cloning vectors. When the quota of vectors is exceeded, the algorithm

should begin merging vectors as they are produced.

We can define the opportunity cost of merging two cloning vectors cvi and cvj as a measure of the effect

that the merge will have on optimization. The opportunity cost must account for improvements enabled by

information exposed by cvi and not by cvj, and vice versa. Having a metric to compare vectors is crucial to

the rationing scheme.

Several strategies are possible to determine the opportunity cost of merging two cloning vectors. As a

possibility, albeit an unrealistic one, we can compile and run two versions of the program. One program

maintains the separate versions of the procedure, while the other merges them. The opportunity cost is the

difference in execution time of the two program versions. We would like to approximate this approach using

static analysis to estimate the opportunity cost. For example, it can be the number of positions that differ

between a pair of cloning vectors. This stategy can be improved by taking into account execution frequency

estimates and weighting the effects of each piece of information [1].

Given a method to compute the opportunity cost of merging two cloning vectors, the compiler can adopt

a relatively simple rationing scheme. Assume that we set a quota for the total number of cloning vectors

allowed during compilation and a quota for each procedure. The overall quota should be proportional to the

number of procedures, the individual quotas should be set somewhat higher than the overall quota divided

by the number of procedures. When propagation attempts to create a vector for procedure p that would

exceed either the local or the global quota, the algorithm either

1. merges v into an existing partition, or

2. merges two lower profit classes and keeps v as a new partition.

13



In implementing this scheme, an efficient means of incrementally comparing and merging vectors based on

opportunity costs is needed. A number of schemes suggest themselves, including clever application of string

matching algorithms, representing the set of retained cloning vectors as a prefix tree, and simply keeping the

k partitions with largest estimated improvement. Since our experience suggests that merging clones will not

be necessary beyond what occurs in Phase 2 of the algorithm (Section 4.2), we believe merging two arbitrary

vectors will be sufficient when pathological cases do arise.

7 Summary and Conclusions

This paper has described an algorithm for deciding how to clone a program for improved optimization. This

general approach bases cloning on any forward interprocedural data-flow analysis problem. The three-phase

algorithm explores potential cloning opportunities, merges potential clones that produce equivalent effects

on optimization and, finally, performs cloning of the program. Full cloning of a program may potentially lead

to exponential execution time and program growth; however, we have argued, based on the characteristics of

interprocedural data-flow sets, that it is actually bounded by a polynomial of program size. Nevertheless, in

the event of pathological behavior, we suggest mechanisms to reduce the amount of cloning to a manageable

size.

The algorithm was designed in the context of the program compiler for the ParaScope programming envi-

ronment – the tool that manages interprocedural issues in compilation [5]. This general algorithm supports

a number of emerging applications for cloning. These applications come from diverse areas: compiling for

scalar architectures, compiling for both shared-memory and distributed-memory parallel architectures, and

instrumenting code for run-time detection of race conditions in shared-memory parallel programs. To date,

we have effectively employed cloning in experiments with interprocedural constant propagation [3, 12] and

interprocedural transformations for parallel code generation [13] through hand optimization and a partial

implementation of the algorithm.

ParaScope is devoted to high-performance Fortran programming, but the need for cloning arises in many

other contexts such as those discussed in Section 2. Experimentation is needed to verify that the assumptions

used in our algorithm generalize to these other contexts.

Acknowledgements. The authors wish to thank several people who contributed to this work. Research

collaborations with Preston Briggs and Linda Torczon helped motivate this work. Conversations with Ben

Chase, Urs Hoezle, Kathryn McKinley, Doug Moore, Bill Noyce, Bob Rao and Alejandro Schaffer provided

useful insights that were incorporated into this work. Paul Havlak suggested several improvements after

reading a draft of this paper. The ParaScope group at Rice University has provided a particularly useful

environment for examining problems of this kind.

References

[1] Ball, J.E. Predicting the effects of optimization on a procedure body. ACM SIGPLAN Notices, 14(8):214–220,

1979.

[2] Banning, J.P. An efficient way to find the side effects of procedure calls and the aliases of variables. In Proceedings

of the Sixth Annual Symposium on Principles of Programming Languages, pages 29–41. ACM, January 1979.

14



[3] Briggs, P., Cooper, K.D., Hall, M.W., and Torczon, L. Goal-directed interprocedural optimization. Technical

Report TR90-148, Dept. of Computer Science, Rice University, November 1990.

[4] Bulyonkov, M.A. Polyvariant mixed computation for analyzer programs. Acta Informatica, 21:473–484, 1984.

[5] Callahan, C.D., Cooper, K.D., Hood, R.T., Kennedy, K., and Torczon, L. ParaScope: a parallel programming

environment. International Journal of Supercomputer Applications, 2(4):84–89, 1988.

[6] Callahan, D., Carr, S., and Kennedy, K. Improving register allocation for subscripted variables. ACM SIGPLAN

Notices, 25(6):53–65, 1990.

[7] Callahan, D., Cooper, K.D., Kennedy, K., and Torczon, L. Interprocedural constant propagation. ACM SIG-

PLAN Notices, 21(7):152–161, 1986.

[8] Chambers, C. and Ungar, D. Customization: Optimizing compiler technology for SELF, a dynamically-typed

object-oriented programming language. ACM SIGPLAN Notices, 24(7):146–160, 1989.

[9] Cooper, K.D., Hall, M.W., and Torczon, L. An experiment with inline substitution. Software — Practice and

Experience, 21(6):581–601, 1991.

[10] Cooper, K.D., Kennedy, K., and Torczon, L. The impact of interprocedural analysis and optimization in the Rn

programming environment. ACM Transactions on Programming Languages and Systems, 8(4):491–523, 1986.

[11] Cooper, K.D., Kennedy, K., Torczon, L., Weingarten, A., and Wolcott, M. Editing and compiling whole pro-

grams. ACM SIGPLAN Notices, 22(1):92–101, 1987.

[12] Hall, M.W. Managing Interprocedural Optimization. PhD thesis, Rice University, Department of Computer

Science, Houston, TX, April 1991.

[13] Hall, M.W., Kennedy, K., and McKinley, K.S. Interprocedural transformations for parallel code generation. In

Proceedings of Supercomputing ’91. IEEE Computer Society, November 1991.

[14] Hopcroft, J. An nlogn algorithm for minimizing states in a finite automaton. In Z. Kohavi and A. Paz, editors,

Theory of Machines and Computations, pages 189–196. New York: Academic Press, 1971.

[15] Johnston, R.L. The dynamic incremental compiler of APL\3000. In Proceedings of the APL ’79 Conference,

pages 82–87. ACM, June 1979.

[16] Kuck, D.J. The Structure of Computers and Computations, volume 1. New York: John Wiley and Sons, 1978.

[17] Marlowe, T.J. and Ryder, B.G. An efficient hybrid algorithm for incremental data flow analysis. In Conference

Record of the Seventeenth Annual Symposium on Principles of Programming Languages, pages 184–196. ACM,

January 1990.

[18] Ruf, E. and Weise, D. Using types to avoid redundant specialization. ACM SIGPLAN Notices, 26(9):321–333,

1991.

[19] Wegman, M. General and Efficient Methods for Global Code Improvement. PhD thesis, University of California,

Berkeley, CA, December 1981.

15



main

. . .

do i=0..7
call dgemm(. . . , i, 1)

dgemm

. . .

subroutine dgemm (. . . , jtrpos, job)
jb=f(jtrpos, job)
call dgemv (. . . , jb)

dgemv

subroutine dgemv (. . . , job)
real A(100,1)
if (f(job)) then ii=1 else ii=100
do j

call daxpy (A(k, 1), ii)

daxpy

subroutine daxpy(A,ia)
real A(ia,1)
do i
. . . A(1,i)

Figure 1 Call graph for matrix300.

main

dgemm0 dgemm1 . . . dgemm6 dgemm7

dgemv1 dgemv3

daxpy daxpy

Figure 2 Call graph for matrix300 after cloning and inlining.

16



main
call p2(1)
call p2(2)

p2

subroutine p2(input)
call p3(3 ∗ input)
call p3(4 ∗ input)

p3

subroutine p3(input)
call p4(5 ∗ input)
call p4(6 ∗ input)

· · ·
subroutine pn−1(input)

call pn((2 ∗ (n− 1)− 1) ∗ input)
call pn(2 ∗ (n− 1) ∗ input)

pn

(a) Initial program

main

p2(1) p2(2)

p3

· · ·

pn

(b) After cloning p2

main

p2(1) p2(2)

p3(1) p3(2) p3(3) p3(4)

· · ·

pn

(c) After cloning p3

Figure 3 Exponential code growth due to cloning.

17



About the Author — Keith D. Cooper is an associate professor in the Department of Computer

Science at Rice University. His research interests include interprocedural analysis and optimization, code

optimization for advanced microprocessors, and advanced programming environments. He was graduated

from Rice University in 1978 with a B.S. in electrical engineering. He received an M.A. from the Department

of Mathematical Sciences at Rice in 1982 and a Ph.D. from the same department in 1983.

About the Author — Mary W. Hall is currently a research associate in the Electrical Engineering

Department at Stanford University. Her research interests are in interprocedural compiler optimizations,

parallelizing compilers and programming environments. She was graduated magna cum laude from Rice

University in 1985, with a B.A. in Computer Science and Mathematical Sciences. She received an M.S. in

Computer Science in 1989, and a Ph.D. in Computer Science in 1991, both from Rice. From October, 1990,

to May, 1992, she was a research scientist in the Center for Research on Parallel Computation at Rice.

About the Author — Ken Kennedy is a Noah Harding Professor of Computer Science at Rice Uni-

versity, Director of the Computer and Information Technology Institute at Rice and heads the Center for

Research on Parallel Computation (CRPC), an NSF Science and Technology Center at Rice, Caltech, Los

Alamos National Lab, Argonne National Lab, the University of Tennessee and Syracuse University. Professor

Kennedy’s current research focuses on extending techniques developed for automatic vectorization to pro-

gramming tools for parallel computer systems and high-performance microprocessors. Through the CRPC,

he is seeking to develop new strategies for supporting architecture-independent parallel programming, espe-

cially in science and engineering. Kennedy received the B.A. degree in mathematics from Rice University in

1967, the M.S. degree in mathematics and the Ph.D. degree in computer science from New York University

in 1969 and 1971, respectively. He has been on the faculty at Rice since 1971.

18



Abbreviated Summary

This paper has described an algorithm for deciding how to clone a program for improved optimization.

This general approach bases cloning on any forward interprocedural data-flow analysis problem. The three-

phase algorithm explores potential cloning opportunities, merges potential clones that produce equivalent

effects on optimization and, finally, performs cloning of the program. Full cloning of a program may po-

tentially lead to exponential execution time and program growth; however, we have argued, based on the

characteristics of interprocedural data-flow sets, that it is actually bounded by a polynomial of program size.

Nevertheless, in the event of pathological behavior, we suggest mechanisms to reduce the amount of cloning

to a manageable size.

The algorithm for procedure cloning was designed in the context of compiling high-performance scientific

Fortran. While the paper focuses on cloning to expose better constants, we have found many other important

applications of the algorithm in our system. It is clear that cloning is also useful in other contexts, including

intraprocedural optimization, partial evaluation and dynamic compilation discussed in the Related Work

section of the paper. Experimentation is needed to verify that our assumptions bounding the algorithm are

valid in these other contexts.

19


