
Compiler-Controlled Memory

Keith D. Cooper and Timothy J. Harvey†

Computer Science Department
Rice University

6100 Main Street, MS 132
Houston, Texas 77005

Abstract

Optimizations aimed at reducing the impact of memory
operations on execution speed have long concentrated
on improving cache performance. These efforts achieve
a reasonable level of success. The primary limit on the
compiler’s ability to improve memory behavior is its im-
perfect knowledge about the run-time behavior of the
program. The compiler cannot completely predict run-
time access patterns.

There is an exception to this rule. During the reg-
ister allocation phase, the compiler often must insert
substantial amounts of spill code; that is, instructions
that move values from registers to memory and back
again. Because the compiler itself inserts these memory
instructions, it has more knowledge about them than
other memory operations in the program.

Spill-code operations are disjoint from the memory
manipulations required by the semantics of the program
being compiled, and, indeed, the two can interfere in the
cache. This paper proposes a hardware solution to the
problem of increased spill costs—a small compiler-con-
trolled memory (ccm) to hold spilled values. This small
random-access memory can (and should) be placed in
a distinct address space from the main memory hierar-
chy. The compiler can target spill instructions to use
the ccm, moving most compiler-inserted memory traf-
fic out of the pathway to main memory and eliminating
any impact that those spill instructions would have on
the state of the main memory hierarchy. Such mem-
ories already exist on some dsp microprocessors. Our
techniques can be applied directly on those chips.

This paper presents two compiler-based methods to
exploit such a memory, along with experimental results
showing that speedups from using ccm may be sizable.
It shows that using the register allocation’s coloring
paradigm to assign spilled values to memory can greatly
reduce the amount of memory required by a program.

1 Introduction

To an outside observer, the dsp market appears to be

a breeding ground for architectural innovations. These

machines change quite rapidly; new features appear with

each generation. The best of these features persist; some

even make it into commodity microprocessors.

Some dsp chips have a small, fast, on-chip memory

that the programmer can use to improve access times.

These on-chip memories are not caches; instead, they

are located in a disjoint address space. This simpli-

fies their implementation by eliminating any need for

relating on-chip memory addresses to off-chip memory

addresses, for associative lookup, and for automatic re-

placement. Instead, the designers make the programmer

responsible for moving data between main memory and

the on-chip memory in a timely and efficient way. In

the dsp arena, this strategy has worked.

This paper presents an alternative use for a small

portion of this on-chip memory—as a holding place for

spilled values, or a small compiler-controlled memory

(ccm). Our scheme has several advantages. Using the

ccm for spills should shorten spill latencies and let the

scheduler place the load for a spilled value next to its

use — speeding up execution and shortening the live

range created for the spilled value. Spilling to the ccm

removes spill traffic from the path to main memory. If

the system has a cache memory, spilling to the ccm

should also eliminate any cache pollution introduced

by spill operations—loads and stores that can inter-

fere directly with the cache behavior “planned” by high-

level, compiler-based transformations that exploit local-

ity caused by regular accesses in loop nests [8, 27, 10].

† This material is based, in part, upon work supported by
the Texas Advanced Technology Program under grant number
003604-015 and by DARPA through USAFRL Contract F30602-
97-2-298.
Authors’ current e-mail addresses are cooper@cs.rice.edu and
harv@cs.rice.edu.



This work is narrowly focused on spill-code inser-

tion during register allocation. It has similarities to

register promotion, a transformation that moves some

pointer-based variables into registers [16]. Because of

this similarity, we call the software component of this

technique spill promotion – in both cases, the transfor-

mation moves a value’s primary storage into a faster

class of memory.

While we originally conceived of this scheme as a

way to make automatic use of some portion of the local

memory on a dsp chip, our experiments suggest that it

may be worth considering a small ccm on commodity

microprocessors, as well. To assess the reasonableness of

this idea, we need to understand three issues: hardware

support, software support, and the amount of ccm that

would be needed.

This paper presents our vision for the ccm. Section 2

describes our assumptions about the underlying hard-

ware, discusses why register spilling is problematic, and

suggests why a ccm is a better solution than simply

using the existing cache memory. Section 3 describes

how to build a stand-alone ccm-allocator that runs as a

post-pass to the compiler, and how to fit a ccm scheme

into the spill-code insertion phase of a Chaitin-Briggs

allocator. Section 4 presents experimental results that

show the kind of improvements that should be expected

from the use of a ccm and the amount of ccm required

by programs in our test suite.

Finally, we must reiterate that our techniques should

be directly applicable on some current dsp micropro-

cessors. These chips already have small, fast, on-chip

memories that are not caches; these systems expect the

applications programmer to explicitly manage transfers

into and out of these small, fast memories. On such sys-

tems, our results suggest a style of programming where

the application programmer cedes the bottom 1 kb of

on-chip memory to the compiler, which uses it to im-

plement ccm-style spilling.

2 Background

Our proposal for ccm spilling combines both hardware

and software issues. This section looks at the hardware

requirements and explores the software and performance

issues that motivate the proposal.

2.1 Hardware requirements

The primary hardware requirement is a small on-chip

memory, the ccm. Conceptually, the ccm should have

its own address space, accessible through designated in-

structions that move data between the ccm and the

register set. Access to the ccm should be fast, with

the results available for use on the next cycle. For each

class of registers (e.g., floating-point registers or general

purpose registers), a pair of instructions will suffice:

spill rj, 〈offset〉 rj ⇒ ccm[〈offset〉]
restore 〈offset〉, ri ccm[〈offset〉]⇒ ri

Other applications for the ccm may find uses for more

complex addressing modes. For our purposes, these sim-

ple absolute addresses are both sufficient and desirable.

If the compiler can assume that the system runs only

one process, as with many embedded applications, the

ccm can be small and simple—on the order of 1 kb.1

In a multi-tasked environment, the ccm should be

larger and slightly more complex. To handle multiple

processes, we would want to add a system-controlled

base register to provide each process with its own small

region within the ccm. This would allow the system

to avoid copying the ccm contents to main memory on

context switches. Still, we expect that a ccm of 16 kb

to 32 kb would be more than adequate.

2.2 The importance of spilling

A modern microprocessor presents the compiler with

a complex set of challenges. To achieve a reasonably

large fraction of the processor’s peak performance, the

compiler must keep multiple, pipelined functional units

busy, and arrange memory accesses in an order that

creates good cache locality.

• To keep the pipelines busy, the compiler must en-
sure that an instruction is ready to execute on each
functional unit at each cycle. This requires care-
ful instruction scheduling. It also requires that
the operands of each instruction be available, in
registers, at the start of the appropriate cycle.

• To improve cache locality, the compiler must re-
order and rearrange loop iterations. The “heroic”
transformations that improve locality often intro-
duce new overhead computations; they may also
move some memory references into registers.

The transformations that address these problems can in-

crease the demand for registers and provoke the register

allocator to spill more values to memory. The perceived

increase in the cost of spilling, due to more spills and

longer memory latencies, has led to a spate of recent

research on reducing spill costs (e.g., [16, 3, 12]).

Register spills are problematic for two reasons. First,

they add loads, stores, and address computations to the

program, each of which must be scheduled, fetched, and

executed. Second, they perturb the behavior of the data

1According to Upton et al., the cost of a 1 KB cache is negligi-
ble [26]. The CCM should have a simpler implementation than
a full-blown cache.



cache(s) and increase memory bandwidth requirements.

Both effects are complicated by the fact that allocation

occurs quite late in compilation; the transformations

that block for cache and register locality cannot foresee

the spills to account for their impact.

2.3 The cache is the wrong place to spill

Most modern microprocessors use cache memories as a

tool to bridge the expanding gap between the speed of

main memory and the speed of the processor [29]. At

any point in time, a processor’s cache holds a mapped

subset of the address space that includes main memory.

Hardware mechanisms adjust both the contents of cache

and the mapping between cache locations and main

memory locations as programs execute [13]. Cache sys-

tems, combined with compiler-based transformations,

have been reasonably effective at bridging the gap be-

tween memory speed and processor speed [19]. Unfor-

tunately, spill code inserted in the last stages of compi-

lation can disrupt the compiler’s carefully planned se-

quence of memory accesses.

From a performance perspective, the cache’s impor-

tance lies in one simple fact: a memory reference to an

element already in the cache takes much less time than

a reference to an element not in the cache. A reference

that “hits” the cache typically completes in a single cy-

cle, while a reference that “misses” takes five to ten

cycles on a simple uniprocessor machine, and as long

as hundreds of cycles in a distributed memory multi-

processor [14, 15, 22, 17, 1, 2]. This difference in access

time has a strong impact on the performance of indi-

vidual programs. Accordingly, much recent research in

compilation has been directed at techniques that im-

prove the likelihood of references hitting in the cache.

Most of this work falls into two major categories.2

Blocking Blocking rearranges and reorders the iterations
of a loop nest in an attempt to move multiple ref-
erences to a single location closer in time (tempo-
ral locality) or in an attempt to move references
to adjacent memory locations closer in time (spa-
tial locality) [27, 8, 28]. Blocking often introduces
new loops with new index variables; this can in-
crease the demand for registers and cause addi-
tional spilling.

Prefetching With appropriate hardware support, such
as an advisory prefetch instruction [7], the com-
piler can hide the latency associated with a cache

2A third approach, streaming, was used on the i860. Here, the
compiler would load values from memory to registers, bypassing
the cache, and then write them into an array that modeled the
cache. This gave the compiler fairly precise control over the con-
tents of cache by largely avoiding instructions that could cause
a replacement. The control came at the expense of doubling the
amount of data movement [20].

miss. To do this, it inserts a prefetch well in ad-
vance of the reference that it believes will miss
the cache. In response, the hardware pre-loads
the location into cache [21, 7, 10]. Prefetching cre-
ates new copies of address calculations; this either
lengthens an existing live range or creates a new
one. Both effects can cause additional spilling.

In both blocking and prefetching, the compiler analyzes

the program and tries to predict the run-time behavior

of the cache. The compiler then bases its transforma-

tions on those predictions. The analysis and prediction

techniques rely on an implicit assumption that all ac-

cesses are exposed to the analysis; they also tend to

focus on repeated references to arrays. When scalar ref-

erences conflict with the cache behavior planned by the

compiler, they reduce the impact of those transforma-

tions.

Further, McKinley and Temam studied the actual

memory behavior of a suite of scientific programs [19].

They conclude that the data cache is not well used even

for programs with relatively high hit rates [18]. In this

study, nearly twenty-five percent of all memory refer-

ences are scalar values rather than array values. While

McKinley and Temam do not report the percentage of

references that are inserted by the register allocator, we

do know that every spill is a scalar reference.

Other papers have addressed the issue of reducing

the cost of programmer-inserted scalar references [8, 9].

In this paper, we address the issue of reducing the cost of

compiler-inserted scalar references. In some ways, these

compiler-inserted references are more insidious. Since

spills are inserted in the final stages of compilation, the

earlier transformations cannot see them, analyze them,

plan for them, or eliminate them.

Our proposal for a small, fast, ccm would eliminate

much of the unplanned disruption caused by spill code.

The rest of this paper focuses on the software support

needed to utilize the ccm for spilling. We present two

different ways that a compiler-writer could handle ccm

spilling and present experimental evidence to demon-

strate the potential impact of adopting this collabora-

tive hardware/software scheme.

3 Software Implementation

The software support required to use the ccm for spilling

can take several forms. We built two different imple-

mentations. The first is a post-pass ccm allocator that

operates after traditional register allocation. The sec-

ond embeds support for ccm spilling directly into a typ-

ical Chaitin-Briggs allocator [4]. Our experiments show

that the two approaches produce different results.



Calculate the call graph (if necessary) [23, 6]
Conservatively mark subroutines in call-graph cycles as using all of ccm

For each subroutine, s, in a postorder walk over the call graph:
Rewrite spill instructions with symbolic names
Perform liveness analysis over spill locations
Build ssa on the spill locations
Build live-range names
Build the interference graph
Calculate the cost of each live range
Allocate live ranges to ccm locations by coloring
Rewrite spill instructions to spill to ccm

Record the amount of the ccm used by s

Figure 1 Algorithm for post-pass spill promotion

3.1 A post-pass CCM allocator

The post-pass ccm allocator is invoked after the end

of traditional compilation. It takes allocated, scheduled

code as input and produces equivalent code where some

of the loads and stores inserted for spilling have been

redirected into the ccm. It uses the basic algorithms

of the Chaitin-Briggs allocator [4], but operates over a

somewhat different domain.

The ccm allocator focuses on spill locations rather

than data values in registers. When it runs, all deci-

sions about which live ranges stay in registers have been

made. The ccm allocator tries to discover a subset of

the spilled values that can be safely and profitably re-

located to the ccm. Thus, instead of building ssa form

for values as is typical, the ccm allocator builds an ssa

form for the memory locations that hold spills. It uses

addresses as symbolic names and builds the analog of

live-range names from that base set of symbolic names.

In this context, the notion of “liveness” changes. A

spill location, m, is “live” at some point, p, in a program

if there exists an execution path from p to an instruc-

tion that loads m. Thus, m is live at p if it might be

loaded again after p executes. A memory location m is

“defined” when the program stores a value into m. It is

“used” when the program loads a value from m. Using

these new definitions, the ccm allocator computes the

analog of liveness information for spill locations. The

liveness information is used, in turn, to build an in-

terference graph that shows whether or not two spill

locations can share a single memory location (in main

memory or in the ccm).

The ccm allocator does not generate new spills. In-

stead, it redirects some subset of the existing spills into

a size-limited ccm. When it discovers that the spills

for a particular value will not fit into the ccm, it sim-

ply leaves the original spill code intact. This causes the

spills for that value to remain in main memory, produc-

ing a heavyweight spill rather than a ccm spill. The

result is conservative, but safe.

Traditional register allocators are intraprocedural in

nature—that is, they treat individual procedures as in-

dependent entities. When a traditional register alloca-

tor allocates memory to hold a spilled value, it typically

places the spilled value in the current activation record

of the procedure containing the spill. Thus, allocation

decisions for spill locations can be made independently

in different procedures. With the ccm, the situation

changes. Since the ccm is a global resource, shared

across the whole program, the ccm allocator must adopt

some interprocedural conventions on the use of ccm.

Two distinct strategies make sense. First, the allo-

cator can avoid the problem by limiting ccm spilling

to values that are not live across any call site. These

values will never be in the ccm when another proce-

dure is active, so their use of the ccm cannot conflict

with any other procedure. Second, the allocator can

coordinate the use of ccm across procedures to avoid

conflicts. This requires information about the use of

ccm by other procedures in the program; this strategy

makes the most sense in a post-pass ccm allocator that

runs at link-time.

We implemented both strategies. In the absence

of interprocedural information, the post pass alloca-

tor adopts the conservative strategy and only uses ccm

for values that are not live across calls. If interpro-

cedural information is available, it performs allocation

in a bottom-up walk over the call graph. That is, it

processes all routines reachable from procedure p be-

fore considering p. After it processes a procedure q, it

records, for each call to q, the amount of ccm that q

uses. When allocating for p, the allocator can then use

any location for a value that is not live across the call,

but must use a location higher in ccm than q’s high-

water mark for values that are live across the call to q.

To handle cycles in the call graph, corresponding

to recursion, it behaves conservatively. It marks each

procedure in the cycle as using the full ccm.

Figure 1 shows a sketch of the post-pass ccm alloca-

tion algorithm. After building the supporting data-flow

analyses such as liveness and ssa for the spill memory

positions, we build the interference graph. The coloring

algorithm is quite similar to those used for register allo-



Loop until no new spill code is added:
Build SSA Form (include ccm positions)
Build live-range names
Repeat until no more coalescing possible

Build the interference graph (include ccm positions)
Coalesce copies

Calculate spill costs
Simplify
Select
Spill (try to spill into ccm positions)

Figure 2 Modified register-allocation algorithm including spill promotion

cation, except that when the graph contains only nodes

of high degree, we simply remove the cheapest from the

graph, allowing it to remain as a heavyweight spill in-

struction, and proceed.3 Note that, unlike the Chaitin-

Briggs register allocator, the post-pass ccm allocator

only needs a single pass of coloring for each subroutine.

To select a specific location in the ccm, the post-

pass allocator uses the same algorithm that the Chaitin-

Briggs allocator uses to pick a spill location in main

memory. It starts at the beginning of the ccm and tries

successive locations until it finds one that will work—

that is, a location not used by any interference-graph

neighbor of the spilled value. Here, the “beginning” of

this search space is the maximum of the ccm usage in

the set of subroutines across which the spilled value is

live. We manage this issue by creating an array of in-

tegers that corresponds to spill locations; a pass over

the code uses the live sets at subroutine calls to com-

pute the appropriate “beginning” address for each spill

location.

3.2 CCM allocation during spill-code insertion

To incorporate ccm spilling into the “normal” register

allocator, we must make the ccm locations visible in the

allocation process. The allocator assigns an abstract

name to each ccm location and extends its data-flow

analysis to include these ccm names. Thus, ccm lo-

cations appear in the interference graph alongside live

ranges of program values. On the initial pass through

the register allocator, the ccm locations have no inter-

ferences. At the end of the first allocation pass, the act

of inserting spill code that uses ccm locations will cre-

ate spans over which they are live. This, in turn, forces

edges between ccm locations and live ranges into the

interference graph.

The allocator ignores these edges during allocation

and uses them during spill code insertion. When it goes

3Any remaining heavyweight spill instructions should have their
spill locations updated so that they are packed tightly together
and so use the least memory necessary; indeed, the interference
graph already built can be used to compact the memory.

to spill a value, edges between the node and ccm lo-

cations show the allocator which ccm locations cannot

hold the spilled value. This simplifies the search for an

appropriate ccm location.4

Managing name spaces is one of the more difficult

parts of building a Chaitin-Briggs allocator. By compar-

ison to the problems introduced by building ssa, such

as forming live ranges, coalescing live ranges, and col-

oring the result into a small space of register and spill

location names, adding a name space for ccm locations

was relatively easy.

1. Ccm names are introduced after live ranges have
been discovered. The allocator appends the set of
ccm names onto the set of live ranges. This occurs
just before construction of the interference graph.

2. Interference graph construction treats ccm loca-
tion names in the way that it handles register val-
ues. It uses the definition of liveness cited in the
last section: a ccm location becomes live when it
is stored to, and it remains live until the last load
from that position. With that definition, the only
real change to the interference-graph building al-
gorithm is insertion of code which recognizes spills
to the ccm – ccm locations are otherwise treated
exactly as register values.

3. After building the interference graph, ccm loca-
tions are ignored until the spill section of the al-
locator. Each time a value is marked for spilling
under normal register allocation, the allocator as-
signs it to a spill location, usually based on the
value of the stack pointer. We modify this by in-
serting a check to see if the value can be assigned
to the ccm instead of being put on the stack.

4. During spill insertion, the allocator consults the
interference graph to determine whether or not a
suitable ccm location is available. The govern-
ing rule is: a value v cannot be spilled to ccm

position m if an edge from v to m is in the in-
terference graph. As ccm spills are inserted, we
must update the interference graph. Spilling v to

4Our allocator does not color spills to main memory, so the
equivalent edges are not present for main memory spill locations.
If the allocator runs out of spill locations in main memory, it
simply extends the activation record for the current procedure.
Since the CCM is a fixed-size resource, the more expensive ap-
proach is warranted.



Routine Bytes of Spill Memory Routine Bytes of Spill Memory

Name Before After After
Before

Name Before After After
Before

twldrv 12,024 10,376 0.86 saturr 976 520 0.53
fpppp 9,712 2,976 0.31 radb3X 928 456 0.49
deseco 6,536 5,824 0.89 radf3X 912 456 0.50
erhs 4,512 4,136 0.92 smoothX 760 432 0.57

fieldX 3,856 1,416 0.37 advbndX 736 528 0.72
jacld 3,728 3,536 0.95 radb2X 688 376 0.55
rhs 3,544 2,888 0.81 ddeflu 688 496 0.72

parmvrX 2,656 2,472 0.93 radf2X 680 368 0.54
jacu 2,368 2,328 0.98 vslv1pX 640 368 0.57

radbgX 2,296 976 0.43 vslv1xX 488 344 0.70
radfgX 2,112 744 0.35 efill 480 472 0.98
supp 1,584 824 0.52 colbur 432 416 0.96

radb5X 1,472 704 0.48 svd 408 304 0.75
radf5X 1,456 696 0.48 tomcatv 376 368 0.98
radf4X 1,328 640 0.48 dyeh 360 184 0.51
radb4X 1,320 648 0.49 getbX 288 256 0.89

subb 1,312 672 0.51 putbX 272 240 0.88
parmovX 1,168 1,024 0.88 parmveX 264 200 0.76

cosqf1X 232 224 0.97
TOTAL 73,592 49,888 0.68

Table 1 Spill Memory Requirements and Compaction

ccm location m requires an edge from m to each
live-range neighbor of v in the interference graph.5

The expanded spilling algorithm is shown in Figure 2.

This is the algorithm described by Briggs [4]; we em-

bolden each step which requires modification.

4 Experimental Results

To evaluate these ccm allocation techniques, we imple-

mented three distinct algorithms: the post-pass ccm

allocator in both intraprocedural and interprocedural

versions, and a modification of the Chaitin-Briggs allo-

cator that directly generates ccm spills. We also built

a memory compaction routine that colors spill memory

to make non-interfering spilled values occupy the same

memory location when possible.

We ran these algorithms on a suite of 122 routines,

drawn from sources that include code from Forsythe et

al.’s book on numerical methods [11], the SPEC ’89

benchmarks [24], and the SPEC ’95 benchmarks [25].

Out of this suite, 59 routines required some amount of

spill code, and it is on these 59 routines that the follow-

ing numbers were generated. All the routines were sub-

jected to extensive scalar optimization, including global

value numbering, global constant propagation, global

dead-code elimination, partial redundancy elimination,

and peephole optimization. Further, the routines in

5Alternatively, the allocator can keep a side data structure of
the CCM spills inserted in the current round of spilling. Then,
the rule becomes, v cannot be spilled to m if 〈v,m〉 is in the
interference graph, or there is an edge 〈v, p〉 in the graph and p
has already been spilled to m in this round of spilling.

the wave benchmark were subjected to loop transfor-

mations to enable prefetching analysis; these transfor-

mations have the effect of greatly increasing the register

pressure, and affected routines have an ‘X‘ suffix added

to the name.

The test codes in our suite are all Fortran-derived

iloc, the intermediate code of our compiler [5]. iloc

is a low level, three-address intermediate representation

similar to assembly code. The back-end is a transla-

tor from iloc to heavily instrumented C code, which

we then compile with Sun’s cc compiler. This back-end

design allows us to modify the parameters of the ab-

stract target machine while instrumenting the code to

give us valuable insights into the execution of the code.

We compiled these codes to an extremely simple ma-

chine model. It has 64 registers (32 general-purpose reg-

isters and 32 floating-point registers). It issues a single

instruction per cycle. We assumed that memory opera-

tions cost two cycles and all other instructions (includ-

ing accesses to the ccm) execute in a single cycle. With

the exception of the single-issue rule, this model roughly

approximates the simpler dsp chips that we have been

investigating. The cycle counts used in this section come

from counters in the instrumented C code.

4.1 Spill memory size

The first question that we wanted to answer was ”how

much ccm is necessary?” To discover the answer, we ran

the standard Chaitin-Briggs register allocator, followed

by a coloring-based memory compaction scheme. Of the

59 routines that require spill code, coloring spill mem-

ory reduced the memory requirements of thirty-seven



0.75
0.80
0.85
0.90
0.95
1.00

so
lv
e

sv
d

do
du
c

fp
pp
p

ap
pl
u

w
av
e5

0.75
0.80
0.85
0.90
0.95
1.00

so
lv
e

sv
d

do
du
c

fp
pp
p

ap
pl
u

w
av
e5

Running Time Time Spent in Memory Operations

Figure 3 Program Performance with a 512-byte ccm

Routine Without Post-Pass Post-Pass Integrated
Name CCM w/ Call Graph

decomp 825(252) 0.97(0.90) 0.96(0.88) 0.97(0.90)
svd 5,375(1,740) 0.98(0.93) 0.98(0.93) 0.98(0.93)

saturr 26,432(17,360) 0.90(0.84) 0.85(0.77) 0.90(0.84)
subb 959,280(546,000) 0.92(0.86) 0.84(0.72) 0.84(0.72)
supp 1,288,056(744,464) 0.93(0.88) 0.86(0.76) 0.86(0.77)

colbur 321,659(135,408) 0.99(0.98) 0.99(0.98) 0.99(0.98)
debflu 328,160(153,888) 1.00(1.00) 1.00(0.99) 1.00(1.00)
bilan 194,218(86,790) 1.00(0.99) 1.00(0.99) 1.00(0.99)
ddeflu 579,443(254,760) 0.99(0.98) 0.92(0.82) 0.99(0.98)
deseco 970,072(470,140) 0.97(0.94) 0.96(0.92) 0.97(0.94)
pastem 223,961(53,308) 1.00(0.99) 1.00(0.99) 1.00(0.99)

efill 4,705,095(2,570,138) 0.78(0.59) 0.78(0.59) 0.78(0.59)
fpppp 57,782,160(37,234,728) 0.95(0.92) 0.89(0.83) 0.91(0.86)
twldrv 111,128,482(60,658,016) 0.93(0.88) 0.91(0.83) 0.91(0.83)
setiv 236,731(75,692) 0.99(0.96) 0.99(0.96) 0.99(0.96)
erhs 2,873,175(1,223,036) 0.99(0.98) 0.99(0.98) 0.99(0.98)
rhs 78,222,321(38,056,812) 0.98(0.97) 0.98(0.97) 0.98(0.97)

jacld 58,617,550(34,801,900) 0.95(0.92) 0.90(0.83) 0.96(0.94)
blts 108,885,800(45,403,600) 0.99(0.98) 0.99(0.98) 1.00(0.98)
jacu 40,553,050(23,788,900) 0.93(0.88) 0.86(0.76) 0.93(0.88)
buts 109,578,600(46,621,300) 1.00(0.99) 1.00(0.99) 1.00(0.99)

denptX 5,940,008(2,070,008) 0.98(0.96) 0.98(0.96) 0.98(0.96)
parmvrX 261,706,085(152,279,892) 0.99(0.99) 0.99(0.99) 0.99(0.99)
smoothX 33,683,283(21,466,402) 0.97(0.95) 0.97(0.95) 0.97(0.95)
rffti1X 712(188) 0.97(0.87) 0.97(0.87) 0.97(0.87)
radf5X 3,803,650(2,159,000) 0.99(0.98) 0.86(0.76) 0.86(0.76)
radf4X 5,718,175(3,613,150) 0.84(0.74) 0.79(0.67) 0.79(0.67)
radf2X 3,362,325(2,000,250) 0.85(0.74) 0.85(0.74) 0.85(0.74)
vslv1pX 21,803,385(15,174,540) 0.97(0.96) 0.97(0.96) 0.97(0.96)
radb2X 3,406,775(2,038,350) 0.84(0.74) 0.84(0.74) 0.85(0.74)
radb4X 5,689,600(3,632,200) 0.84(0.75) 0.79(0.67) 0.79(0.67)
radb5X 3,667,125(1,905,000) 0.99(0.98) 0.89(0.80) 0.89(0.80)
slv2xyX 49,928(35,492) 1.00(1.00) 0.99(0.99) 1.00(1.00)
fieldX 12,172,573(6,821,302) 0.93(0.88) 0.93(0.87) 0.93(0.87)
initX 8,877,019(3,071,802) 1.00(1.00) 0.99(0.98) 1.00(1.00)

Table 2 Speedups in Dynamic cycle counts with 512-byte CCM

routines. Table 1 shows the results for these thirty-

seven routines. Each entry shows the number of bytes of

spill memory required before and after compaction and

the ratio after
before

. Of the 22 routines for which no com-

paction was possible, only four of them, paroi, inisla,

energyX, and pdiagX, required more than 1000 bytes of

spill memory.

4.2 Execution-time improvements

Based on our measurements of spill memory require-

ments, we chose a one kilobyte ccm as the target for our

experiments. This size accommodates three quarters of

the subroutines. We also ran the experiments with half

that amount of memory, to see if key spill promotions

would be responsible for the majority of the speedup.

This gives us two data points. First, it shows the rela-



0.75
0.80
0.85
0.90
0.95
1.00

so
lv
e

sv
d

do
du
c

fp
pp
p

ap
pl
u

w
av
e5

0.75
0.80
0.85
0.90
0.95
1.00

so
lv
e

sv
d

do
du
c

fp
pp
p

ap
pl
u

w
av
e5

Running Time Time Spent in Memory Operations

Figure 4 Program Performance with a 1024-byte ccm

Routine Without Post-Pass Post-Pass Integrated
Name CCM w/ Call Graph

subb 959,280(546,000) 0.84(0.72) 0.80(0.65) 0.80(0.65)
supp 1,288,056(744,464) 0.86(0.77) 0.80(0.66) 0.80(0.66)

prophy 378,156(209,264) 1.00(1.00) 0.90(0.81) 1.00(1.00)
fpppp 57,782,160(37,234,728) 0.92(0.87) 0.82(0.72) 0.86(0.79)
twldrv 111,128,482(60,658,016) 0.91(0.83) 0.91(0.83) 0.91(0.83)
jacld 58,617,550(34,801,900) 0.91(0.85) 0.82(0.69) 0.87(0.78)
jacu 40,553,050(23,788,900) 0.86(0.76) 0.82(0.69) 0.82(0.69)

radf5X 3,803,650(2,159,000) 0.86(0.76) 0.86(0.76) 0.86(0.76)
radf4X 5,718,175(3,613,150) 0.79(0.67) 0.79(0.67) 0.79(0.67)
fieldX 12,172,573(6,821,302) 0.93(0.87) 0.93(0.87) 0.93(0.87)
initX 8,877,019(3,071,802) 1.00(1.00) 0.99(0.98) 1.00(1.00)

Table 3 Changes in speedups in dynamic cycle counts with 1024-byte ccm compared to a 512-byte ccm

tive speedup and the cost/benefit of having more ccm.

Second, it shows that even with a ccm of 512-bytes,

significant speedups can be achieved.

The results of running these codes on our simple

abstract machine are shown in Tables 2 and 3. The

first column shows the dynamic execution costs, in cy-

cles, of each routine. The parenthesized number indi-

cates the number of cycles used for memory operations.

The second column shows the relative number of cycles

executed by the code after running the post-pass allo-

cator with no interprocedural information, and, again,

the number in parentheses is the relative reduction in

cycles spent on memory operations. The third column

shows the relative reduction of cycles spent for codes

run through the post-pass allocator with interprocedu-

ral information. The final column shows the relative re-

duction of cycles used by codes run through the register

allocator with ccm allocation built into the spill-code

generator. To emphasize that the change in dynamic

execution did not change very much when we increased

the ccm size from 512 bytes to 1024 bytes, Table 3 only

reports on routines which sped up as a result of using a

larger ccm.

Figures 3 and 4 show total running times for the six

programs (out of 13) which showed improvement. Each

program has three bars associated with it, correspond-

ing to the three different ccm allocation methods, in-

traprocedural post-pass, interprocedural post-pass, and

the integrated allocator. The values shown are the dy-

namic execution times relative to running the programs

without ccm.

Table refaverages table shows the weighted average

reduction in both total cycles executed and cycles spent

on memory operations. Clearly, having interprocedural

information offers a small improvement to the results,

and we might expect a register allocator with such anal-

ysis at its disposal to perform even better than the three

algorithms presented herein.

4.3 More complex execution models

Of course, our simple execution model does not cap-

ture all of the complex behavior of a general-purpose

microprocessor. In particular, a more complex memory

hierarchy will produce different results. Some changes

in the memory hierarchy should achieve effects similar

to ccm, while others might make ccm more attractive.

Better Cache Using a bigger or more effective cache
should decrease the impact of spills on cache be-
havior. It should also make spills through the
cache faster, on average. However, it leaves all
the spill traffic on the pathway to main memory.
We expect ccm would be less costly since it has a
much simpler interface.



Percentage Reduction in
Total Cycles Executed Cycles Spent In Memory Operations

Algorithm 512-byte ccm 1024-byte ccm 512-byte ccm 1024-byte ccm

Post-pass 3 4 10 13
Post-pass w/ Call Graph 4 6 14 17

Integrated 3 5 11 15

Table 4 Weighted-average reduction in cycles executed for each algorithm

Write Buffer Adding a write buffer should alleviate
the cache effects of stores generated by spilling.
It does little or nothing for loads generated by
spilling. Most spilled values are re-loaded; in fact
the detailed numbers in places like Briggs’ thesis
show that spilling causes many more loads than
stores [4].

Victim Cache Adding a victim cache would proba-
bly alleviate the ill effects of spill-induced cache
replacements. Using a victim cache rather than
ccm leaves the spill traffic on the pathway to main
memory. Again, the implementation of a victim
cache might be more expensive than a small ccm.

Prefetching The impact of advisory prefetch is hard to
predict. Like ccm, it requires modifications in the
compiler to generate the appropriate instructions.
If done successfully, prefetching should lower the
average cache miss penalty for access to variables.
Unfortunately, spill code is added much later in
compilation; thus, the deleterious effects of spilling
might actually be more pronounced with prefetch-
ing. This might make ccm look more attractive.

Finally, we declined to consider the effects of schedul-

ing, which can simultaneously hide the memory laten-

cies and cause added spilling due to increased register

pressure.

5 Summary and Conclusions

In this paper, we proposed the creation of a small, fast,

on-chip memory that the compiler could use for scalar

memory operations inserted by the register allocator

and showed the minor software enhancements necessary

to utilize this memory space. Our proposal offers the

opportunity to move scalar spill operations out of the

address space containing both cache and main memory.

This eliminates cache pollution introduced by spill in-

structions and reduces total traffic through the cache.

The hardware requirements for our ccm are simple;

the amount of ccm required for real programs is quite

modest. Indeed, using only a small amount of ccm

(512 to 1024 bytes) produced significant decreases in the

run-time cost of register spilling. Because the amount

of memory per program is so small, it might be worth

considering implementing future general-purpose micro-

processors with a ccm with 16kb to 32kb of memory

and adding a simple mechanism for context-switching it

without copying it back to main memory.

We showed how to incorporate the necessary com-

piler support in two ways: as a post-pass ccm allocator

that could run at the end of compilation or at link-time,

or as an integrated part of a Chaitin-Briggs allocator.

This idea may find immediate application on some of

the current generation of dsp chips. On dsp chips with

a small local memory, reserving the bottom 512 to 1024

bytes of that memory would allow the compiler to apply

the techniques presented here. Many of these chips are

used in applications that run but a single process; in

that environment, context switching is not an issue.

Acknowledgments

This work was supported by Darpa through Usafrl

Contract F30602-97-2-298, and by the Texas Advanced

Technology Program under grant number 003604-015.

This work would not have been possible without much

help over the years from the group of people who have

worked on the Massively Scalar Compiler Project. We

owe a particular debt of thanks to Kathryn McKinley,

John Bennett, Preston Briggs, John Pieper, Linda Tor-

czon, Parthasarathy Ranganathan, and the anonymous

reviewers for their help and their advice.

References

[1] Anonymous. Performance of pentium pro and pen-
tium ii processor/cache combinations. Technical
report, ECG Technology Communications Group,
Compaq Computer Corporation, May 1997.

[2] Bary R. Beck, David W.L. Yen, and Thomas L.
Anderson. The cydra 5 minisupercomputer: Ar-
chitecture and implementation. The Journal of Su-
percomputing, 7, 1993.

[3] Peter Bergner, Peter Dahl, David Engebretsen,
and Matthew O’Keefe. Spill code minimization
via interference region spilling. SIGPLAN Notices,
32(6):287–295, June 1997. Proceedings of the ACM
SIGPLAN ’97 Conference on Programming Lan-
guage Design and Implementation.

[4] Preston Briggs. Register Allocation via Graph Col-
oring. PhD thesis, Rice University, April 1992.



[5] Preston Briggs. The massively scalar compiler
project. Technical report, Rice University, July
1994. Preliminary version available via anonymous
ftp.

[6] David Callahan, Alan Carle, Mary W. Hall, and
Ken Kennedy. Constructing the procedure call
multigraph. IEEE Transactions on Software En-
gineering, 16(4), April 1990.

[7] David Callahan, Ken Kennedy, and Allan Porter-
field. Software prefetching. In Proceedings of the
Fourth International Conference on Architectural
Support for Programming Languages and Operat-
ing Systems, Santa Clara, California, 1991.

[8] Steve Carr, Kathryn S. McKinley, and Chau-Wen
Tseng. Compiler optimizations for improving data
locality. In Proceedings of the Sixth International
Conference on Architectural Support for Program-
ming Languages and Operating Systems, San Jose,
California, 1994.

[9] Fred Chow, Sun Chan, Robert Kennedy, Shin-Ming
Liu, Raymond Lo, and Peng Tu. A new algo-
rithm for partial redundancy elimination based on
ssa form. SIGPLAN Notices, 32(6):273–286, June
1997. Proceedings of the ACM SIGPLAN ’97 Con-
ference on Programming Language Design and Im-
plementation.

[10] Keith Cooper, Ken Kennedy, and Nathaniel McIn-
tosh. Cross-loop reuse analysis and its application
to cache optimization. In Proceedings of the Ninth
Workshop on Languages and Compilers for Parallel
Computing, San Jose, California, 1996.

[11] George E. Forsythe, Michael A. Malcolm, and
Cleve B. Moler. Computer Methods for Mathemati-
cal Computations. Prentice-Hall, Englewood Cliffs,
New Jersey, 1977.

[12] Lal George and Andrew W. Appel. Iterated regis-
ter coalescing. ACM Transactions on Programming
Languages and Systems, 18(3):300–324, May 1996.

[13] John Hennessy and David Patterson. Computer
Architecture: A Quantitative Approach. Morgan
Kaufmann Publishers, Inc., second edition, 1990.

[14] Cristina Hristea, Daniel Lenoski, and John
Keen. Measuring memory hierarchy performance of
cache-coherent multiprocessors using micro bench-
marks. In ACM, editor, SC’97: High Performance
Networking and Computing: Proceedings of the
1997 ACM/IEEE SC97 Conference: November 15–
21, 1997, San Jose, California, USA., pages ??–??,
New York, NY 10036, USA and 1109 Spring Street,
Suite 300, Silver Spring, MD 20910, USA, 1997.
ACM Press and IEEE Computer Society Press.

[15] Intel Corporation. PentiumTM II Processor Devel-
oper’s Manual, 1997.

[16] John Lu and Keith Cooper. Register promotion
in c programs. SIGPLAN Notices, 32(6):308–319,
June 1997. Proceedings of the ACM SIGPLAN ’97
Conference on Programming Language Design and
Implementation.

[17] Sally A. McKee. Compiling for efficient mem-
ory utilization. In Workshop on Interaction Be-
tween Compilers and Computer Architectures, Sec-
ond IEEE Symposium on High Performance Com-
puter Architecture (HPCA-2), San Jose, California,
January 1996.

[18] Kathryn S. McKinley. Personal communication.
Email message, July 1998.

[19] Kathryn S. McKinley and Olivier Temam. A quan-
titative analysis of loop nest locality. In Proceed-
ings of the Seventh International Conference on
Architectural Support for Programming Languages
and Operating Systems, San Jose, California, 1996.

[20] Larry Meadows, Steven Nakamoto, and Vincent
Schuster. A vectorizing, software pipelining com-
piler for LIW and superscalar architecture. In Pro-
ceedings of RISC ’92, San Jose, CA, February 1992.

[21] Todd C. Mowry, Monica S. Lam, and Anoop
Gupta. Design and evaluation of a compiler algo-
rithm for prefetching. In Proceedings of the Fifth
International Conference on Architectural Support
for Programming Languages and Operating Sys-
tems, Boston, Massachusetts, 1992.

[22] Vijay S. Pai, Parthasarathy Ranganathan,
Sarita V. Adve, and Tracy Harton. An evaluation
of memory consistency models for shared-memory
systems with ilp processors. In Proceedings of the
Seventh International Conference on Architectural
Support for Programming Languages and Operat-
ing Systems, San Jose, California, 1996.

[23] Barbara G. Ryder. Constructing the call graph of
a program. IEEE Transactions on Software Engi-
neering, 5(3):217–226, May 1979.

[24] SPEC release 1.2, September 1989. Standards Per-
formance Evaluation Corporation.

[25] SPEC release 1.10, September 1995. Standards
Performance Evaluation Corporation.

[26] Michael Upton, Thomas Huff, Trevor Mudge, and
Richard Brown. Resource allocation in a high clock
rate microprocessor. In Proceedings of the Sixth
International Conference on Architectural Support
for Programming Languages and Operating Sys-
tems, San Jose, California, 1994.

[27] Michael E. Wolf and Monica S. Lam. A data lo-
cality optimizing algorithm. SIGPLAN Notices,
26(6):30–44, June 1991. Proceedings of the ACM
SIGPLAN ’91 Conference on Programming Lan-
guage Design and Implementation.

[28] Michael Wolfe. More iteration space tiling. In
Proceedings of Supercomputing ’89, pages 655–664,
Reno, Nevada, November 1989.

[29] Wm. A. Wulf and Sally A. McKee. Hitting the
memory wall: implications of the obvious. Com-
puter Architecture News, 23(1), March 1995.


