
Operator Strength Reduction

KEITH D. COOPER

Rice University

L. TAYLOR SIMPSON

BOPS, Incorporated

and

CHRISTOPHER A. VICK

Sun Microsystems, Incorporated

Operator strength reduction is a technique that improves compiler-generated code by reformulat-
ing certain costly computations in terms of less expensive ones. A common case arises in array
addressing expressions used in loops. The compiler can replace the sequence of multiplies gener-
ated by a direct translation of the address expression with an equivalent sequence of additions.
When combined with linear function test replacement, strength reduction can speed up the execu-
tion of loops containing array references. The improvement comes from two sources: a reduction
in the number of operations needed to implement the loop and the use of less costly operations.
This paper presents a new algorithm for operator strength reduction, called osr. Osr improves

upon an earlier algorithm due to Allen, Cocke, and Kennedy [Allen et al. 1981]. Osr operates on
the static single assignment (ssa) form of a procedure [Cytron et al. 1991]. By taking advantage
of the properties of ssa form, we have derived an algorithm that is simple to understand, quick
to implement, and, in practice, fast to run. Its asymptotic complexity is, in the worst case, the
same as the Allen, Cocke, and Kennedy algorithm (ack). Osr achieves optimization results that
are equivalent to those obtained with the ack algorithm. Osr has been implemented in several
research and production compilers.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—compilers,
optimization

General Terms: Algorithms, Languages

Additional Key Words and Phrases: loops, strength reduction, static single assignment form

1. INTRODUCTION

Operator strength reduction is a transformation that a compiler uses to replace
costly (strong) instructions with cheaper (weaker) ones. A weak form of strength
reduction replaces 2 × x with either x + x or x � 1. The more powerful form
of strength reduction replaces an iterated series of strong computations with an
equivalent series of weaker computations. The classic example replaces certain
repeated multiplications inside a loop with repeated additions. This case arises
routinely in loop nests that manipulate arrays. The resulting additions are usually

Author’s address: K.D. Cooper, 6100 Main Street, MS 132, Houston, TX, USA 77005.
This work was supported by Darpa, by IBM Corporation, and by Texas Instruments, Inc.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year, Pages 1–22.



2 · K.D. Cooper, L.T. Simpson, and C.A. Vick

sum = 0.0
do i = 1, 100

sum = sum + a(i)
enddo

sum← 0.0
i← 1

L: t1← i− 1
t2← t1 × 4
t3← t2 + a
t4← load t3
sum← sum+ t4
i← i+ 1
if (i ≤ 100) goto L

sum0 ← 0.0
i0 ← 1

L: sum1 ← φ(sum0, sum2)
i1 ← φ(i0, i2)
t10 ← i1 − 1
t20 ← t10 × 4
t30 ← t20 + a
t40 ← load t30
sum2 ← sum1 + t40
i2 ← i1 + 1
if (i2 ≤ 100) goto L

Source code Intermediate code SSA form

Fig. 1. Code for a simple loop

cheaper than the multiplications that they replace. In some cases, the additions
can be folded into the target computer’s addressing modes. Many operations other
than multiplication can also be reduced in this manner. Allen, Cocke, and Kennedy
provide a detailed catalog of such reductions [Allen et al. 1981].
This paper presents a new algorithm for performing strength reduction, called

osr, that improves upon the classic algorithm by Allen, Cocke, and Kennedy
(ack) [Allen et al. 1981]. By assuming some specific prior optimizations and op-
erating on the ssa form of the procedure [Cytron et al. 1991], we have derived a
method that is simple to understand and quick to implement. Osr achieves re-
sults that are, essentially, equivalent to those obtained with ack, while avoiding
some shortcomings of ack, such as the need to apply ack multiple times to reduce
some of the induction variables created by other reductions. Osr’s asymptotic
complexity is, in the worst case, the same as the ack algorithm.
Opportunities for strength reduction arise routinely from details that the compiler

inserts to implement source-level abstractions. To see this, consider the simple
Fortran code fragment shown in Figure 1. The left column shows source code; the
middle column shows the same loop in a low-level intermediate code. Notice the
four instruction sequence that begins at the label L. The compiler inserted this code
(with its multiply) as the expansion of a(i). The right column shows the code in
pruned SSA form [Choi et al. 1991].
The left column of Figure 2 shows the code that results from applying osr,

followed by dead code elimination. The compiler created a new variable, t5, to
hold the value of the expression (i− 1)× 4 + a. Its value is computed directly, by
incrementing it with the constant 4, rather than recomputing it on each iteration
as a function of i. Strength reduction automates this transformation.
Of course, further improvement may be possible. For example, the only remaining

use for i2 is in the test that determines whether to terminate the loop or to continue
for another iteration. The compiler can reformulate the tests to use t52, making the
instructions that define i useless (or “dead”). This transformation is called linear
function test replacement (lftr). Applying this transformation, followed by dead
code elimination, produces the code that appears in the right column of Figure 2.
Strength reduction has been an important transformation for two principal rea-

sons. First, multiplying integers has usually taken longer than adding them. This
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



Operator Strength Reduction · 3

sum0 ← 0.0
i0 ← 1
t50 ← a

L: sum1 ← φ(sum0, sum2)
i1 ← φ(i0, i2)
t51 ← φ(t50, t52)
t40 ← load t51
sum2 ← sum1 + t40
i2 ← i1 + 1
t52 ← t51 + 4
if (i2 ≤ 100) goto L

sum0 ← 0.0
t50 ← a

L: sum1 ← φ(sum0, sum2)
t51 ← φ(t50, t52)
t40 ← load t51
sum2 ← sum1 + t40
t52 ← t51 + 4
if (t52 ≤ 396 + a) goto L

After strength reduction After linear function test replacement

Fig. 2. Same loop after strength reduction

made strength reduction profitable; the amount of improvement varied with the
relative costs of addition and multiplication. Second, strength reduction decreased
the “overhead” introduced by translation from a higher-level language down to as-
sembly code. Opportunities for this transformation are frequently introduced by
the compiler as part of address translation for array elements. In part, strength
reduction’s popularity stems from the fact that these computations are plentiful,
stylized, and, in a very real sense, outside the programmer’s concern.1

In the future, we may see microprocessors where an integer multiply and an
integer add both take a single cycle. On such a machine, strength reduction will
still have a role to play.

— Strength reduction often decreases the total number of operations in a loop.
Smaller operation counts usually lead to faster code. The shorter sequences used
to generate addresses may lead to tighter schedules, as well.
— In combination with algebraic reassociation [Cocke and Markstein 1980a; San-

thanam 1992; Briggs and Cooper 1994], strength reduction can reduce the number
of induction variables used in a loop, reducing the number of update operations
required at the loop’s end and reducing demand for registers.
— On some machines, autoincrement or autodecrement features adjust a regis-

ter’s value as a side effect of a memory operation; strength reduction creates code
that is shaped in a way to take advantage of this feature. With the multiply in
place, the opportunity for autoincrement or autodecrement is hidden.
— Strength reduction decreases the number of multiplies and increases the num-

ber of additions. If more of the target machine’s functional units can add than can
multiply, this effect may give the scheduler additional freedom.

Thus, we expect that strength reduction will remain a useful transformation, even
if the cost of addition and multiplication become identical.

1For dramatic evidence that the overhead computations introduced in translation are significant,
look at the numbers given by Scarborough and Kolsky in their report on the Fortran H Extended
compiler [Scarborough and Kolsky 1980]. Almost all of their improvements come from eliminating
integer computations, not floating-point computations. Most of the eliminated instructions are
introduced by translation to support the abstractions in the source-code program.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



4 · K.D. Cooper, L.T. Simpson, and C.A. Vick

The next section summarizes prior work on strength reduction, and places osr

in that context. We follow that section with a deeper introduction to strength re-
duction, given through a more detailed description of the ack algorithm. Section 4
presents the osr algorithm and its implementation. Section 5 shows how to fit
linear function test replacement into our scheme.

2. PREVIOUS WORK

Reduction of operator strength has a long history in the literature. The first pub-
lished discussions appear around 1969, in papers by Allen [Allen 1969] and Cocke
and Schwartz [Cocke and Schwartz 1970]. One family of algorithms grew out of
the ideas in these seminal papers. A second family of algorithms grew out of the
early work on data-flow based optimization, typified by Morel and Renvoise’s clas-
sic paper on partial redundancy elimination [Morel and Renvoise 1979]. A third
body of work generalizes strength reduction to more complex domains than integer
arithmetic. Finally, several authors have published papers that describe the imple-
mentations of the simpler, weaker form of strength reduction that applies knowledge
about the values of operands to reduce an isolated instruction.

Allen-Cocke-Kennedy and its Descendants. A family of techniques has evolved
from the early work described by Allen [Allen 1969] and Cocke and Schwartz [Cocke
and Schwartz 1970]. This includes work by Kennedy [Kennedy 1973], Cocke and
Kennedy [Cocke and Kennedy 1977], and Allen, Cocke, and Kennedy [Allen et al.
1981]. These algorithms transform a single loop at a time. They work outward
through each loop nest, making passes to build use-definition chains, to find loops
and insert prolog blocks, to find loop-invariant values (called region constants) and
induction variables. Finally, they perform the actual reduction and instruction re-
placement in another pass. The ack algorithm must be repeated to handle some
second order effects. Lftr requires a separate pass over each loop. Cocke and
Markstein showed a transformation for reducing certain division and modulo oper-
ations [Cocke and Markstein 1980b]. Chase extended the ack algorithm to reduce
more additions [Chase 1988]. Markstein, Markstein, and Zadeck described a sophis-
ticated algorithm that combines strength reduction with reassociation [Markstein
et al. 1994]. Sites looked at the related issue of minimizing the number of loop
induction variables [Sites 1979].

Data-flow Methods. A second family of techniques has grown up around the liter-
ature of data-flow analysis [Dhamdhere 1979; Issac and Dhamdhere 1980; Dhamd-
here 1989; Knoop et al. 1993]. These methods incorporate the strengths of data-flow
based optimization, particularly the careful code-placement techniques developed
for partial redundancy elimination [Morel and Renvoise 1979]. The data-flow meth-
ods for strength reduction require none of the control-flow analysis needed by ack

and its descendants. This forces them to use a much simpler notion of region
constant – they detect only simple literal constants. Thus, they miss some op-
portunities that the ack-style methods discover, such as reducing i× j where i is
the induction variable of the innermost loop containing the instruction and j is an
induction variable of an outer loop. These algorithms must be repeated to han-
dle second-order effects. Their placement techniques avoid lengthening execution
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



Operator Strength Reduction · 5

paths; algorithms in the ack family, including our own, cannot make the same
claim.

Generalizations of Strength Reduction. A number of authors have looked at gen-
eralizations of strength reduction that work on set operations as well as classical
integer arithmetic. Early first looked at this problem [Early 1974]; he called the
transformation “iterator inversion.” Fong builds on that work to generalize the
discovery of induction variables [Fong and Ullman 1976] and to reduce set formers
in setl [Fong 1979]. Paige generalized Early’s work to create algorithms for “for-
mal differentiation” [Paige and Schwartz 1977; Paige and Koenig 1982]. This, in
turn, led to work on multiset discrimination as a way of avoiding the worst case be-
havior of hashing in actual implementations [Cai and Paige 1991]. Liu and Stoller
have worked on generalizations of strength reduction that incrementalize certain
loop-based array computations [Liu and Stoller 1998].

Weak Strength Reduction. This simpler form of the transformation, where an op-
eration such as 2×x is replaced with either x+x or x� 1, is widely used. Bernstein
presents an algorithm used in the ibm pl.8 compiler that replaces integer multiply
operations with a known constant argument by a sequence of add, subtract, and
multiply operations [Bernstein 1986]. Briggs distributed a more complete imple-
mentation of these ideas via the Internet [Briggs and Harvey 1994]; it appears to
have been used by others [Wu 1995]. Granlund implemented a similar technique
in the Gnu C compiler [Granlund 1995]; he also looked at replacing division with
multiplication [Granlund and Montgomery 1994].

Our Algorithm. Osr properly belongs in the ack family of algorithms. It in-
herits the strengths of ack, including the enlarged notions of region constant and
induction variable. At the same time, it capitalizes on the properties of ssa to sim-
plify both the explanation and the implementation. The result is a small, robust
technique that is easy to implement and to maintain.

3. THE ALLEN-COCKE-KENNEDY ALGORITHM

Because osr is intended as a replacement for the ack algorithm, we begin by
describing that algorithm. This allows us to make detailed comparisons when we
present osr. It also serves as a detailed introduction to the techniques and problems
of strength reduction.

Ack focuses on loops, or strongly connected regions (scrs), in a procedure’s
control-flow graph (cfg) For the present purpose, an scr is a set of basic blocks
with the property that a path exists between any two blocks in the scr. The
compiler discovers scrs using an appropriate technique, such as Tarjan’s flow-graph
reducibility algorithm [Tarjan 1974] or Havlak’s extensions to it [Havlak 1997]. Ack

requires that each scr have a unique landing pad—a prolog block that is always
executed prior to entry into the scr. The landing pad provides a convenient place
to insert code that must execute before the loop. If landing pads do not exist, ack

inserts them. Ack processes the scrs in a loop nest “inside out”, starting from the
most deeply nested scr and working outward.
Conceptually, the first step in performing strength reduction is to identify opera-

tions that can be reduced. Ack searches an scr to find instructions whose operands
are either region constants or induction variables with respect to some scr S.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



6 · K.D. Cooper, L.T. Simpson, and C.A. Vick

— A variable v is a region constant with respect to S if v’s value does not change
inside S. We denote the set of region constants for S as RC(S).
— A variable i is an induction variable with respect to S if all every definition

of i inside S is one of: the sum of an induction variable and a region constant, an
induction variable minus a region constant, or a copy operation where the source
is an induction variable. We denote the set of induction variables for S as IV(S).
These two sets,RC(S) and IV(S) are the key to determining whether an instruction
is a candidate for strength reduction. Ack assumes that all the scrs have been
identified and their RC sets computed prior to its start. In practice, each of these
requires a separate pass over the code.
We present ack as if it operated on a single scr. The code, shown in Figure 3,

reflects this decision. The main routine, ACK, takes two arguments: a strongly
connected region, SCR, and a set of region constants, RC. Its first step is to compute
IV(SCR). As an initial approximation, it uses the set of all names defined by one of
the appropriate instructions (+, −, or copy). To refine this set, it iterates through
the scr a second time and removes any name that is defined by an operation other
than +, −, or copy, or that has operands that are not in IV(SCR) or RC(SCR).
The next step is to initialize a worklist of instructions that are candidates for

reduction. The algorithm instantiates the worklist in a set called cands. To sim-
plify our discussion, we will restrict our attention to candidate instructions in the
following forms:

x← i× j x← j × i x← i + j x← j + i

where i ∈ IV(SCR) and j ∈ RC(SCR). Allen, Cocke, and Kennedy describe a
variety of other reducible candidate instructions [Allen et al. 1981]. These are
straightforward extensions to the algorithm.
Once the initial round of candidate instructions has been found, the algorithm

repeatedly removes an instruction from the cands set and reduces it. For each can-
didate instruction, ack creates a temporary variable to hold the value that it com-
putes. It uses a hash table to avoid creating redundant temporary names [Kennedy
1973]. In Figure 3, the function getName implements the hash table. A call to
getName consumes an expression (an opcode and two operands) and produces a
temporary name. The first time that getName sees an expression, it generates
a temporary name. Subsequent calls with the same arguments return the name
already generated for the expression.
The candidate instruction is replaced with a copy operation from the temporary

name associated with the expression on the candidate’s right-hand side. Next, the
algorithm must insert instructions to compute the value of that temporary. These
must be placed immediately before each instruction that defines either the induc-
tion variable or the region constant. To find these insertion points, the algorithm
follows the use-definition chains for each of the operands [Kennedy 1978]. It inserts
the instructions needed to initialize or update the reduced temporary’s value, as
appropriate. To determine the specific instructions that it inserts, the algorithm
examines both the definition site and the current candidate instruction. Some
of these new instructions may themselves be candidates for reduction. These are
added to the worklist. Some of the instructions placed on the worklist in this way
are subsequently deleted when they are removed from the worklist and processed.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



Operator Strength Reduction · 7

ACK(SCR, RC)
IV← ∅
for each instruction “x← y op z” in SCR

if op ∈ {+,−,copy}
IV← IV ∪ {x}

changed ← TRUE

while changed do
changed← FALSE

for each instruction “x← y op z” in SCR with x ∈ IV
if y 
∈ IV ∪RC or z 
∈ IV ∪ RC

IV← IV− {x}
changed ← TRUE

CANDS← ∅
for each instruction i in SCR of the form x← iv× rc,

x← rc× iv, x← iv + rc, or x← rc+ iv
CANDS← CANDS ∪ {i}

while CANDS 
= ∅
Select and remove an instruction i from CANDS – “x← iv op rc”
result← getName(op, iv, rc)
if result = x

Delete i
else

Replace i with “x← result”

for each definition point p of either iv or rc reaching i
if there is no definition for result in the macro block for p

if p is in the prolog
Insert “result← iv op rc” at end of prolog
Perform constant folding if possible

else if p is of the form “iv← k”
Insert “result← k op rc” into the macro block for p
Add this instruction to CANDS

else if p is of the form “iv← k + l” with k ∈ IV and l ∈ RC
if op = ×

result1 ← getName(op, k, rc)
result2 ← getName(op, l, rc)
Insert the following sequence into the macro block for p:

result1 ← k op rc
result2 ← l op rc
result← result1 + result2

Add the first two instructions to CANDS
else

result1 ← getName(op, k, rc)
Insert the following sequence into the macro block for p:

result1 ← k op rc
result← result1 + l

Add the first instruction to CANDS
Perform constant folding if possible

Fig. 3. The Allen-Cocke-Kennedy algorithm

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



8 · K.D. Cooper, L.T. Simpson, and C.A. Vick

To manage the insertion of instructions cleanly and to prevent the algorithm
from inserting duplicate updates, ack introduces the notion of a macro block. The
collection of all instructions inserted at a point p is called the macro block for p.
Ack only inserts an instruction at p if there is no definition of the same variable in
p’s macro block. This simple check ensures that the algorithm terminates. As long
as the macro block stays small, this search should be fast.
To illustrate how ack operates, we will apply it to the intermediate code in the

middle column of Figure 1. The RC set contains {1, 4, a, 100}. Ack determines
that IV = {i, t1}. It initializes cands to {“t1 ← i − 1”, “t2 ← t1 × 4”}. Assume
that the algorithm processes the instruction defining t1 first. The call to getName
creates a new temporary name, t5, to hold the value of i − 1. Next, ack replaces
the candidate instruction with “t1 ← t5.” It follows the use-definition chains to
the assignments that define i. The first such definition is in the prolog, so ack

inserts “t5 ← 0” at the end of the prolog (simplified from “t5 ← i − 1”). The
next definition increments the value of i at the bottom of the loop. After folding
constants, ack inserts two instructions:

t5← i− 1
t5← t5 + 1

It adds the first instruction to the worklist and processes it next. This causes ack

to delete the instruction and follow the use-definition chains for i. Ack finds that
the macro block for each definition already contains a definition of t5, so it does
not add any more instructions.
Next, ack removes “t2← t1× 4” from the worklist. It invent a new temporary,

t6, to hold the value of t1× 4. It replaces the candidate instruction with “t2← t6”
and follows the use-definition chains to the assignment of t1. Ack inserts the
instruction “t6← t5× 4,” and adds it to the worklist.
Processing “t6 ← t5 × 4,” creates a new temporary, t7, to hold the value of

t5 × 4. Ack replaces the candidate instruction with “t6 ← t7” and follows the
use-definition chains for t5. The first definition is in the prolog, so ack inserts
“t7← 0” at the end of the prolog. The next definition increments the value of t5 at
the bottom of the loop. After constant folding, two instructions are inserted here:

t7← t5× 4
t7← t7 + 4

The first instruction is added to the worklist and processed next. Ack deletes the
instruction and follows the use-definition chains for t5. Since the macro block for
each definition already contains a definition of t7, the algorithm terminates.
This example illustrates three shortcomings of ack. First, it inserted two in-

structions that were subsequently removed. The instructions “t5 ← i − 1” and
“t7← t5× 4” were removed when the algorithm discovered that the left-hand side
was the temporary name associated with the expression on the right-hand side.
Second, it had to search each macro block before inserting an instruction. If the
macro blocks grow large, this search might become expensive. The third shortcom-
ing is more subtle. Ack has not yet reduced the instruction “t3 ← t2 + a”. The
variable t2 is now an induction variable; it was not one when ack began. To reduce
this instruction, the compiler must re-apply the algorithm to the transformed pro-
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



Operator Strength Reduction · 9

gram. In this example, the unrecognized candidate instruction is an addition. In
more complicated examples, ack can fail leave behind more expensive unreduced
operations. To ensure that ack reduces all possible candidates, the compiler must
repeatedly apply the algorithm until it finds no further reductions.

4. THE OSR ALGORITHM

In deriving a new strength reduction algorithm, our goal was to clarify and to
simplify the process [Vick 1994]. We wanted an algorithm that was easy to describe,
easy to implement, reasonably efficient, and produced results comparable to ack.
The osr algorithm achieves these goals. Where ack operates on the procedure’s
cfg, osr works, primarily, with the ssa graph.

Osr is driven by a simple depth-first search of the ssa-graph, using Tarjan’s
strongly-connected component finder [Tarjan 1972]. The scc-finder lets osr dis-
cover induction variables in topological order and process them as they are discov-
ered. As the sccs are discovered, they are processed by a set of mutually-recursive
routines that test for induction variables, region constants, and reduce the appro-
priate operations.

4.1 Preliminaries

Like ack, our algorithm assumes that some prior optimization has been performed.
Done correctly, this can simplify strength reduction by encoding certain facts in the
code’s shape. For example, after invariant code has been moved out of loops, region
constants are easily identified by looking at where they are defined. We assume that
the compiler performs the following transformations before osr:

(1) Constant propagation: Sparse conditional constant propagation has been ap-
plied to identify and fold compile-time constants [Wegman and Zadeck 1991]. This
discovers a large class of constant values and makes them textually obvious. It can
increase the size of both the RC set and the IV set.
(2) Code motion: Lazy code motion [Knoop et al. 1992; Drechsler and Stadel

1993; Knoop et al. 1994], or one of its successors [Gupta et al. 1998; Bodik et al.
1998] has been applied to accomplish both loop invariant code motion and common
subexpression elimination.2 Applying global reassociation and global renaming
prior to code motion can increase the RC set as well [Briggs and Cooper 1994].

Constant propagation and code motion improve the results of strength reduction
by rewriting known values as literal constants and by moving invariant code out of
loops. Both of these can expose additional opportunities for strength reduction.
After code motion and constant propagation, the algorithm builds the pruned

ssa form of the program [Choi et al. 1991; Cytron et al. 1991; Briggs et al. 1998].
In ssa form, each name is defined exactly once and each use refers to exactly one
definition. To reconcile these rules, the ssa construction inserts a special kind of
definition, called a φ-function, at those points where control flow brings together
multiple definitions for a single variable name. After φ-functions have been inserted,
it systematically rewrites the name space, subscripting original variable names to

2Lazy code motion will not move conditionally executed code out of loops. The later algorithms
will. This can lead to a larger RC set.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



10 · K.D. Cooper, L.T. Simpson, and C.A. Vick

��
��
1 i0

��
��

φ i1

6��

��6��
��
+ i2

6

���

��
��
≤

@@I �����
��
100

��
��
goto

@@I �����
��
L

��
��
1

��
��
– t10
���@@I ��
��
1

��
��
*t20
���@@I ��
��
4

��
��
+t30
���@@I ��
��
a

��
��
loadt40

@@I

��
��
0.0sum0

��
��

φsum1

6��

��6
��
��
+sum2

6

@
@
@I

Fig. 4. Ssa graph for the example

ensure a unique mapping between names and definition points. Pruned ssa form
includes only φ-functions that are live—that is, φ-functions whose values are used.

Osr operates on a graph that represents the ssa-form. In the program’s SSA

graph, each node represents either an operation or a φ-function, and edges flow from
uses to definitions. The ssa graph can be built from the program in ssa form by
adding use-definition chains, which can be implemented as a lookup table indexed
by ssa names. The ssa graph provides a sparse representation of traditional use-
definition chains. It also allows a more efficient method for identifying induction
variables and region constants. Figure 4 shows the ssa graph our example.
Even though it operates on the ssa graph, osr needs to test specific properties

defined on the procedure’s cfg. These tests are couched in terms of two relation-
ships on the cfg: dominance [Lengauer and Tarjan 1979] and reverse-postorder
(rpo) numbering [Kam and Ullman 1976]. Dominance information is computed
during the ssa construction. Our compiler computes a reverse-postorder number-
ing during cfg construction. Osr assumes that it can efficiently map any node in
the ssa graph back into the cfg node that contains the corresponding operation.

4.2 Finding Induction Variables and Region Constants

Osr uses simple and effective tests to identify induction variables and region con-
stants. These two tests form the first half of the algorithm.

4.2.1 Induction Variables. Osr finds induction variables by isolating and exam-
ining each strongly connected component (scc) in the ssa graph. We differentiate
between an scc and an scr, as used in the description of the ack algorithm. In
our description of ack, we used scr to mean a single loop in the cfg. An scr may
be nested inside other loops. An scc for osr is a maximal collection of nodes in
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



Operator Strength Reduction · 11

ClassifyIV(SCC)
for each n ∈ SCC

if header→RPOnum > n.block→RPOnum
header ← n.block

for each n ∈ SCC
if n.op 
∈ {φ,+,−,copy}

SCC is not an induction variable
else

for each o ∈ {operands of n}
if o 
∈ SCC and not RegionConst(o, header)

SCC is not an induction variable
if SCC is an induction variable

for each n ∈ SCC
n.header← header

else
for each n ∈ SCC

if n is of the form x← iv× rc, x← rc× iv, x← iv + rc, or x← rc+ iv
Replace(n, iv, rc) (see Figure 7)

else
n.header← NULL

RegionConst(name, header)
return name.op = load immediate or name.block� header

Fig. 5. Finding region constants and induction variables

the ssa graph with the property that a path exists between any two nodes in the
scc. These are related ideas, but with some critical distinctions.

—An scr contains cfg nodes; thus, it may include updates to an arbitrary set
of variables. Induction variables are found in scrs, but the scr also contains
updates to other variables.

—An scc contains ssa-graph nodes and edges; since these edges model the flow of
values, the scc describes a cyclic chain of dependences in the program.

Any induction variable, by definition, has a cyclic chain of ssa-graph edges. Thus,
the set of sccs in the ssa-graph must include all the induction variables.

Osr finds induction variables by inspecting each scc. If all of the updates in
the scc have one of the allowed forms (i.e., IV±RC, IV−RC, a copy operation,
or a φ-function3), then the scc is an induction variable. Not every scc represents
an induction variable. In Figure 4, the scc containing sum1 and sum2 does not
represent an induction variable because t40 is not a region constant.
The code that finds induction variables is shown at the top of Figure 5. The

routine, ClassifyIV, examines each operation in an scc to see if it has one of the
allowed forms. If the scc is an induction variable, it labels each ssa node in the
scc with a header value. The header is the node in cfg that heads the outermost
loop, or scr, in which the ssa node is an induction variable. (This will be the
cfg node associated with the scc that has the smallest reverse-postorder number,
RPOnum.) If the scc is not an induction variable, it re-examines each node and
either reduces it by calling Replace or labels it with the value NULL to indicate that

3For φ-nodes, each argument must be either a member of the scc or a region constant.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



12 · K.D. Cooper, L.T. Simpson, and C.A. Vick

it is not an induction variable. The header labels play a critical role in the test for
region constants.

4.2.2 Region Constants. After constant propagation and code motion, osr can
use a simple test to determine if an operand is a region constant. An operand is a
region constant if it is a compile-time constant, or if its definition strictly dominates
every block in the cfg loop that contains the operation. (We use the notation
B1 � B2 to denote that B1 strictly dominates B2.) Compile-time constants can
be recognized syntactically, since constant propagation rewrites them in a standard
form, such as a load immediate operation. For values that are defined outside the
cfg loop and never modified inside it, the ssa construction ensures that the cfg

block containing its definition will dominate the cfg block that is the loop’s header.
These observations lead to a constant-time test for region constants, shown in

the routine RegionConst at the bottom of Figure 5. It checks if the operand results
from a Load Immediate. It uses the labels computed during ClassifyIV to relate
individual definitions in the ssa graph back to the cfg. If the cfg node containing
the value’s definition dominates the cfg node given by the header label of the
value’s use, then the value is loop invariant. (The dominance relation is computed
during the ssa construction.) Because these tests take constant time, it does not
pay to instantiate the RC set. Thus, osr tests for membership in RC on demand.

4.2.3 Putting It Together. To drive the entire process, osr uses Tarjan’s algo-
rithm for finding sccs [Tarjan 1972]. The algorithm, shown as routine DFS at the
bottom of Figure 6, is based on depth-first search. It pushes nodes onto an internal
stack as it visits them. The order in which the nodes are popped from the stack
groups them into sccs. A node that is not contained in any cycle is popped by
itself, as a singleton scc. The algorithm pops all the nodes in a multi-node cycle
as a group, or a multi-node scc.
Tarjan’s algorithm has an interesting property: it pops the sccs from the stack

in topological order. Thus, when an scc is popped from the stack, any operand
referenced inside the scc is either defined within the scc itself or else it is defined
in an scc that has already been popped. Osr capitalizes on this observation and
processes the nodes as they are popped from the stack. Thus, the scc-finder drives
the entire strength reduction process.
The top of Figure 6 shows the driver routine, OSR. It invokes DFS on each disjoint

component of the ssa-graph. As DFS identifies each scc, it invokes ProcessSCC on
the scc. If the scc contains a single operation, ProcessSCC tries to reduce it—
checking its form and invoking Replace (described Section 4.3) if it can be reduced.
Since this process transforms x into an induction variable, Replace labels x as an
induction variable with the same header block as i. This allows further reduction of
operations using x. If the scc contains more than one operation, then ProcessSCC
invokes ClassifyIV to determine if it is an induction variable and perform the
appropriate reductions if it is not an induction variable.
The idea of finding induction variables as sccs of the ssa graph is not original.

Wolfe used it in his work on induction variables and dependence analysis [Wolfe
1992], and suggested in the accompanying talk that the idea was obvious and had
occurred to others in the field. Like osr, Wolfe’s work relies on the fact that
Tarjan’s algorithm discovers the sccs in topological order.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



Operator Strength Reduction · 13

OSR(SSAgraph)
while there is an unvisited node n in SSAgraph

DFS(n) (see Figure 6)

ProcessSCC(SCC)
if SCC has a single member n

if n is of the form x← iv× rc, x← rc× iv, x← iv + rc, or x← rc+ iv
Replace(n, iv, rc) (see Figure 7)

else
n.header← NULL

else
ClassifyIV(SCC)

DFS(node)
node.DFSnum← nextDFSnum++
node.visited← TRUE

node.low← node.DFSnum
PUSH(node)
for each o ∈ {operands of node}

if not o.visited
DFS(o)
node.low← MIN(node.low, o.low)

if o.DFSnum < node.DFSnum and o ∈ stack
node.low← MIN(o.DFSnum, node.low)

if node.low = node.DFSnum
SCC← ∅
do

x← POP()
SCC← SCC ∪ {x}

while x 
= node
ProcessSCC(SCC)

Fig. 6. High-level code for osr

4.3 Code Replacement

Once osr has found a candidate instruction of the form x← i× j, it must update
the code so that the multiply is no longer performed inside the loop. The compiler
creates a new scc in the ssa graph to compute the value of i× j and replaces the
instruction with a copy from the node representing the value of i× j. This process
is handled by three mutually recursive functions shown in Figure 7:

Replace rewrites the current operation with a copy from its reduced counterpart.

Reduce inserts code to strength reduce an induction variable and returns the ssa

name of the result.

Apply inserts an instruction to apply an opcode to two operands and returns
the ssa name of the result. Simplifications such as constant folding are
performed if possible.

The Replace function is straightforward. It provides the top-level call to the
recursive function Reduce and replaces the current operation with a copy. The
resulting operation must be an induction variable.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



14 · K.D. Cooper, L.T. Simpson, and C.A. Vick

Replace(node, iv, rc)
result← Reduce(node.op, iv, rc)
Replace node with a copy from result
node.header← iv.header

SSAname Reduce(opcode, iv, rc)
result← search(opcode, iv, rc)
if result is not found

result← inventName()
add(opcode, iv, rc, result)
newDef← copyDef(iv, result)
newDef.header← iv.header
for each operand o of newDef

if o.header = iv.header
Replace o with Reduce(opcode, o, rc)

else if opcode = × or newDef.op = φ
Replace o with Apply(opcode, o, rc)

return result

SSAname Apply(opcode, op1, op2)
result← search(opcode, op1, op2)
if result is not found

if op1.header 
= NULL and RegionConst(op2, op1.header)
result← Reduce(opcode, op1, op2)

else if op2.header 
= NULL and RegionConst(op1, op2.header)
result← Reduce(opcode, op2, op1)

else
result← inventName()
add(opcode, op1, op2, result)
Choose the location where the operation will be inserted
Decide if constant folding is possible
Create newOper at the desired location
newOper.header ← NULL

return result

Fig. 7. Code replacement functions

The Reduce function is responsible for adding the appropriate operations to the
procedure. The basic idea is to create a new induction variable with the same shape
as the original but possibly with a different initial value or a different increment.
The first step is to check the hash table for the desired result. Access to the hash
table is through two functions:

search looks up an expression (an opcode and two operands), and returns the
name of the result.

add adds an entry containing an expression and the name of its result.

If the result is already in the hash table, then no additional instructions are needed,
and Reduce returns the ssa name of the result. The single definition property of
ssa lets osr conclude that any name found in the table is already defined. If the
result is not found in the table, Reduce invents a new ssa name.4 It then copies the

4This hash lookup replaces the linear search through a macro block used by ack to detect that it
has already inserted the needed code.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



Operator Strength Reduction · 15

operation or φ-node that defines the induction variable and assigns the new name
to the result. The copyDef function does this.
Next, Reduce considers each argument of the new instruction. If the argument

is defined inside the scc, Reduce invokes itself recursively on that argument. (Ack

handles this by inserting an operation and adding it to the worklist. This is the
source of the operations that were added and then removed in the earlier example.)
Arguments defined outside the scc are either the initial value of the induction

variable or the value by which it is incremented. The initial value must be an
argument of a φ-node, and the increment value must be an operand of an instruc-
tion. The reduction is always applied to the initial value, but the reduction is only
applied to the increment if we are reducing a multiply. In other words, when the
candidate is an add or subtract instruction, our algorithm modifies only the initial
value, but if the candidate is a multiply, it modifies both the initial value and the
increment. Therefore, Reduce invokes Apply on arguments defined outside the scc

only if we are reducing a multiply or if it is processing the arguments of a φ-node.
The Apply function is conceptually simple, although there are a few details that

must be considered. The basic function of Apply is to create an operation that
computes the desired result. Apply relies on the hash table to determine if such an
operation already exists. It is possible that the operation Apply is about to create
is a candidate for strength reduction in an enclosing loop. If so, it performs the
reduction immediately by calling Reduce. (Ack inserts an instruction that gets
reduced when the outer loop is processed.) This case often arises from triangular
loops – where the bounds of an inner loop are a function of the index of an outer
loop.
Before inserting the operation, the algorithm must select a legal location. Ack

assumes that all induction variables are defined in the loop’s prolog [Allen et al.
1981, page 93]. Therefore, it inserts all initializations of temporaries at the end of
the prolog block. Our algorithm relies on dominance information created during ssa

construction to find a legal location for the initialization. Intuitively, the instruction
must go into a block that is dominated by the definitions of both operands. If one
of the operands is a constant, the algorithm may need to duplicate its definition
to satisfy this condition. Otherwise, both operands must be region constants, so
their definitions dominate the header block. One operand must be a descendant of
the other in the dominator tree, so the operation can be inserted immediately after
the descendant. This eliminates the need for landing pads; it may also place the
operation in a less deeply nested location than the landing pad.

4.4 Applying OSR to the Example

As an example of how code replacement works, we will apply it to the ssa graph in
Figure 4. OSR invokes DFS on the graph. No matter where it starts, DFS will find a
small number of singleton sccs, followed by the scc {i1, i2}. It labels this scc as
an induction variable. Next, it finds the scc containing just t10.
It identifies this operation as a candidate instruction, because one argument is

an induction variable and the other is a region constant. It invokes Replace with
iv = i1 and rc = 1. The call to search in Reduce will fail, so the first ssa name
invented will be osr0. Reduce adds this entry to the hash table and create a copy of
the φ-node for i1. Next, it process the arguments of the new φ-node. Since the first

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



16 · K.D. Cooper, L.T. Simpson, and C.A. Vick

��
��
1 i0

��
��

φ i1

6��

Æ6��
��
+ i2

6

���
��
��
1

��
��
0 osr1

��
��

φ osr0

6��

Æ6��
��
+ osr2

6

���
��
��
1

��
��
copy t10

@@I

��
��
0 osr4

��
��

φ osr3

6��

Æ6��
��
+ osr5

6

���
��
��
4

��
��
copy t20

@@I

��
��
a osr7

��
��

φ osr6

6��

Æ6��
��
+ osr8

6

���
��
��
4

��
��
copy t30

@@I

��
��
load t40

@@I

��
��
0.0sum0

��
��

φsum1

6��

Æ6
��
��
+sum2

6

@@I

��
��
≤

6
���
��
��
100

��
��
goto
@@I ���
��
��
L

- - - -

- - - -

Fig. 8. Ssa graph after applying osr

argument, i0, is a region constant, it is replaced with the result of Apply, which
will perform constant folding and return the ssa name osr1. The second argument,
i2, is an induction variable, so it invokes Reduce recursively.
Since the hash table contains no match, Reduce invents a new ssa name, osr2,

adds an entry to the hash table, and copies the operation for i2. The first argument
is the region constant 1, which will be left unchanged. The second argument is i1,
which is an induction variable. The recursive call to Reduce will produce a match
in the hash table with osr0 as the result. At this point, the calls to Reduce finish,
and the ssa name osr0 is returned to Replace. Replace rewrites the operation
defining t10 as a copy from osr0. It labels t10 as an induction variable to enable
further reductions.
As subsequent sccs pop from the stack, this same process creates two more

reduced induction variables. The multiply labelled t20 gives rise to another new
induction variable, as does the add labelled t30. The load operation cannot be
reduced because it is not a candidate instruction. Similarly, the operations in the
scc that defines sum are not candidates.
Figure 8 shows the ssa graph that results from applying osr to our ongoing

example program. The sequence of reductions unfolds from left to right, with the
creation of the reduced induction variables involving osr0, osr3, and osr6. The
dashed gray lines show this derivation. The induction variables containing by osr0
and osr3 are dead. The sole remaining use for the induction variable defining i is
the ≤ operation that governs the branch.

4.5 Complexity of OSR

The time required to identify the induction variables and region constants in an
ssa graph is O(N + E), where N is the number of nodes and E is the number
of edges. The Replace function performs work that is proportional to the size of
the scc containing the induction variable, which can be as large as O(N). Since
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



Operator Strength Reduction · 17

i← 0

while (P0) do
if (P1) then

i← i+ 1
k ← i× c1

if (P2) then
i← i+ 2
k ← i× c2

· · ·
if (Pn) then

i← i+ n
k ← i× cn

end

i← 0 t2 ← 0
t1 ← 0 · · ·

tn ← 0
while (P0) do

if (P1) then
t1 ← t1 + c1 tn ← tn + cn

t2 ← t2 + c2 i← i+ 1
· · · k ← t1

if (P2) then
t1 ← t1 + 2× c1 tn ← tn + 2× cn

t2 ← t2 + 2× c2 i← i+ 2
· · · k ← t2

· · ·
if (Pn) then

t1 ← t1 + n× c1 tn ← tn + n× cn

t2 ← t2 + n× c2 i← i+ n
· · · k ← tn

end

Original code Transformed code

Fig. 9. A worst-case example

Replace can be invoked O(N) times, the worst case running time is O(N2). This
seems expensive; unfortunately, it is necessary. Figure 9 shows a program that
generates this worst case behavior in the replacement step. It requires introduction
of a quadratic number of updates. Note that this behavior is a function of the
code being transformed, not any particular details of our algorithm. Any algorithm
that performs strength reduction on this code will have this behavior. Experience
with strength reduction suggests that this problem does not arise in practice. In
fact, we have not seen an example with this behavior mentioned in the literature.
Since the amount of work is proportional to the number of instructions inserted,
any algorithm for strength reduction that reduces these cases will have the same,
or worse, complexity.

4.6 Follow-up Transformations

Osr is intended to operate in a compiler that performs a suite of optimizations. To
avoid duplicating functionality and to provide for a strong separation of concerns,
our algorithm leaves much of the “cleaning up” to other well-known optimizations
that should run after osr.

Osr can introduce equal induction variables. Thus, the compiler need a global
value numbering algorithm to detect and remove common subexpressions. It must
be a global technique that can handle values flowing along back edges in the cfg,
as induction variables do. Alpern et al.’s partitioning technique will discover iden-
tical values [Alpern et al. 1988; Click and Cooper 1995], as will other global algo-
rithms [Cooper and Simpson 1995; Briggs et al. 1997].
The ssa graph in Figure 8 contains a great deal of dead code. Many of the use-

definition edges in the original ssa graph have been changed, producing “orphaned”
nodes. Osr depends on a separate dead code elimination pass to remove these
instructions [Cytron et al. 1991, § 7.1].

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



18 · K.D. Cooper, L.T. Simpson, and C.A. Vick

Many of the copies introduced by osr can be eliminated. For example, the
copy into t30 in Figure 8 can be eliminated if the load into t40 uses the value of
osr6 directly. Our compiler relies on the copy coalescing phase of a Briggs-Chaitin
register allocator to accomplish this task [Chaitin et al. 1981; Briggs et al. 1994].

4.7 Comparing OSR with Allen-Cocke-Kennedy

Osr has several advantages over the classic ack algorithm.

(1) Osr operates on ssa form. It uses the properties of ssa and data-structures
built during ssa-construction to eliminate the passes needed by ack to recog-
nize the code’s loop structure and to identify region constants. Using ssa also
leads to a strategy that avoids instantiating the IV and RC sets. Ssa-form
also lets it iterate more efficiently over the code. For example, to find an in-
duction variable, osr examines only those operations that update the potential
induction variable, where ack visits all the operations in the loop.

(2) Osr reduces candidate instructions as they are encountered, rather than main-
taining a worklist of candidates. This lets it directly reduce new induction
variables as it creates them. Ack reduces new induction variables that it in-
serts by placing them on the worklist. It cannot, however, recognize when one
reduction converts an existing variable into an induction variable. To find and
reduce these variables, ack must be invoked again on the entire scr.5

(3) Osr produces results quite similar to those produced by ack. The primary
difference in the results lies in the placement of initializations. Ack creates a
prolog block, or landing pad, for each loop to hold the initializations that it
inserts. Osr inserts initializations after the definition of an operand that is
closest to its use. This can place the operation in a less deeply nested location
than the loop’s landing pad, where it should execute fewer times.

(4) Osr removes a couple of subtle restrictions that apply to ack. Since it largely
ignores the cfg, osr handles multiple-entry loops in a natural way. Similarly,
ack assumes that induction variables are defined in the loop’s prolog block;
osr makes no similar assumption.

(5) Osr is easier to understand, to teach, and to implement than the ack algo-
rithm. It has been implemented in several research and production compilers,
and used as an implementation exercise in a second-semester compiler course.

5. LINEAR FUNCTION TEST REPLACEMENT

After strength reduction, the transformed code often contains induction variables
whose sole use is to govern control flow. In that case, linear function test replace-
ment may be able to convert them into dead code. The compiler should look for
comparisons between an induction variable and a region constant. For example,
the comparison “if (i2 ≤ 100) goto L” in the ongoing example (see Figure 1) could
be replaced with “if (osr8 ≤ 396 + a) goto L”. This transformation is called linear
function test replacement (lftr).

5The data-flow methods also fail to reduce some newly-created induction variables. The analysis
cannot address these variables since they are created after the analysis runs. Iterating the analysis
and transformation should allow the data-flow methods to catch them.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



Operator Strength Reduction · 19

Previous methods would search the hash table for an expression containing the
induction variable referenced in the comparison. In the example in Figures 4 and 8,
a “chain” of reductions was applied to node i2. If lftr is to be effective, it must
follow the entire chain quickly. To facilitate this process, Reduce can record the
reductions it performs on each node in the ssa graph. Each reduction is represented
by an edge from a node to its strength-reduced counterpart labeled with the opcode
and the region constant of the reduction. In Figure 8, these edges are the dashed
gray arrows. They would be labelled as follows:

i1
−1−→ osr0

×4−→ osr3
+a−→ osr6

i2
−1−→ osr2

×4−→ osr5
+a−→ osr8

When the compiler identifies a candidate for lftr, it can traverse these edges,
insert code to compute the new region constant for the test, and update the compare
instruction. Our implementation uses two procedures to support this process:

FollowEdges follows the lftr edges and return the ssa name of the last one in
the chain.

ApplyEdges applies the operations represented by the lftr edges to a region
constant and return the ssa name of the result.

The ApplyEdges function can be easily implemented using the Apply function
described in Section 4.3. For each lftr candidate, it replaces the induction variable
with the result of FollowEdges, and replaces the region constant with the result
of ApplyEdges. Notice that lftr renders the original induction variable dead;
subsequent optimizations should remove the instructions used to compute it.
To transform the test i2 ≤ 100 in Figure 8, lftr replaces i2 with the result of

FollowEdges, osr8. Next, it replaces 100 with the result obtained from ApplyEdges,
(((100−1)×4)+a) = 396+a. The original induction variable, {i1, i2}, is no longer
needed; it will be removed by optimizations performed later.

6. CONCLUSIONS

This paper presents osr, a simple and elegant new algorithm for operator strength
reduction Osr produces results that are similar to those achieved by the Allen,
Cocke, and Kennedy algorithm. It relies on prior optimizations and properties
of the ssa graph to produce an algorithm that (1) is simple to understand and
to implement, (2) avoids instantiating the sets of induction variables and region
constants required by other algorithms, and (3) greatly simplifies linear function
test replacement. Rather than performing a separate analysis to discover the loop
structure of the program, it relies on dominance information computed during the
ssa construction. The result is an efficient algorithm that is easy to understand,
easy to teach, and easy to implement.

ACKNOWLEDGMENTS

Our colleagues on the Massively Scalar Compiler Project at Rice have contributed
to this work in many ways. Tim Harvey acted as a sounding board for many of
the ideas presented here. Linda Torczon and Tim Harvey served as diligent proof
readers of this text. The Advanced Compiler Construction class at Rice University

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



20 · K.D. Cooper, L.T. Simpson, and C.A. Vick

implemented the algorithm for their class project. They provided us with a great
deal of insight into how to present these ideas. Cliff Click provided the example
shown in Figure 9. The anonymous referees and the editors of Toplas provided
valuable suggestions, comments, and insights.
Vivek Sarkar of Ibm provided support for Taylor Simpson through an Ibm grad-

uate fellowship; Reid Tatge of TI provided support for both Chris Vick and Keith
Cooper; Darpa provided much of the funding for the underlying project, the Mas-
sively Scalar Compiler Project. All of these people deserve our sincere thanks.
The staff of Toplas displayed infinite patience with our slow turnaround time.

Any delay in publication is solely the fault of the first author.

REFERENCES

Allen, F. E. 1969. Program optimization. Annual Review in Automatic Programming 5, 239–308.

Allen, F. E., Cocke, J., and Kennedy, K. 1981. Reduction of operator strength. In Program
Flow Analysis: Theory and Applications, S. S. Muchnick and N. D. Jones, Eds. Prentice-Hall,
Englewood Cliffs, NJ, USA.

Alpern, B., Wegman, M. N., and Zadeck, F. K. 1988. Detecting equality of variables in
programs. In Conference Record of the Fifteenth Annual ACM Symposium on Principles of
Programming Languages. Association for Computing Machinery, San Diego, California, 1–11.

Bernstein, R. 1986. Multiplication by integer constants. Software – Practice and Experience 16, 7
(July), 641–652.

Bodik, R., Gupta, R., and Soffa, M. L. 1998. Complete removal of redundant computations.
SIGPLAN Notices 33, 5 (May), 1–14. Proceedings of the ACM SIGPLAN ’98 Conference on
Programming Language Design and Implementation.

Briggs, P. and Cooper, K. D. 1994. Effective partial redundancy elimination. SIGPLAN
Notices 29, 6 (June), 159–170. Proceedings of the ACM SIGPLAN ’94 Conference on Pro-
gramming Language Design and Implementation.

Briggs, P., Cooper, K. D., Harvey, T. J., and Simpson, L. T. 1998. Practical improvements
to the construction and destruction of static single assignment form. Software—Practice and
Experience 28, 8 (July), 859–881.

Briggs, P., Cooper, K. D., and Simpson, L. T. 1997. Value numbering. Software – Practice
and Experience 27, 6, 710–724.

Briggs, P., Cooper, K. D., and Torczon, L. 1994. Improvements to graph coloring register
allocation. ACM Transactions on Programming Languages and Systems 16, 3 (May), 428–455.

Briggs, P. and Harvey, T. J. 1994. Multiplication by integer constants. This is a “web”, a
literate programming document. See http://softlib.rice.edu/MSCP.

Cai, J. and Paige, R. 1991. “Look Ma, no hashing, and no arrays neither”. In Conference
Record of the Eighteenth Annual ACM Symposium on Principles of Programming Languages.
Association for Computing Machinery, Orlando, Florida, 143–154.

Chaitin, G. J., Auslander, M. A., Chandra, A. K., Cocke, J., Hopkins, M. E., and Mark-

stein, P. W. 1981. Register allocation via coloring. Computer Languages 6, 47–57.

Chase, D. R. 1988. Personal communication in the form of an unpublished report.

Choi, J.-D., Cytron, R., and Ferrante, J. 1991. Automatic construction of sparse data flow
evaluation graphs. In Conference Record of the Eighteenth Annual ACM Symposium on Prin-
ciples of Programming Languages. Association for Computing Machinery, Orlando, Florida,
55–66.

Click, C. and Cooper, K. D. 1995. Combining analyses, combining optimizations. ACM Trans-
actions on Programming Languages and Systems 17, 2 (Mar.), 181–196.

Cocke, J. and Kennedy, K. 1977. An algorithm for reduction of operator strength. Communi-
cations of the ACM 20, 11 (Nov.), 850–856.

Cocke, J. and Markstein, P. 1980a. Measurement of program improvement algorithms. In
Proceedings of Information Processing 80. North Holland Publishing Company, Tokyo, Japan.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



Operator Strength Reduction · 21

Cocke, J. and Markstein, P. 1980b. Strength reduction for division and modulo with application

to a multilevel store. IBM Journal of Research and Development 24, 6, 692–694.

Cocke, J. and Schwartz, J. T. 1970. Programming languages and their compilers: Preliminary
notes. Tech. rep., Courant Institute of Mathematical Sciences, New York University.

Cooper, K. D. and Simpson, L. T. 1995. SCC-based value numbering. Tech. Rep. TR95636,
Center for Research on Parallel Computation, Rice University. Oct.

Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., and Zadeck, F. K. 1991. Efficiently
computing static single assignment form and the control dependence graph. ACM Transations
on Programming Languages and Systems 13, 4 (Oct.), 451–490.

Dhamdhere, D. M. 1979. On algorithms for operator strength reduction. Communications of
the ACM 22, 5 (May), 311–312.

Dhamdhere, D. M. 1989. A new algorithm for composite hoisting and strength reduction. Inter-
national Journal of Computer Mathematics 27, 1, 1–14.

Drechsler, K.-H. and Stadel, M. P. 1993. A variation of Knoop, Rüthing, and Steffen’s “lazy
code motion”. SIGPLAN Notices 28, 5 (May), 29–38.

Early, J. 1974. High level iterators and a method of automatically designing data structure
representation. Tech. Rep. ERL-M416, Computer Science Division, University of California,
Berkeley. Feb.

Fong, A. C. 1979. Automatic improvement of programs in very high level languages. In Confer-
ence Record of the Sixth Annual ACM Symposium on Principles of Programming Languages.
Association for Computing Machinery, San Antonio, Texas, 21–28.

Fong, A. C. and Ullman, J. D. 1976. Induction variables in very high level languages. In
Conference Record of the Third ACM Symposium on Principles of Programming Languages.
Association for Computing Machinery, Atlanta, Georgia, 104–112.

Granlund, T. 1995. Private communication with P. Briggs. Discussion of his work in building
the routine synth mult for the Gnu C Compiler.

Granlund, T. and Montgomery, P. L. 1994. Division by invariant integers using multiplication.
SIGPLAN Notices 29, 6 (June), 61–72. Proceedings of the ACM SIGPLAN ’94 Conference on
Programming Language Design and Implementation.

Gupta, R., Berson, D. A., and Fang, J. Z. 1998. Path profile guided partial redundancy
elimination using speculation. In Proceedings of the IEEE 1998 International Conference on
Computer Languages. IEEE Computer Society, Chicago, IL., USA, 230–239.

Havlak, P. 1997. Nesting of reducible and irreducible loops. ACM Transactions on Programming
Languages and Systems 19, 4 (July), 557–567.

Issac, J. and Dhamdhere, D. M. 1980. A composite algorithm for strength reduction and code
movement. International Journal of Computer and Information Sciences 9, 3, 243–273.

Kam, J. B. and Ullman, J. D. 1976. Global data flow analysis and iterative algorithms. Journal
of the ACM 23, 1 (Jan.), 158–171.

Kennedy, K. 1973. Reduction in strength using hashed temporaries. SETL Newsletter 102,
Courant Institute of Mathematical Sciences, New York University. Mar.

Kennedy, K. 1978. Use-definition chains with applications. Computer Languages 3, 163–179.

Knoop, J., Rüthing, O., and Steffen, B. 1992. Lazy code motion. SIGPLAN Notices 27, 7
(July), 224–234. Proceedings of the ACM SIGPLAN ’92 Conference on Programming Language
Design and Implementation.

Knoop, J., Rüthing, O., and Steffen, B. 1993. Lazy strength reduction. Journal of Program-
ming Languages 1, 1, 71–91.

Knoop, J., Rüthing, O., and Steffen, B. 1994. Optimal code motion: Theory and practice.
ACM Transactions on Programming Languages and Systems 16, 4 (July), 1117–1155.

Lengauer, T. and Tarjan, R. E. 1979. A fast algorithm for finding dominators in a flowgraph.
ACM Transactions on Programming Languages and Systems 1, 1 (July), 121–141.

Liu, Y. A. and Stoller, S. D. 1998. Loop optimization for aggregate array computations. In
IEEE 1998 International Conference on Computer Languages. IEEE CS Press, Los Alamitos,
CA, 262–271.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



22 · K.D. Cooper, L.T. Simpson, and C.A. Vick

Markstein, P. W., Markstein, V., and Zadeck, F. K. 1994. Reassociation and strength re-

duction. Chapter from an unpublished book, Optimization in Compilers.

Morel, E. and Renvoise, C. 1979. Global optimization by suppression of partial redundancies.
Communications of the ACM 22, 2 (Feb.), 96–103.

Paige, R. and Koenig, S. 1982. Finite differencing of computable expressions. ACM Transactions
on Programming Languages and Systems 4, 3 (July), 402–454.

Paige, R. and Schwartz, J. T. 1977. Reduction in strength of high level operations. In Conference
Record of the Fourth ACM Symposium on Principles of Programming Languages. Association
for Computing Machinery, Los Angeles, California, 58–71.

Santhanam, V. 1992. Register reassociation in PA-RISC compilers. Hewlett-Packard Jour-
nal 14, 6 (June), 33–38.

Scarborough, R. G. and Kolsky, H. G. 1980. Improved optimization of FORTRAN object
programs. IBM Journal of Research and Development 24, 6 (Nov.), 660–676.

Sites, R. L. 1979. The compilation of loop induction expressions. ACM Transactions on Pro-
gramming Languages and Systems 1, 1 (July), 50–57.

Tarjan, R. E. 1972. Depth first search and linear graph algorithms. SIAM J. Comput. 1, 2
(June), 146–160.

Tarjan, R. E. 1974. Testing flow graph reducibility. J. Comput. Syst. Sci. 9, 355–365.

Vick, C. A. 1994. SSA based reduction of operator strength. M.S. thesis, Rice University,
Department of Computer Science.

Wegman, M. N. and Zadeck, F. K. 1991. Constant propagation with conditional branches.
ACM Transactions on Programming Languages and Systems 13, 2 (Apr.), 211–236.

Wolfe, M. 1992. Beyond induction variables. SIGPLAN Notices 27, 7 (July), 162–174. Proceed-
ings of the ACM SIGPLAN ’92 Conference on Programming Language Design and Implemen-
tation.

Wu, Y. 1995. Strength reduction of multiplications by integer constants. SIGPLAN Notices 32, 2
(Feb.), 42–48.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.


