
An Empirical Study of Cross-Loop

Reuse in the NAS Benchmarks

Keith Cooper

Ken Kennedy

Nathaniel McIntosh

CRPC-TR95519

March 1995

Center for Research on Parallel Computation

Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

revised September 1996

An Empirical Study of Cross-loop

Reuse in the NAS benchmarks

Keith Cooper Ken Kennedy Nathaniel McIntosh

Department of Computer Science

Rice University

Houston, Texas, USA

Abstract

This paper describes an empirical study designed to quantify the level of cross-
loop reuse occurring in a set of scienti�c Fortran programs, the NAS Bench-
marks. Cross-loop reuse takes place when a set of data items or cache lines
are accessed in a given loop nest and then accessed again within some subse-
quent portion of the program (usually another outer loop nest). In contrast to
intra-loop reuse, which takes place during the execution of a single loop nest,
cross-loop reuse is not always detectable by traditional compile-time reuse anal-
ysis techniques. In this study, the benchmark programs are instrumented and
run through a cache simulator. The simulator gathers statistics on cross-loop
reuse using a novel classi�cation scheme that clearly identi�es the di�erent types
of reuse. According to the simulation data, the level of cross-loop reuse varies
widely from program to program, and depends greatly on the problem size and
cache size. Some programs exhibit almost no cross-loop reuse, however other
programs have signi�cant levels of cross-loop reuse even for fairly small cache
sizes. The data from this study suggest that cross-loop reuse information would
be quite bene�cial for compilers that attempt certain optimizations.

1 Introduction

One of the major trends in computer architecture over the last decade has been the widening
gap between processor speed and memory latency. Main memory latencies for modern-day

1

machines are reaching 100 cycles and beyond, compared with the 1-5 cycle latencies of a
decade ago. To deal with this growing disparity, system architects have increasingly turned
to cache memories as a means to hide memory latencies and increase e�ective memory
bandwidth. Because the role of the cache has become such an important one, the penalties
for programs that don't e�ectively utilize cache are becoming more and more severe.

For cache memories to be e�ective with larger data sets, programs need to exhibit
locality of reference { the tendency to access the same regions or locations repeatedly over
time. Within the compiler community, researchers have developed a number of techniques
to help programs exploit their locality of reference in order to improve cache utilization.
For example, loop interchange [AC72] can be applied to help a program take advantage of
inherent spatial locality. Other methods of this sort include loop tiling and unroll-and-jam
[CCK90, WL91]. These techniques are driven by various forms of loop level analysis { they
focus on identifying locations that are reused within a single loop nest (\intra-loop reuse").

Although intra-loop reuse is important, it is not the only type of reuse that occurs
in practice. It is possible for data items to be brought into cache in one loop nest and
then used in a subsequent loop nest, or possibly in a subsequently called procedure. We
refer to this type of reuse as cross-loop reuse. There is very little research that deals
with detecting this type of reuse; most people have chosen to focus on locating intra-loop
reuse instead. There are a number of reasons for this. First, detecting intra-loop reuse
is generally considered easier than detecting cross-loop reuse, since the compiler can focus
on smaller regions of the program. Second, there are a variety of well-established loop
transformations that can be used to exploit intra-loop reuse, whereas the common view
has been that the program transformations for exploiting cross-loop reuse are fewer and
more di�cult to apply. Finally, there is the question of how frequently cross-loop reuse
occurs in application programs. There is little empirical data available in this area, and
compiler writers will no doubt be reluctant to develop sophisticated techniques for detection
and exploitation of cross-loop reuse if there is no evidence that the work will pay o�.

Our primary goal for this paper will be to describe a set of experiments that address
the third concern above: quantifying the cross-loop reuse that exists in typical scienti�c
programs. Our experiments are based on a simulation study of the NAS benchmarks
[BBLS91a, BBLS91b]. In addition, we will explore possible applications of cross-loop reuse
analysis.

An outline of the rest of this paper is as follows. Section 2 provides some motivation
for our study by giving an example of a latency-hiding technique that might bene�t from
cross-loop reuse information. Section 4 describes the experimental framework we used to
gather data on cross-loop reuse. In Section 5, we present and interpret the results of the
experiments. Section 6 summarizes some of the previous research that relates to this work.
Finally, in Section 7 we give our conclusions.

2

2 Motivating example: software prefetching

Compiler-directed software prefetching [MLG92] is a good example of a cache-management
technique that could potentially bene�t from cross-loop reuse information.

Software prefetching is a two-phase process. In the �rst phase, the compiler analyzes
the program and seeks to determine the set of variable references that are likely to cause
cache misses at run-time. In the second phase, the compiler transforms the program and
annotates it with prefetch instructions. When executed, a prefetch instruction begins read-
ing a particular data item from main memory into cache. The prefetch operation executes
asynchronously { the processor continues to execute other instructions while the prefetch is
in progress. If the prefetch instruction for a reference is scheduled su�ciently far in advance
of the reference itself, then data required will be in cache when the actual reference takes
place, and the latency from the cache miss will be avoided.

Prefetching is not \free"; adding prefetch instructions to a program will increase both
static and dynamic instruction counts for the program. One of the primary goals for the
compiler is to reduce the overhead from prefetching as much as possible. As a result, the
precision of the reuse analysis employed by the compiler is important: prefetches issued for
data items that are already in cache will needlessly increase the number of instructions the
program executes. If the reuse analysis techniques are con�ned to examining single loop
nests in isolation, they will have to assume that some references are cache misses, when in
fact (due to cross-loop reuse) they are cache hits.

Figure 1 shows an abstracted Fortran program. Consider the two loops in the subroutine
\foo". If the compiler considers the \do j" loop in isolation, it will have to assume that
the reference to x(j) will always result in a cache miss 1 and will have to be prefetched,
since it has no other information to the contrary. If the cache is su�ciently large, however,
then the elements from the section x(1:n) may already be in cache when the second loop
executes, eliminating the need to prefetch x(j) within that loop.

In fact, if the compiler is able to examine reuse patterns across procedure boundaries,
then it may be able to eliminate the prefetch of x in both the loops in foo.f, since foo is
called repeatedly from the enclosing loop in main.

3 Methodology

One of the challenges we face is that it is di�cult to measure cross-loop reuse using tra-
ditional metrics (i.e. overall miss rates); summary statistics tend to obscure the sources
of reuse within a given program. In this section, we describe a new scheme for classifying
cache access metrics. Our scheme requires the use of a simulator, and also depends on the

1We assume in this example that the cache line size is equal to the size of one array element.

3

main.f: foo.f:

program main subroutine foo

do t = 1, n do i = 1, n

call foo : : : x(i) : : :

do k = 1, n enddo

: : : do j = n-1, 2, -1

enddo : : : x(j) : : :

enddo enddo

end end

Figure 1: Example program

addition of some instrumentation to the program being examined.

3.1 Program partitioning

Compiler techniques already exist for detecting intra-loop reuse; we instead focus on the
reuse that be can't be detected by these techniques. To prepare for this task, we divided our
benchmark programs into logical units that could potentially be analyzed by conventional
techniques, and then measured the reuse that took place between these units.

For the programs we considered, we performed this partitioning by examining each of
the subroutines and identifying their outermost loops. Each outer loop was given a unique
identi�er, or segment number. Segments were identi�ed without using interprocedural
information. This meant that in some cases, a loop was marked as outermost even though
it was contained in some other loop in a calling procedure. For example, consider the
loops appearing in Figure 1. For the two functions in the example program, we would

ag all of the loops except the \do k" loop in main.f as segments (outermost loops),
when in fact only the \do t" loop is truly an outermost loop. This is consistent with our
intent to consider units of the program that can be analyzed by conventional techniques,
since existing reuse analysis techniques provide little or no support for loops containing
subroutine calls.

3.2 Cache hit partitioning

We can imagine the
ow of time within the execution of the program as being measured in
terms of intervals. A new interval begins each time the program enters or leaves a segment.

4

Time is kept using an interval clock, which is simply a counter that is incremented whenever
a segment boundary is crossed.

Figure 2 depicts a period of program execution. Within the diagram, the elongated
boxes represent data items that are brought into cache at various points. Within a given
box, the dark grey circle depicts the initial miss, and the triangles and squares represent
cache hits, or reuse of data items.

Interval
 N

Interval
 N+1

Interval
 N-1

x

time

y

z

w
-- intra-loop reuse hit

-- miss

-- cross-loop initial hit

-- cross-loop reuse hit

Figure 2: Simulator execution timeline

By keeping track of interval information, we can classify cache hits according to their
relation to current and previous intervals. The �rst type of cache hit we call an \intra-loop
reuse hit"; it is designated by a light grey square in the �gure. This type of hit takes place
when there is an access to a line that was brought into the cache during the same interval.
We call the the second type of hit a \cross-loop initial hit". This corresponds to the �rst
hit within the current interval on a line that was brought into the cache during a previous
interval. This is represented in the �gure by a dark grey triangle. The �nal type of cache
hit is called a \cross-loop reuse hit". This type corresponds to a hit on a line that was
brought into cache during a previous interval, but has in the intervening time been accessed
within the current interval. Cross-loop reuse hits are shown as light triangles within the
�gure.

From the perspective of static or compiler-based reuse analysis, consider a hypothetical
compiler that only looks at a given loop nest (segment) in isolation, but has near-perfect
knowledge about the behavior of the loop nest. This compiler should be able to detect all of
the intra-loop reuse hits (squares), and all of the cross-loop reuse hits (light triangles), but

5

it would be unable to detect any of the cross-loop initial hits, and would have to assume
that they would result in cache misses.

In the case of software prefetching, if a compiler could detect the set of references that
result in cross-loop initial hits, it would be able to reduce the overhead for prefetching,
since prefetches for these references could be eliminated.

4 Experimental framework

4.1 Programs

For our experiments, we used the entire collection of programs from the NAS benchmark
suite [BBLS91a, BBLS91b], plus a single program (Ocean) from the PERFECT bench-
mark suite [CKPK90]. In the case of the NAS benchmarks, the \sample" versions of the
programs were used in order to reduce simulation times and memory requirements.2

Program Lines Funcs Data (KB) Runtime (secs)

BT 3274 19 1261 85

LU 2198 17 1591 110

SP 2259 26 281 57

IS 199 6 794 5

CG 418 13 2892 31

EP 141 4 1048 573

FT 470 11 14683 100

MG 497 15 1058 5

ocean 1956 39 796 625

Figure 3: Important program characteristics

Figure 3 gives some of the vital statistics for these programs. \Lines" is the number of
non-comment, non-blank source lines in the program. \Funcs" is the number of functions
or subroutines. \Data" is the total size of the arrays declared in the program, in kilobytes.
\Runtime" is the approximate number of seconds the program takes to execute on an
unloaded Sparc 2 workstation with 32 megabytes of memory.

2The NAS package provides two versions of each benchmark program: a standard version and a reduced
or \sample" version. The reduced versions operate on smaller data sets, making it more feasible to run
the programs on inexpensive workstations, as opposed to high-end workstations or supercomputers.

6

4.2 Compilation

The benchmark programs were compiled using Sun Fortran V1.4, SC1.0.1, running under
SunOS Release 4.1.3. The
ags passed to the compiler were: \-dalign -O3" (the -dalign

ag allows the compiler to use double-word loads and stores for double-precision
oating
point data).

As with all studies of this nature, much depends on the optimization techniques em-
ployed by the compiler used to compile the programs being simulated. Certain compiler
transformations have the potential to change the way data items are reused. One such
transformation is loop fusion [Wol89, AC72]. Fusing two adjacent loops may bring suc-
cessive uses of a given location closer together, increasing the likelihood that the reused
location will be found in cache, but also potentially converting cross-loop reuse into intra-
loop reuse. The compiler that we used for our experiments did not apply loop fusion, thus
we were unable to gauge its e�ects on cross-loop reuse. Previous studies, however, have
shown that fusion is less widely applicable than most other locality-enhancing transforma-
tions. The available data indicates that fusion would not substantially alter our results
[CMT94].

4.3 Simulation framework

Our cache simulator was built using the Sparc Performance Analysis Toolkit; it is layered
on top of the tool shade [CK93]. Shade provides an extensible mechanism for writing
execution-driven simulators; it operates by interpreting a Sparc executable and passing a
trace of the instructions to a user-written trace analyzer. In our case, the trace analyzer
simulates a particular cache con�guration.

The simulator deals with data cache behavior only; it does not simulate an instruction
cache. Simulated cache characteristics were as follows. The cache line size was 32 bytes.
We used a 4-way set-associative con�guration, with an LRU replacement policy within each
set. The cache was write-back, with an allocate-on-write-miss policy. See Section 5.2.1 for
a discussion of the e�ect of line size on our results.

An important concern for our study is that the degree to which reuse can be exploited
for a particular program/machine combination depends on the size of the machine's cache.
We address this problem by providing simulation data for a wide range of cache sizes (see
Section 5.1 for details).

4.4 Program instrumentation

To instrument our programs, we �rst identi�ed the outer loops within each subroutine
and assigned them unique segment numbers (as described in Section 3). Calls to runtime

7

routines were added to the program at the beginning and end of each outer loop; these
calls allowed the simulator to detect segment transitions and to gather cache statistics for
each segment (in addition to statistics on the entire program).

We then added calls to runtime routines that demarcated the regions of the program's
address space containing array data (as opposed to scalar data). As will be seen in Section
5, it was helpful to distinguish between array and non-array accesses, since in our study
the two types of accesses tended to have very di�erent cache behavior.

4.5 Simulator details

In addition to performing the expected functions of a cache simulator, our simulator main-
tains some additional state in order to gather cross-loop reuse data.

First, the simulator keeps a \current interval" clock, incremented each time the program
passes a segment boundary at runtime. Second the simulator keeps track of the regions
within the program's address space that correspond to array data; this allows it to keep
separate hit/miss statistics for array cache accesses and non-array cache accesses. Third,
the simulator stores two additional values for each cache line: \interval-in", an integer
that records the value of the interval counter when the line was �rst brought into cache
(this is only set on cache misses), and \interval-use", an integer that records the value of
the interval counter when the line was last accessed (this is set on every access to the line).
These tags allow the simulator to divide cache hits into the three categories described in
Section 3.2. Intra-loop reuse hits take place when the interval-in value of the accessed
line is equal to the current interval number. A cross-loop initial hit is characterized by
a hit on a line whose interval-use tag is less than the current interval number. Cross-
loop reuse hits take place when there is a hit on a line whose interval-in is less than the
current interval number, but whose interval-use tag is equal to the current interval number.

5 Results

5.1 General cache statistics

Tables 4, 5, and 6 provide general cache statistics for the benchmark programs. Each
program was run using eight di�erent cache sizes, ranging from 8 kilobytes to 1 megabyte.
Each step from left to right in the tables represents a doubling of the cache size.

The overall cache miss rates for each program are shown in Table 4. Table 5 shows the
miss rates for scalar and array data, respectively. Finally, Table 6 shows the percentage of
all misses that are to scalar data.

The average miss rates for the benchmarks are quite comparable to those reported for

8

Cache size
Program 8K 16K 32K 64K 128K 256K 512K 1M

BT 3.78 2.96 2.86 2.83 2.73 2.64 2.20 0.27

LU 1.96 1.92 1.90 1.80 1.63 1.53 1.28 0.23

SP 4.90 4.22 4.16 3.73 1.31 0.07 0.00 0.00

IS 1.46 1.15 1.07 1.01 0.98 0.88 0.16 0.09

CG 21.48 13.48 9.25 8.83 8.81 8.77 8.71 3.20

EP 0.62 0.61 0.61 0.61 0.61 0.61 0.61 0.01

FT 7.05 6.56 6.55 6.54 6.54 6.54 6.54 6.54

MG 2.09 1.97 1.92 1.29 1.21 1.12 0.92 0.08

ocean 6.28 5.60 5.29 2.33 0.88 0.34 0.08 0.00

average 5.51 4.27 3.73 3.22 2.74 2.50 2.28 1.16

Figure 4: Overall miss rates (in percentages)

Cache size
Program 8K 16K 32K 64K 128K 256K 512K 1M

BT 7:00
0:42

5:73
0:08

5:57
0:03

5:52
0:02

5:33
0:01

5:16
0:01

4:30
0:01

0:52
0:00

LU 7:63
0:02

7:51
0:01

7:45
0:01

7:06
0:01

6:36
0:01

5:99
0:01

5:00
0:01

0:90
0:00

SP 11:81
0:25

10:38
0:08

10:28
0:05

9:21
0:05

3:21
0:03

0:16
0:01

0:01
0:00

0:01
0:00

IS
7:60
0:01

6:00
0:01

5:57
0:01

5:27
0:01

5:10
0:01

4:58
0:01

0:80
0:01

0:43
0:01

CG
21:91
3:29

13:75
1:99

9:45
0:87

9:03
0:36

9:01
0:33

8:97
0:33

8:91
0:33

3:27
0:22

EP
24:99
0:02

24:96
0:00

24:95
0:00

24:95
0:00

24:95
0:00

24:95
0:00

24:95
0:00

0:36
0:00

FT
10:36
0:55

9:87
0:07

9:87
0:04

9:87
0:02

9:87
0:01

9:87
0:01

9:87
0:00

9:87
0:00

MG
5:67
0:04

5:39
0:01

5:25
0:01

3:53
0:01

3:32
0:01

3:06
0:01

2:51
0:01

0:22
0:01

ocean
8:42
0:23

7:53
0:14

7:12
0:14

3:11
0:12

1:17
0:04

0:45
0:01

0:10
0:00

0:00
0:00

Figure 5: Miss rates in percentages for array [top] and scalar [bottom] data

9

Cache size
Program 8K 16K 32K 64K 128K 256K 512K 1M

BT 5.39 1.39 0.49 0.37 0.23 0.22 0.25 0.71

LU 0.81 0.40 0.37 0.37 0.37 0.31 0.36 1.41

SP 3.11 1.13 0.73 0.75 1.22 6.06 17.93 17.92

IS 0.63 0.71 0.73 0.75 0.77 0.86 4.47 6.02

CG 0.36 0.34 0.22 0.09 0.09 0.09 0.09 0.16

EP 2.65 0.26 0.18 0.18 0.18 0.18 0.18 10.92

FT 2.62 0.36 0.19 0.11 0.06 0.04 0.02 0.02

MG 1.28 0.46 0.42 0.43 0.41 0.42 0.46 4.66

ocean 0.94 0.68 0.67 1.34 1.25 0.82 1.04 11.91

Figure 6: Percentage of all misses that are to scalars

the
oating point programs in the SPEC benchmarks, when run using the same cache size
and con�guration [GHPS91]. The miss rates for the NAS programs appear to be somewhat
lower for the smaller cache sizes (8K { 32K), but the disparity is less evident for cache sizes
above 32K.

Miss rates and miss percentages for scalars are very low3, as can be seen in Tables 5
and 6. This combination of low miss percentage and low miss rate suggests that there is
very little payo� to be gained by the application of cache optimizations to scalar accesses
in these programs.

For the remainder of this section, we concentrate on the cache statistics for array data
only.

5.2 Cross-loop reuse statistics

Figures 7, 8, and 9 provide a graphical breakdown of the cache accesses involving array
data. As with the overall statistics above, each program is run using a series of cache sizes,
ranging from 8 Kbytes to 1 Mbyte. The four components of each bar represent cache misses,
intra-loop reuse hits, cross-loop initial hits, and cross-loop reuse hits as a percentage of all
cache accesses during the program's execution.

Not surprisingly, there is a wide range of behavior with regard to the level of cross-loop
reuse present. For programs such as BT, nearly all of the cache accesses result in misses

3Note that for a few of the programs, the percentage of misses that are to array data tapers o� with
the larger cache sizes (example: for SP at the 1 Mbyte cache size, only 83% of all misses are to array data).
This is due to the fact that at this cache size, the entire data set for the program (281K) �ts easily into
cache.

10

| |

0

|

20

|

40

|

60

|

80

|

100

 Percentage of array-related cache accesses

m
isses

intra-loop reuse hits
cross-loop initial hits
cross-loop reuse hits

B
T

L
U

S
P

8K

16K

32K

64K

128K

256K

512K

1M

8K

16K

32K

64K

128K

256K

512K

1M

8K

16K

32K

64K

128K

256K

512K

1M

F
igu

re
7:

C
ross-loop

reu
se

d
ata,

p
art

1

| |

0

|

20

|

40

|

60

|

80

|
100

 Percentage of array-related cache accesses

m
isses

intra-loop reuse hits
cross-loop initial hits
cross-loop reuse hits

IS
C

G
E

P

8K

16K

32K

64K

128K

256K

512K

1M

8K

16K

32K

64K

128K

256K

512K

1M

8K

16K

32K

64K

128K

256K

512K

1M

F
igu

re
8:

C
ross-loop

reu
se

d
ata,

p
art

2

11

| |

0

|

20

|

40

|

60

|

80

|

100

 Percentage of array-related cache accesses

m
isses

intra-loop reuse hits
cross-loop initial hits
cross-loop reuse hits

F
T

M
G

o
cean

8K

16K

32K

64K

128K

256K

512K

1M

8K

16K

32K

64K

128K

256K

512K

1M

8K

16K

32K

64K

128K

256K

512K

1M

F
igu

re
9:

C
ross-loop

reu
se

d
ata,

p
art

3

or
in
tra-loop

reu
se

h
its.

T
h
is
p
attern

con
tin

u
es

u
n
til

th
e
cach

e
size

ex
ceed

s
th
e
size

of
th
e

p
rogram

's
d
ata

set.
F
or

oth
er

p
rogram

s,
cross-loop

in
itial

h
its

an
d
cross-loop

reu
se

h
its

accou
n
t
for

a
sign

i�
can

t
p
ercen

tage
of

th
e
total

cach
e
accesses

at
sm

aller
cach

e
sizes.

F
or

ex
am

p
le,

th
e
p
rogram

o
c
e
a
n
h
as

a
fair

am
ou
n
t
of

cross-loop
reu

se
at

th
e
64K

cach
e
level:

m
ore

th
an

50%
of
th
e
cach

e
h
its

are
to

d
ata

item
s
th
at

w
ere

b
rou

gh
t
in
to

cach
e
b
y
p
rev

iou
s

loop
s.

N
ote

th
at

th
e
overallm

iss
rate

at
th
is
cach

e
size

is
still

sign
i�
can

t
(i.e.

th
e
p
rogram

's
d
ata

set
d
oes

n
ot

com
p
letely

�
t
in
to

cach
e).

T
h
e
p
rogram

F
T
rep

resen
ts

an
ex
trem

e
case

in
term

s
of

cross-loop
reu

se:
it
sh
ow

s
h
igh

d
egrees

of
cross-loop

reu
se

even
at

th
e
sm

allest
cach

e
sizes.

5
.2
.1

E
�
e
c
t
s
o
f
lin

e
s
iz
e

A
lth

ou
gh

th
e
d
ata

is
n
ot

p
resen

ted
h
ere,

w
e
p
erform

ed
th
e
sam

e
sim

u
lation

s
u
sin

g
cach

e
lin

e
sizes

of
8
b
y
tes

an
d
128

b
y
tes.

W
e
fou

n
d
th
at

cach
e
lin

e
size

h
ad

little
ap
p
aren

t
e�
ect

on
th
e
cross-loop

reu
se

resu
lts.

In
gen

eral,
ch
an
gin

g
th
e
lin

e
size

p
rod

u
ced

n
o
ch
an
ge

in
th
e

ratio
of

in
tra-loop

accesses
(m

isses
p
lu
s
in
tra-loop

reu
se

h
its)

to
cross-loop

accesses
(cross-

loop
in
itial

h
its

p
lu
s
cross-loop

reu
se

h
its).

S
in
ce

th
e
p
rogram

s
h
ad

good
sp
atial

locality,
h
ow

ever,
ch
an
gin

g
th
e
lin

e
size

d
id

ch
an
ge

th
e
p
rop

ortion
of

m
isses

v
s.

in
tra-loop

reu
se

h
its

an
d
th
e
corresp

on
d
in
g
p
rop

ortion
of

cross-loop
in
itial

h
its

v
s.

cross-loop
reu

se
h
its.

F
rom

th
is
w
e
can

con
clu

d
e
th
at

m
ost

cross-loop
reu

se
is
p
rim

arily
tem

p
oral

as
op
p
osed

to

12

spatial in nature.

5.3 Implications for compiler developers

If a compiler doesn't attempt any transformations that might bene�t from cross-loop reuse
information, then there is little incentive to try to detect it. As discussed in Section
2, however, software prefetching is one technique that could bene�t. In contrast with
other techniques, cross-loop reuse information is used for decreasing compiler-introduced
overhead, as opposed to reordering the computation to reduce the number of cache misses.

Cache size
Program 8K 16K 32K 64K 128K 256K 512K 1M

BT 0.2 0.3 0.4 1.3 4.7 7.8 23.2 90.7

LU 0.1 0.3 1.1 5.1 12.3 17.4 30.9 87.5

SP 0.3 0.4 0.7 11.0 69.0 98.5 99.9 99.9

IS 1.1 2.1 2.5 2.8 3.2 12.2 84.6 91.6

CG 0.2 1.9 6.3 8.2 8.4 8.7 9.2 66.7

EP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 98.6

FT 65.0 66.7 66.7 66.7 66.7 66.7 66.7 66.7

MG 1.1 2.0 3.3 8.8 14.2 21.0 35.3 94.4

ocean 4.0 5.5 9.7 52.7 82.0 93.0 98.4 100.0

average 7.99 8.80 10.07 17.42 28.95 36.14 49.80 88.46

Figure 10: Percentage of prefetches likely to be useless

The table in Figure 10 illustrates the potential for reducing useless prefetches based on
cross-loop reuse information. Recall that in the absence of cross-loop reuse information, a
compiler must insert prefetches for any reference that looks as though it will be a cache
miss, including those which result in cross-loop initial hits. In this table, we plot the
number of cross-loop initial hits as a percentage of all the cache accesses that would be
prefetched by conventional prefetching compiler (i.e. cache misses plus cross-loop initial
hits). A value of N for a given program run indicates that N% of the prefetches inserted
by a loop-level compiler would in fact be useless (since the references would be cache hits).
This should be considered \best case" data, since a real compiler would not always be able
to gather perfect cross-loop reuse information.

Figure 10 shows that for cache sizes below 32K, the values tend to be very small for
most programs, indicating that a single-loop strategy is quite e�ective. For cache sizes
above 32K, anywhere from 10 to 50 percent of the prefetches generated by a single-loop
strategy will be useless. For certain programs, the use of cross-loop reuse information has
the potential to reduce useless prefetches by a factor of 2, which is fairly signi�cant.

13

6 Related work

There is an extensive body of previous research on memory reference behavior and cache
performance of various benchmark applications [GHPS91, CP90, SZ88, Smi82]. These
studies tend to focus on examining the e�ects of various architectural features (line size,
associativity, etc) on cache performance, however, and do not try to classify or categorize
the various sources of reuse.

A number of researchers have developed compiler techniques useful for improving cache
behavior [CMT94, AL93, WL91, CCK90]. Most of these techniques apply to individual loop
nests, however, and are not designed to exploit cross-loop reuse. Two exceptions are loop
fusion and a�nity regions. McKinley et al have proposed using loop fusion to improving
locality and cache behavior [KM93]. A�nity regions are a technique that allows a compiler
to give locality-improving hints to the loop scheduler for a parallel program running on a
shared-memorymultiprocessor. Compile-time identi�cation of a�nity regions was proposed
by Appelbe et al [AL93]. No comprehensive studies have been done on the applicability of
a�nity regions in practice, however.

7 Conclusions

In this paper, we have presented a new strategy for classifying cache accesses that enables
a simulator to discriminate between reuse taking place within a single loop nest and reuse
taking place between loop nests. By running instrumented versions of the NAS benchmarks
through our simulation framework, we have been able to gather data on the level of cross-
loop reuse present in these programs.

Our experiments have show that cross-loop reuse does exist in practice, although the
level of cross-loop reuse exhibited by a program is dependent on the data set size, the
cache size, and the program itself. Two out of the nine programs that we studied exhibit
high levels of cross-loop reuse (more than 50% of all cache hits were to data brought in by
previous loop nests) for cache sizes that were well below the size of the program's data sets
used.

Finally, we have explored the implications of these results for compiler developers.
Cross-loop reuse information promises to be very useful for compilers that employ software
prefetching; preliminary results indicate that for some programs, useless prefetches can be
reduced by a factor of two if precise cross-loop reuse information is employed.

References

[AC72] F. Allen and J. Cocke. A catalogue of optimizing transformations. In J. Rustin,

14

editor, Design and Optimization of Compilers. Prentice-Hall, 1972.

[AL93] B. Appelbe and B. Lakshmanan. Optimizing parallel programs using a�n-
ity regions. In Proceedings of the 1993 International Conference on Parallel
Processing, pages II{246{II{249, St. Charles, IL, August 1993.

[BBLS91a] D. Bailey, J. Barton, T. Lasinski, and H. Simon. The NAS parallel benchmarks.
Technical Report RNR-91-002, NASA Ames Research Center, August 1991.

[BBLS91b] D. Bailey, J. Barton, T. Lasinski, and H. Simon. The NAS parallel benchmarks.
International Journal of Supercomputing Applications, 5(3):63{73, Fall 1991.

[CCK90] D. Callahan, S. Carr, and K. Kennedy. Improving register allocation for sub-
scripted variables. In Proceedings of the SIGPLAN '90 Conference on Program-
ming Language Design and Implementation, White Plains, NY, June 1990.

[CK93] R. Cmelik and D. Keppel. Shade: A fast instruction-set simulator for execution
pro�ling. Technical Report SMLI 93-12; UWCSE 93-06-06, Sun Microsystems
Laboratories, Inc. and University of Washington, 1993.

[CKPK90] G. Cybenko, L. Kipp, L. Pointer, and D. Kuck. Supercomputer performance
evaluation and the Perfect benchmarks. In Proceedings of the 1990 ACM Inter-
national Conference on Supercomputing, Amsterdam, The Netherlands, June
1990.

[CMT94] S. Carr, K. S. McKinley, and C.-W. Tseng. Compiler optimizations for im-
proving data locality. In Proceedings of the Sixth International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-VI), San Jose, CA, October 1994.

[CP90] D. Callahan and A. Porter�eld. Data cache performance of supercomputer
applications. In Proceedings of Supercomputing '90, New York, NY, November
1990.

[GHPS91] J. D. Gee, M. D. Hill, D. N. Pnevmatikatos, and A. J. Smith. Cache perfor-
mance of the SPEC benchmark suite. Technical Report TR 1049, University
of Wisconsin, September 1991.

[KM93] K. Kennedy and K. S. McKinley. Maximizing loop parallelism and improv-
ing data locality via loop fusion and distribution. In Proceedings of the Sixth
Workshop on Languages and Compilers for Parallel Computing, Portland, OR,
August 1993.

[MLG92] T. Mowry, M. Lam, and A. Gupta. Design and evaluation of a compiler al-
gorithm for prefetching. In Proceedings of the Fifth International Conference

15

on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-V), pages 62{73, Boston, MA, October 1992.

[Smi82] A. J. Smith. Cache memories. ACM Computing Surveys, 13(3):473{530,
September 1982.

[SZ88] K. So and V. Zecca. Cache performance of vector processors. In Proceedings
of the 15th International Symposium on Computer Architecture, 1988.

[WL91] M. E. Wolf and M. Lam. A data locality optimizing algorithm. In Proceed-
ings of the SIGPLAN '91 Conference on Programming Language Design and
Implementation, Toronto, Canada, June 1991.

[Wol89] M. J. Wolfe. Optimizing Supercompilers for Supercomputers. The MIT Press,
Cambridge, MA, 1989.

16

