
An Experimental Evaluation of List Scheduling ?

Keith D. Cooper, Philip J. Schielke, and Devika Subramanian

Department of Computer Science, Rice University, Houston Texas
keith@cs.rice.edu, phisch@cs.rice.edu, devika@cs.rice.edu

Abstract. While altering the scope of instruction scheduling has a rich
heritage in compiler literature, instruction scheduling algorithms have
received little coverage in recent times. The widely held belief is that
greedy heuristic techniques such as list scheduling are \good" enough for
most practical purposes. The evidence supporting this belief is largely
anecdotal with a few exceptions.
In this paper we examine some hard evidence in support of list schedul-
ing. To this end we present two alternative algorithms to list scheduling
that use randomization: randomized backward forward list scheduling,
and iterative repair. Using these alternative algorithms we are better
able to examine the conditions under which list scheduling performs well
and poorly. Speci�cally, we explore the e�cacy of list scheduling in light
of available parallelism, the list scheduling priority heuristic, and num-
ber of functional units. While the generic list scheduling algorithm does
indeed perform quite well overall, there are important situations which
may warrant the use of alternate algorithms.

1 Introduction

Instruction scheduling plays a critical role in determining the performance of
compiled code on today's computers. Today's microprocessors rely on the com-
piler to hide memory latencies and to keep functional units busy|both are tasks
for the instruction scheduler. On the microprocessors of tomorrow, the quality of
instruction scheduling may be more important, since these machines will feature
longer memory latencies and more functional units.

Despite the importance of scheduling, we know quite little about the behavior
of list scheduling|the most widely used technique for instruction scheduling [1,
3]. This paper presents an experimental evaluation of list scheduling that at-
tempts to answer the following questions:

1. Is there room for improvement beyond list scheduling? It is widely believed
that list scheduling usually achieves optimal or near-optimal results [5]; is
this the case?

2. Will new microprocessor designs change the e�cacy of list scheduling? To
keep these machines busy, compilers will apply transformations that increase
instruction-level parallelism; how will that change the scheduling problems
that the compiler sees?

? This work has been supported by DARPA and the USAF Research Laboratory
through Award F30602-97-2-298.

3. Can we classify scheduling problems so that the compiler can recognize when
other scheduling techniques should be invoked? If we can discover metrics
that predict bad behavior from list scheduling, we can design compilers that
avoid it.

To answer these and other questions, this paper examines the strengths and
weaknesses of list scheduling. We develop several metrics to classify instances
of scheduling problems. We evaluate the performance of list scheduling against
those metrics and compare it against two alternative scheduling algorithms. Our
experiments use both real benchmark codes and randomly-generated sets of basic
blocks.

The remainder of the paper is organized as follows. Section 2 provides back-
ground information about the framework in which we performed this investi-
gation. Section 3 discusses the list scheduling algorithm. Section 4 describes
improvements to list scheduling and an alternative technique based on iterative
repair. Section 5 presents our metrics for classifying instances of the scheduling
problem. Sections 6 and 7 present experimental results.

2 Experimental Setup

Our experiments use components of a research compiler system developed at Rice
University. It has front ends for both C and Fortran; these translate the input
code into a linear, low-level intermediate form called iloc. The individual iloc
operations resemble simple risc machine operations, with register-to-register
operations that manipulate virtual registers, plus load and store operations.
Individual operations are grouped together into instructions; an instruction ag-
gregates together all the operations that begin execution in a single cycle.

Before scheduling, the compiler applies a series of optimizations to the iloc
code. This includes pointer analysis, dead code elimination, global value num-
bering, lazy code motion, constant propagation, strength reduction, register coa-
lescing, dead code elimination, and empty block removal. For the purposes of this
paper, no register allocation was performed; this eliminates interactions between
allocation and scheduling and isolates the impact of scheduling.

After optimization, the compiler passes the code to the scheduler. Each
block is scheduled individually. The �rst step constructs a data-precedence graph
(dpg) for the block. The dpg G = (N;E;E0) has a node n 2 N for each oper-
ation. Edges e = (ni; nj) 2 E represent dependences between operations; their
direction matches the
ow of values. Edges in E0 represent anti-dependences in
the code that prevent reordering. An anti-edge e = (ni; nj) 2 E0 indicates that
moving nj before ni would change the
ow of values because of a name that
ni uses and nj rede�nes. The details of the individual schedulers vary; they are
described in sections 3 and 4.

To evaluate the schedules, we use several variations on a simple processor
model. Each architecture consists of k identical pipelined functional units. Each
functional unit can execute any iloc operation. For our experiments, we vary
k between one and three. Each iloc operation has a latency|the number of

cycles required before its results are available. Register values are read in the
cycle when the instruction begins execution, and results are de�ned in the last
cycle of its latency. Thus, an operation u can begin execution when all operations
v j(v; u) 2 E have completed, and all operations w j(u;w) 2 E0 have already
been issued.

3 The List Scheduling Algorithm

Here we describe our implementation of list scheduling. First, the dpg is built
as described in the previous section. Next, priorities are assigned to each node
in the graph. There are several di�erent heuristics that can be used to assign
priorities. A common and e�ective strategy is to use the latency weighted depth
of the node [3, 5]. The depth of a node n is the length (number of nodes) of
the longest path in the dpg from n to some leaf (including n and the leaf.)
The latency weighted depth is computed the same way, but the nodes along the
path are weighted using the latency of the operation the node represents. The
following formula summarizes the priority computation for a node n:

priority(n) = max

8l2leaves(DPG)8p2paths(n;:::;l)

lX
pi=n

latency(pi)

!

Dynamic programming can be used to compute the priorities e�ciently, and
we take into consideration the anti-edges described above:

priority(n) =

8<
:
latency(n) if n is a leaf.
max(latency(n) +max(m;n)2E(priority(m));

max(m;n)2E0(priority(m))) otherwise.

The �nal phase is the actual list scheduling algorithm that constructs the
schedule for the block. Starting at cycle 0, the list scheduler places operations
into the schedule cycle by cycle. Any operation that is \ready" at cycle X (i.e.
all its operands have been computed), is a candidate to be scheduled at cycle X.
The priorities computed in the previous step are used to determine which ready
operation to schedule, by selecting the highest priority operation �rst. Any tie
in the priority of two operations is broken arbitrarily. The algorithm is detailed
in Figure 1. Through the rest of the paper we refer to this algorithm as ls.

4 List Scheduling Alternatives

Here we present two alternatives to the ls algorithmdiscussed in the last section.
For a survey of scheduling techniques see [4, 8]. A machine learning approach to
scheduling has been developed by Moss and others [7].

4.1 Random Tie Breaking

A traditional list scheduler returns a single solution by breaking any ties in
the priority of two or more operations arbitrarily. By running the list scheduler
several times and breaking ties randomly, we could potentially generate more and

Input: Data Precedence Graph (N,E,E') with priorities assigned to each node. Pa-
rameters of machine (instruction latencies, pipelining, number of functional units, etc.)

Output: A schedule containing all nodes in the graph that satis�es the precedence
constraints in the DPG and the resource constraints of the machine.

Algorithm:

cycle = 0
ready-list = root nodes in DPG
in
ight-list = empty list
while (ready-list or in
ight-list not empty, and an issue slot is available)

for op = (all nodes in ready-list in descending priority order)
if (a functional unit exists for op to start at cycle)

remove op from ready-list and add to in
ight-list

add op to schedule at time cycle
if (op has an outgoing anti-edge)

Add all targets of op's anti-edges that are ready to ready-list

endif

endif

endfor

cycle = cycle + 1
for op = (all nodes in in
ight-list)

if (op �nishes at time cycle)
remove op from in
ight-list

check nodes waiting for op in DPG and add to ready-list

if all operands available
endif

endfor

endwhile
Fig. 1. List Scheduling algorithm

better solutions. Figure 2 is an example from the tomcatv benchmark. Assume all
load immediates (LDI) take one cycle, all add operations (ADD) take two cycles,
and the copy (i2i) takes one cycle. Assume we are scheduling on a machine
with two identical functional units. The numbers next to the operations are the
priority values that list scheduling uses. In this �gure we see two di�erent list
schedules that could be generated from the dpg. The second one requires one
less cycle. The critical decision comes in the second cycle, where the tie between
the LDId and LDIc must be broken. Scheduling LDId early enough results in a
shorter schedule.

4.2 Backward list scheduling

In addition, there are some blocks for which a backward list scheduler can gener-
ate a better solution. A backward list scheduler works by reversing the direction
of all edges in dpg, and scheduling the �nish times of each operation. (Note that
the start time of operations must be used to ensure enough available functional
units for a given cycle.) This technique tends to cluster operations toward the
end of the schedule instead of the beginning like a forward list scheduler. For

LDIb ADDa LDIc

JMP

ADDc LDIe ADDdADDbi2i

LDIa

LDId

1

2 3 3 2 3

444 5

6

LDIa LDIb

ADDa LDIc

LDId i2i

ADDb ADDc

ADDd LDIe

JMP

LDIa LDIb

ADDa LDId

LDIc ADDd

i2i LDIe

JMP

ADDb ADDc

Two possible list schedules

Fig. 2. Example block from tomcatv

an example of a block that bene�ts from backward list scheduling see Figure 3,
which shows a block from the go benchmark. Assume there are two integer units
that can execute the LDI operations (one cycle), the LSL operation (one cycle),
the ADD operations (two cycles), ADDI operation (one cycle), and the CMP op-
eration (one cycle). A separate memory unit executes the ST operations (four
cycles). All functional units are completely pipelined. A forward list scheduler
will schedule the four LDI operations and the the LSL before scheduling any of
the ADD operations. This delays the start of the higher latency store operations
(ST). A better schedule can be found by a backward list scheduler as shown in
the example.

We have developed a new scheduling technique called rbf (randomized back-
ward and forward list scheduling.) rbf schedules each block M times forward
andM times backward breaking any ties in the priority heuristic randomly. The
shortest schedule over all 2M runs is kept. The best value forM should be deter-
mined based on the characteristics (e.g. number of operations) of the particular
scheduling problem.

4.3 Iterative Repair Scheduling

Here we introduce the application of a repair based scheduling technique called
\iterative repair" to the problem of instruction scheduling in a compiler. This al-
gorithm comes from the AI communityand is described by Lin and Kernighan [6],
and Zweben, et. al. [10,11]. The technique has shown promise for several schedul-
ing problems including space shuttle mission scheduling.

The generalized algorithm is presented in �gure 4. The idea is straightfor-
ward. First, create an instruction schedule that begins each operation as early as
possible with respect to the precedence constraints of the dpg, but ignores the
resource constraints imposed by the limited number of processing elements. Now

CMP STa STb STc STd STe

BR

ADDa ADDb ADDc ADDIADDd

LDIa LSL LDIb LDIc LDId
8 8 88

7 7 7

52

1

5 5 5 5

7

8

7

Backward ListForward List

LDIa LSL LDId
LDIb LDIc ADDI LSL
LDId ADDa ADDd LDIc
ADDb ADDc ADDc LDIb STe

ADDb LDIa STdADDd ADDI STa
CMP STb ADDa STc
 STc
 STd
 STe ---

 --- ---
 --- CMP

BR ---
BR

STb
STa

Fig. 3. Example block from go, showing the bene�ts of backward list scheduling.

\repair" the schedule by moving operations that have a resource con
ict to a
point later in the schedule. This reduces the number of resource con
icts for the
cycle being repaired. A resource con
ict is simply a point in the schedule where
more operations are scheduled than the available number of functional units.
The earliest cycle with a con
ict is found, and one of the con
icting operations
is selected (line (1) in the algorithm). This operation and all operations that
depend on it are removed from the schedule (called unscheduling). The selected
operation and its dependent operations are then inserted back into the schedule
(called rescheduling) at a later point (line (2) in the algorithm). We continue
repairing the schedule until there are no more resource con
icts. The algorithm
is run a \user speci�ed" number of times, and the shortest schedule over all the
trials is selected as the �nal schedule.

We have tested several new variations of the iterative repair scheduling al-
gorithm. The most e�ective one to date we refer to as ir-bias. In ir-bias the
selection of which node to move (called the move-node) is not completely ran-
dom. Rather, operations with lower priority values (the same priority values as
used by the list scheduler) are more likely to be moved. The selection is proba-
bilistic; the probability that a node is selected is inversely related to its priority.

The move-node is scheduled one cycle later than its original position. All
successor nodes are rescheduled as early-as-possible with respect to this new start
time. This could cause additional con
icts to be created later in the schedule,

Input: Data Precedence Graph. Parameters of machine (instruction latencies, pipelin-
ing, number of functional units, etc.). The number of iterations to perform iter.

Output: A schedule containing all nodes in the graph that satis�es the precedence
constraints in the DPG and the resource constraints of the machine.

Algorithm:

min = largest integer
shortest is a schedule initially empty
for x = (1 to iter)

Create an initial schedule by scheduling all operations as early as possible subject
to precedence constraints.

while (there exist resource con
icts in schedule)
con
ict time = the cycle of the �rst resource con
ict in the schedule

(1) select an operation that has a resource con
ict at con
ict time
unschedule operation and all its successors in dpg

(2) reschedule operation and its successors later in schedule.
endwhile

if length of schedule is less than min

then min = length of schedule
shortest = schedule

endif

endfor

Fig. 4. Basic Iterative Repair Scheduling algorithm

but a future repair will correct any new con
icts. After each repair we compare
the length of the new schedule to that of the old schedule. If the new length
is greater, the repair is ignored, the state of the previous schedule is restored,
and a new move-node is selected. A new schedule with a greater length than the
previous schedule is kept ten per cent of the time to avoid local minima. For more
information on iterative repair algorithms please see our technical report [9].

5 Metrics Used in Experiments

In this section we de�ne several metrics that help us to characterize scheduling
problems. The �rst is used to help us assess the quality of a schedule generated
for a particular graph. The second and third metrics are used to assess the
di�culty of a particular scheduling problem instance.

5.1 Minimum Schedule Length

We would like to be able to evaluate the performance of our scheduling algo-
rithms on particular problem instances. One way to do this is to estimate the
minimum possible schedule length for the problem. Of course �nding the mini-
mum length is NP-complete but we use several observations to develop a lower
bound on the minimumschedule length. If our scheduler returns a schedule whose
length is equal to this metric we are guaranteed that the solution is optimal.

The �rst part of our estimate is the critical path length of the dpg denoted by
cpl(G) where G is the dpg. This is the length (in cycles) of the longest (latency
weighted) path from any leaf in the dpg to any root. Since any schedule must
ensure all dependences in the dpg are followed, there exists no valid schedule
whose length is less than the critical path length. Thus, if a scheduling algorithm
�nds a schedule whose length equals the critical path length for a particular
problem, no more work on that problem will result in a better schedule.

Since critical path length does not take hardware constraints into account,
we re�ne this minimum schedule length estimate in the following way. Assume
we schedule every operation in the dpg as early as possible without regard to
hardware constraints (i.e. the starting point for iterative repair.) The length of
this schedule is equal to the critical path length cpl(G) . Next we �nd all nodes
on some critical path. These nodes are important because if any one of them gets
scheduled later than its as-early-as-possible position, the �nal schedule length
will be greater than the critical path length. Finally, we examine the schedule
cycle by cycle and record the maximum number of critical operations scheduled
to start at any one cycle (call this value N 0.) Let p be the number of processing
elements on the machine. If N 0 is greater than p, then the minimum schedule
length must be at least cpl(G) + dN 0=pe � 1.

One �nal measure we use for the minimum schedule length is simply the
number of operations N in the dpg divided by the number of available process-
ing elements p. The following equation summarizes our estimate for minimum
schedule length of a dpg G.

minlength(G) = max(cpl(G) + dN 0=pe � 1; N=p)

5.2 Available Parallelism

This metric is a measure of how much parallelism is available in a piece of code.
It is similar to the available speedup measure described by Rau and Fisher [8],
except that we compute the value during compilation.

Di�erent dpg's have di�ering amounts of parallelism available in them. To
quantify this notion we de�ne a metric called the available parallelism or ap
of a dpg. This value is equal to the length of the worst possible schedule (i.e.
the sum of the latencies of all operations in the dpg) divided by the length of
the best possible schedule (i.e. the critical path length). Of course this value
is dependent on the latencies of the various operations as determined by the
architecture.

There is an interesting correlation between available parallelism and the dif-
�culty of a particular scheduling problem. This relationship is explored in sec-
tion 7. Intuitively, the lower the ap the fewer decisions any scheduling algorithm
needs to make, while higher ap values lead to more decisions.

5.3 Number of List Schedules

This metric is another attempt to quantify the number of decisions made by ls.
In this metric we estimate the number of possible list schedules caused by ties

in the priority heuristic. Consider an architecture with two identical functional
units. Assume the list scheduler is at a point where four operations are tied for
the highest priority value and are data ready. There are 4 choose 2 or 6 possible
schedules that could result from this tie. If there are no ties to be broken by
either forward or backward list schedulers, then rbf will yield no improvement.

The metric num list estimate is an estimate of the number of possible list
schedules and is computed while running ls. It's initial value is one, and it
is updated every time a tie is encountered while scheduling. Let max be the
number of nodes in the ready list with highest priority, and p be the number of
processing elements still available this cycle. To update num list estimate we
do the following:

num list estimate = num list estimate �

�
max
p

�

6 Experimental Results on Real Code

In this section we discuss the e�ectiveness of the various schedulers on benchmark
codes. A summary of the benchmark codes is presented in table 1. In the table
we show the number of iloc operations, average number of operations per basic
block, the average available parallelism per block, and the maximum available
parallelism over all blocks. All available parallelism numbers are rounded to the
nearest tenth. Notice that most of the blocks are small. Over all benchmarks,
about 56 per cent (11412 of 20561) of basic blocks had available parallelismvalues
equal to 1. About 0.6 per cent (131 of 20561) had available parallelism values
greater than 5.0. The distribution of available parallelism for the remainder of
the blocks is shown in �gure 5. Notice that on the average there is little available
parallelism, although a few blocks do have very high available parallelism values.

Table 1. Benchmark Statistics

Benchmark operations ops per block avg. ap max ap

adpcm 339 4.1 1.3 6.0
clean 7902 5.5 1.3 5.5
compress 1281 5.6 1.4 8.6
fft 1544 6.4 1.5 6.5
go 50401 5.0 1.2 12.5
gzip 10264 4.9 1.4 7.5
jpeg 13029 6.6 1.3 11.4
shorten 5746 4.2 1.2 9.5
water 3509 11.6 1.7 23.6
applu 9798 16.6 1.9 25.1
cg 589 6.6 1.4 3.5
doduc 19439 12.4 1.9 74.9
fpppp 8627 27.5 2.2 46.6
mg 1789 11.1 1.8 10.9
tomcatv 684 13.4 2.3 10.0

Available Parallelism for Benchmark Codes

0

200

400

600

800

1000

1200

1400

1600

1.1 1.4 1.7 2
2.3 2.6 2.9 3.2 3.5 3.8 4.1 4.4 4.7 5

Parallelism

N
um

be
r o

f B
lo

ck
s

Fig. 5. Available Parallelism vs. Number of Blocks

Table 2 shows a lower bound on the percentage of basic blocks that ls was
able to schedule optimally on the various architectures. That is, the percentage of
basic blocks for which ls found a schedule whose length equaled minlength(G),
where G is the dpg constructed for the basic block. These numbers are quite
high and indicate that ls is very often �nding the optimal schedule.

Each benchmark was scheduled using rbf and ir-bias, on architectural mod-
els with one, two, and three identical processing elements. rbf was run 50 times
backward and forward, and ir-bias was run 100 times. The runtime performance
of the resulting code was compared to that of the code scheduled with ls. Very
few improvements were observed. tomcatv improved by .6 per cent on one pro-
cessing element and .4 per cent on three processing elements. doduc improved
by .1 per cent on one processing element. All other codes were sped up by less
than .1 per cent when the more powerful scheduling algorithms were used. In
roughly 55 per cent of the experiments no speed up was observed.

Clearly ls performs quite well on real codes when scheduling is performed at
the basic block level. Few improvements were observed when using more powerful
scheduling techniques. The next section presents further evidence as to why that
is the case.

7 Experimental Results on Random Graphs

In this section we present some experimental results for instruction scheduling on
randomly generated basic blocks with di�erent numbers of operations. Each iloc

operation was randomly assigned a latency between 1 and 4 cycles with uniform
distribution. Each operation had two source registers and a single destination
register. Each register number was chosen randomly.

Table 2. Percentage of Basic Blocks Optimally Scheduled by ls

Proc. Elements
Benchmark one two three

adpcm 97.6 96.3 98.8
clean 91.4 97.7 99.2
compress 89.0 93.4 97.8
fft 91.7 95.0 98.3
go 93.9 97.5 99.3
gzip 91.3 95.7 98.9
jpeg 94.2 97.1 99.1
shorten 96.3 96.4 99.3
water 85.8 94.1 96.7
applu 86.8 87.1 92.5
cg 91.0 95.5 97.8
doduc 82.1 92.2 97.9
fpppp 85.0 92.7 96.8
mg 91.3 93.8 97.5
tomcatv 88.2 70.6 80.4

Each graph was �rst scheduled using ls. The resulting schedule length was
compared against the minlength metric described in section 5. If the schedule
length was greater than minlength the graph was scheduled with rbf run 50
times backward and forward and ir-bias run 1000 times. The results for schedul-
ing on one processing element are shown in �gure 6. The left-hand graphs plot
available parallelism on the x-axis and the percentage of experiments where ei-
ther rbf or ir-bias found a shorter schedule than ls on the y-axis. Blocks with
10, 20 and 50 operations are shown. This value is a lower bound on the percent-
age of times ls failed to �nd the optimal schedule. A minimum of 2000 graphs
were scheduled at each parallelism level. The right-hand graph shows the per-
centage of experiments in which ir-bias found a shorter schedule than both rbf

and ls.

Note the interesting shape of the graphs. Clearly list scheduling performs bet-
ter at certain levels of available parallelism than others. It is easy to explain list
scheduling's success at low levels of available parallelism.When the list scheduler
has very few choices to make, its probability of making an incorrect tie-breaking
decision is low. One might then expect that with the exponential increase in
the number of scheduling decisions at higher levels of available parallelism, list
scheduling would have a greater probability of making incorrect decisions. In-
terestingly that is not the case; list scheduling performs well at high levels of
available parallelism.

A possible explanation for the phenomenon is that most of the tie-breaking
choices at high levels of available parallelism yield schedules that have the same
length. Thus, the choices are really equivalent and do not contribute to list
scheduling making incorrect tie-breaking choices. To test this potential expla-
nation we experimentally determined the average number of distinct schedule

10 ops, 1 proc

0

2

4

6

8

1 0

1 2

1.2 1.4 1.6 1.8 2
2.2 2.4 2.6 2.8 3

3.2 3.4 3.6 3.8 4
4.2 4.4

Parallelism

%
 n

on
-o

pt
im

al

10 ops, 1 proc, IR wins

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.2 1.4 1.6 1.8 2
2.2 2.4 2.6 2.8 3

3.2 3.4 3.6 3.8 4
4.2 4.4

Parallelism

%
 o

f I
R

 w
in

s

20 ops, 1 proc

0

2

4

6

8

1 0

1 2

1 4

1 6

1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4
4.3 4.6 4.9

Parallelism

%
 n

on
-o

pt
im

al

20 ops, 1 proc, IR wins

0

0.5

1

1.5

2

2.5

1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4
4.3 4.6 4.9

Parallelism

%
 o

f I
R

 w
in

s

50 ops, 1 proc

0
2
4
6
8

1 0
1 2
1 4
1 6
1 8
2 0

1.8 2.1 2.4 2.7 3
3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4

Parallelism

%
 n

on
-o

pt
im

al

50 ops, 1 proc, IR wins

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

1.8 2.1 2.4 2.7 3
3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4

Parallelism

%
 o

f I
R

 w
in

s

Fig. 6. Results for 1 processing element

lengths1 for each value of available parallelism for 20 operations and a single
functional unit. The results are in Figure 7. We see that the number of distinct
schedule lengths peaks at an available parallelism of about 2.7, corresponding
closely to the observed peak in the percentage of times list scheduling is non-
optimal. Note further that the number of distinct schedule lengths falls rapidly
to 1, indicating that all the di�erent choices of breaking ties yield schedules of the
same length. Loosely speaking, we can paraphrase this result as follows | when
the available parallelism is high, any decision will do, and thus the probability
of list scheduling making an error is again low.

Substantial improvements over list scheduling are however possible at a range
of parallelism levels with the peak appearing to be around 2.5 to 2.7. Notice
further that as the number of operations is increased ls has a more di�cult

1 We used RBF running 5000 time backward and forward to compute the results.

20 ops, 1 proc

1

1.1

1.2

1.3

1.4

1.5

1.6

2.6 2.9 3.2 3.5 3.8 4.1 4.4 4.7 5
5.3 5.6

Parallelism

U
ni

qu
e

sc
he

du
le

 le
ng

th
s

Fig. 7. Number of Unique Schedule Lengths as a Function of Available Parallelism

time �nding the best solution. Also notice that most of the improvements were
found by rbf with M = 50.

The picture changes slightly when we increase the number of processing ele-
ments as seen in �gure 8. As we increase the number of processing elements the
graphs \spread out". For two processing elements the peak appears around 5 to
5.2, about double what it was for one processing element. We are conducting
further experiments to explain this near-linear shift in the peaks of the graphs
as the number of processing elements increases.

Figure 9 plots available parallelism on the x-axis, number of list schedules
(see Section 5.3) on the y-axis and the percentage of experiments where rbf

or ir-bias beat ls on the z-axis (20 operations, two processing elements). The
graph shows that even at low levels of available parallelism if the list scheduler
is breaking a lot of ties, it may �nd a non-optimal schedule.

8 Conclusions

In this paper, we have studied the e�ectiveness of list scheduling on real codes
and on randomly generated graphs. Our observations showed that, in general,
list scheduling performs very well on real codes, and there appears to be little
opportunity for improving its performance when scheduling over basic blocks
taken from these codes.

Our experiments on randomly generated blocks provide deeper insight into
the conditions where list scheduling is most likely to produce less than optimal
schedules. We found that ls has di�culty �nding optimal schedules for codes
with a moderate amount of available parallelism|the peak di�culty varies with
both the number of processing elements and the schedule length. This answers
our third question: we have characterized the set of blocks where the compiler
writer may want to try other scheduling methods. This suggests a multi-level
approach to scheduling, where the compiler uses statistical information about the
dpg to choose between ls and other methods like the iterative repair schedulers.

20 ops, 2 procs

0

2

4

6

8

1 0

1 2

1 4

1 6

1.5 1.8 2.1 2.4 2.7 3
3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7

Parallelism

%
 n

on
-o

pt
im

al

20 ops, 2 proc, IR wins

0

0.5

1

1.5

2

2.5

1.5 1.9 2.3 2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5

Parallelism

%
 o

f I
R

 w
in

s

50 ops, 2 procs

0

5

1 0

1 5

2 0

2 5

1.8 2.1 2.4 2.7 3
3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7 6

6.3

Parallelism

%
 n

on
-o

pt
im

al

50 ops, 2 procs, IR wins

0

1

2

3

4

5

6

7

1.9 2.2 2.5 2.8 3.1 3.4 3.7 4
4.3 4.6 4.9 5.2 5.5 5.8 6.1 6.4

Parallelism
%

 o
f I

R
 w

in
s

100 ops, 2 procs

0

5

1 0

1 5

2 0

2 5

2.3 2.6 2.9 3.2 3.5 3.8 4.1 4.4 4.7 5
5.3 5.6 5.9 6.2 6.5 6.8

Parallelism

%
 n

on
-o

pt
im

al

100 ops, 2 procs, IR wins

0

1

2

3

4

5

6

7

8

9

2.3 2.6 2.9 3.2 3.5 3.8 4.1 4.4 4.7 5
5.3 5.6 5.9 6.2 6.5 6.8

Parallelism

%
 o

f I
R

 w
in

s

Fig. 8. Results for 2 processing elements

(The curves for available parallelism depend heavily on speci�c details of both
the processor and the operation mix. To use this approach, the compiler writer
would need to compute appropriate data for the target machine.)

However, as the number of processing elements in a single microprocessor
rises, the compiler will need more available parallelism to achieve a reasonable
fraction of peak performance. The measurements shown in Figure 5 suggest that
the compiler needs high-level transformations to increase available parallelism
before it can generate code to keep a large number of processing elements busy.
As these high-level transformations increase available parallelism, they can make
the code harder to schedule. Our results suggest a way of detecting when that
happens, as well as a set of alternative techniques to schedule those blocks.

On small basic blocks, with little available parallelism, the compiler should
use list scheduling. As the length of the scheduled region grows, and its available
parallelism increases, a window of opportunity for other techniques opens and
then closes. Our �ndings show that this opportunity exists, and our metrics
suggest a simple technique for capitalizing on it.

1
.5

1
.8

2
.1

2
.4

2
.7 3

3
.3

3
.6

3
.9

1

1 2
0
2
4
6
8

1 0
1 2
1 4
1 6

1 8

%
 n

on
-o

pt
im

al

Parallelism

num list
estimate

20 ops, 2 procs
1
2
3
4
6
9
1 2
1 8

Fig. 9. Number of List Schedules Results

References

1. Jr. E. G. Co�man, editor. Computer and Job-Shop Scheduling Theory. John Wiley
and Sons, New York, 1976.

2. John R. Ellis. Bulldog: A Compiler for VLIW Architectures. The MIT Press, 1986.
3. Phillip B. Gibbons and Steven S. Muchnick. E�cient instruction scheduling for a

pipelined architecture. SIGPLAN Notices, 21(7):11{16, July 1986. Proceedings of
the ACM SIGPLAN '86 Symposium on Compiler Construction.

4. Sanjay M. Krishnamurthy. A brief survey of papers on scheduling for pipelined
processors. SIGPLAN Notices, 25(7):97{106, July 1990.

5. David Landskov, Scott Davidson, Bruce Shriver, and Patrick W. Mallett. Lo-
cal microcode compaction techniques. ACM Computing Surveys, pages 261{294,
September 1980.

6. S. Lin and B. Kernighan. An e�ective heuristic for the traveling salesman problem.
Operations Research, 21, 1973.

7. Eliot Moss, Paul Utgo�, John Cavazos, Doina Precup, Darko Stefanovi�c, Carla
Brodley, and David Schee�. Learning to schedule straight-line code. In Michael I.
Jordan, Michael J. Kearns, and Sara A. Solla, editors, Advances in Neural Infor-

mation Processing Systems, volume 10. The MIT Press, 1998.
8. B. Ramakrishna Rau and Joseph A. Fisher. Instruction-level parallel processing:

History, overview, and perspective. Journal of Supercomputing { Special Issue,
7:9{50, July 1993.

9. Philip J. Schielke. Issues in instruction scheduling. Technical Report TR98-323,
Rice University, September 1998.

10. Monte Zweben, Eugene Davis, Brian Daun, and Michael J. Deale. Scheduling
and rescheduling with iterative repair. IEEE Transactions on Systems, Man, and
Cybernetics, 23(6):1588{1596, 1993.

11. Monte Zweben, Eugene Davis, Brian Daun, Ellen Drascher, Michael Deale, and
Megan Eskey. Learning to improve constraint-based scheduling. Arti�cial Intelli-

gence, 58:271{296, 1992.

