
Value Numbering

Preston Briggs

Keith Cooper

Taylor Simpson

CRPC-TR94517-S

November 1994

Center for Research on Parallel Computation

Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

Value Numbering

Preston Briggs
Tera Computer Company

Keith D. Cooper
L. Taylor Simpson

Rice University

1 Introduction

Value numbering is a code optimization technique with a long history in both literature and practice.

Although the name was originally applied to a method for improving single basic blocks, it is now used

to describe a collection of optimizations that vary in power and scope. In particular, value numbering

accomplishes four objectives. It assigns an identifying number (a value number) to each value computed in

the code in a way that two values have the same number if the compiler can prove they are equal for all

possible program inputs. It recognizes certain algebraic identities, like i = i + 0 and j = j � 1, and uses

them to simplify the code and to expand the set of values known to be equal. It uses value numbers to

�nd redundant computations and remove them. It discovers constant values, evaluates expressions whose

operands are constants, and propagates them through the code. There are several ways to accomplish

each of these goals, and the methods can be applied across di�erent scopes. This paper describes di�erent

techniques for assigning numbers and handling redundancies. It includes experimental evaluation of the

relative e�ectiveness of these di�erent approaches.

In value numbering, the compiler can only assign two expressions the same number if it can prove that

they always produce equal values. Two techniques for proving this equivalence appear in the literature.

� The �rst approach hashes an operator and the value numbers of its operands to produce a number for
the resulting value. Hashing ensures that identical values with the same operation receive the same
value number. The hash-based techniques are on-line methods that update the program immediately.
Their e�ciency relies on the expected-case constant-time behavior of hashing.1

� The second approach divides the expressions in a procedure into equivalence classes by value, called
congruence classes. Two values are congruent if they are computed by the same operator and the
corresponding operands are congruent. These methods are called partitioning algorithms. The parti-
tioning algorithm runs o�-line; it must run to completion before updating the code. It can be made
to run in O(E log2N) time, where N and E are the number of nodes and edges in the routine's static
single-assignment (SSA) graph.

Once value numbers have been assigned, redundancies must be discovered and removed. Many techniques

are possible, ranging from ad hoc removal through data-
ow techniques.

This paper makes several distinct contributions. These include: (1) an algorithm for hash-based value

numbering over a routine's dominator tree, (2) an extension of Alpern, Wegman, and Zadeck's partition-based

global value numbering algorithm to perform AVAIL-based removal of expressions, and (3) an experimental

comparison of these techniques in the context of an optimizing compiler.

This work has been supported by ARPA through ONR grant N00014-91-J-1989.
1Cai and Paige give an o�-line, linear time time algorithm that uses multiset discrimination as an alternative to hashing [5].

1

2 Hash-Based Value Numbering

Cocke and Schwartz describe a local technique that uses hashing to discover redundant computations and

fold constants [6]. Each unique value is identi�ed by its value number. Two computations in a block have

the same value number if they are provably equal. In the literature, this technique and its derivatives are

called \value numbering."

The algorithm is relatively simple. In practice, it is very fast. For each instruction in the block, it

hashes the operator and the value numbers of the operands to obtain the unique name that corresponds to

the computation's value. If it has already been computed in the block, it will already exist in the table.

The recomputation can be replaced with a reference to an earlier computation. Any operator with known-

constant arguments is evaluated and the resulting value used to replace any subsequent references. The

algorithm is easily extended to account for commutativity and simple algebraic identities without a�ecting

its complexity.

As variables get assigned new values, the compiler must carefully keep track of the location of each

expression in the hash table. Consider the code fragment on the left side of Figure 1. At statement (1), the

expression X+Y is found in the hash table, but it is available in B and not in A, since A has been rede�ned.

At statement (2), the situation is worse; X + Y is in the hash table, but it is not available anywhere. We

can handle this by attaching a list of variables to each expression in the hash table and carefully keeping it

up to date.

As described, the technique works for single basic blocks. It can also be applied to an expanded scope,

called an extended basic block. An extended basic block is a set of blocks B1, B2, : : : , Bn where Bi is the

only predecessor of Bi+1, for 1 � i < n, and B1 does not have a unique predecessor. Value numbering over

extended blocks works precisely because each value that
ows into Bi (i 6= 1) must
ow through Bi�1 and

nowhere else. Blocks B2 through Bn can be processed by initializing their hash tables with the results of

processing the previous block. This description suggests that a scoped hash table similar to one that would

be used for nested scope languages would be appropriate. Rather than copying the hash table, new entries

can be removed after a block is processed. In reality, the compiler must do more than delete information

added by the new block. It must restore the name list for each expression and the mapping from variables

to value numbers. In practice, this adds a fair amount of overhead and complication to the algorithm, but

it does not change its asymptotic complexity.

A X + Y A0 X + Y

B X + Y B0 X + Y

A 1 A1 1
(1) C X + Y C0 X + Y

B 2 B1 2
C 3 C1 3

(2) D X + Y D0 X + Y

Original SSA Form

Figure 1 Value Numbering Example

2

2.1 Static Single Assignment Form

Many of the di�culties encountered during value numbering of extended basic blocks can be overcome by

constructing the static single assignment (SSA) form of the routine [7]. Each SSA name is assigned a value

by only one operation in a routine; therefore, no name is ever reassigned, and no expression ever becomes

inaccessible. These advantages become apparent if the code in Figure 1 is converted to SSA form. At

statement (1), the expression X + Y can be replaced by A0 because the second assignment to A was given

the name A1. Similarly, the expression at statement (2) can be replaced by A0. Also, the transition from

single to extended basic blocks is simpler because we can, in fact, use a scoped hash table where only the

new entries must be removed.

2.2 Dominator-Tree Value Numbering

Another key feature of SSA form is the information it provides about the way values
ow into each block. A

value can enter a block B in one of two ways: either it is de�ned by a �-node at the start of B or it
ows

through B's parent in the dominator tree (i.e., B's immediate predominator) [9]. Notice that for extended

basic blocks, Bi�1 is the immediate predominator of Bi, for 2 � i � n. These observations led us to an

algorithm for value numbering over the dominator tree.

The algorithm processes each block by initializing the hash table with the information resulting from

value numbering its parent in the dominator tree. To accomplish this, we again use a scoped hash table.

The value numbering proceeds by recursively walking the dominator tree. The left side of Figure 2 shows

high-level pseudo-code for the algorithm.

To simplify the implementation of the algorithm, the SSA name of the �rst occurrence of an expression

(in this path in the dominator tree) becomes the expression's value number. When a redundant computation

of the expression is found, the compiler removes the operation and replaces all uses of the de�ned SSA name

with the expression's value number. The compiler can use this replacement scheme over a limited region of

code { in blocks dominated by the operation and in parameters to �-nodes in the dominance frontier of the

operation. In both cases, control must
ow through the block where the �rst evaluation occurred (de�ning

the SSA name's value).

The �-nodes require special treatment. If any of the parameters of a �-node have not been assigned a

value number, then the compiler must assign a unique new value number to the result. On the other hand, if

all of the parameters of the �-node have value numbers, the compiler may be able to simplify the code. The

following two conditions guarantee that all �-node parameters in a block have been assigned value numbers.

1. When value number is called recursively for the children of block b in the dominator tree, the children
must be processed in reverse postorder. This ensures that all of a block's predecessors are processed
before the block itself, unless the predecessor is connected by a back edge relative to the DFS tree.

2. The block must have no incoming back edges.

A �-node can be eliminated if it is meaningless or redundant. A �-node is meaningless if all its parameters

have the same value number. A meaningless �-node can be removed if the references to its result are replaced

with the value number of its input parameters. A �-node is redundant if it computes the same value as

another �-node in the same block. The compiler can identify redundant �-nodes using a hashing scheme

analogous to the one used for expressions. Without additional information about the conditions controlling

the execution of di�erent blocks, the compiler cannot compare �-nodes in di�erent blocks.

3

procedure value number(Block b) procedure rename and value number(Block b)
Mark the beginning of a new scope Mark the beginning of a new scope
for each �-node p for name n in b for each �-node p for name n in b

if p is meaningless or redundant if p is meaningless or redundant
Put the value number for p into VN [n] Push the value number for p onto S[n]
Remove p Remove p

else else

Invent a new value number v for n
VN [n] n Push v onto S[n]
Add p to the hash table Add p to the hash table

for each assignment a of the form n exp in b for each assignment a of the form n exp in b

if exp is found in the hash table if exp is found in the hash table
Put the value number for exp into VN [n] Push the value number for exp onto S[n]
Remove a Remove a

else else

Invent a new value number v for n
VN [n] n Push v onto S[n]
Add exp to the hash table Add exp to the hash table

for each successor s of b for each successor s of b
Adjust the �-node inputs in s Adjust the �-node inputs in s

for each child c of b in the dominator tree for each child c of b in the dominator tree
value number(c) rename and value number(c)

Clean up the hash table after leaving this scope Clean up the hash table after leaving this scope
for each �-node or assignment a in the original b

for each name n de�ned by a

pop S[n]

After SSA Construction During SSA Construction

Figure 2 Dominator-Tree Value-Numbering Algorithms

After value numbering the �-nodes and instructions in a block, the algorithm visits each successor block

and updates any �-node inputs that come from the current block. This involves determining which �-

node parameter corresponds to input from the current block and overwriting the parameter with its value

number. Notice the resemblance between this step and the corresponding step in the SSA construction

algorithm. This step must be performed before value numbering any of the block's children in the dominator

tree, if the compiler is going to analyze �-nodes.

To illustrate how the algorithm works, we will apply it to the code fragment in Figure 3. The �rst block

processed will be B1. Since none of the expressions on the right-hand sides of the assignments have been

seen, the names u0, v0, and w0 will be assigned their SSA name as their value number.

The next block processed will be B2. Since the expression c0 + d0 was de�ned in block B1 (which

dominates B2), we can delete the two assignments in this block by assigning the value number for both x0

and y0 to be v0. Before we �nish processing block B2, we must �ll in the �-node parameters in its successor

block, B4. The �rst argument of �-nodes in B4 corresponds to input from block B2, so we replace u0, x0,

and y0 with u0, v0, and v0, respectively.

Block B3 will be visited next. Since every right-hand-side expression has been seen, we assign the value

numbers for u1, x1, y1 to be u0, w0, and w0, respectively, and remove the assignments. To �nish processing

B3, we �ll in the second parameter of the �-nodes in B4 with u0, w0, and w0, respectively.

4

H
H
HHHj

�
�

����

H
H
HHHj

�
�

����

u0 a0 + b0
v0 c0 + d0
w0 e0 + f0

B1

x0 c0 + d0
y0 c0 + d0

B2

u1 a0 + b0
x1 e0 + f0
y1 e0 + f0

B3

u2 �(u0; u1)
x2 �(x0; x1)
y2 �(y0; y1)
z0 u2 + y2
u3 a0 + b0

B4

H
H
HHHj

�
�
����

H
H
HHHj

�
�
����

u0 a0 + b0
v0 c0 + d0
w0 e0 + f0

B1

v0 c0 + d0((((
(hhhhh

v0 c0 + d0((((
(hhhhh

B2

u0 a0 + b0((((
(hhhhh

w0 e0 + f0((((
(hhhhh

w0 e0 + f0((((
(hhhhh

B3

u0 �(u0; u0)((((
(hhhhh

x2 �(v0; w0)
x2 �(v0; w0)((((

(hhhhh
z0 u0 + x2
u0 a0 + b0((((

(hhhhh

B4

u0
v0
w0
x0
y0
u1
x1
y1
u2
x2
y2
z0
u3

u0
v0
w0
v0
v0
u0
w0
w0
u0
x2
x2
z0
u0

Before After Value Numbers

Figure 3 Dominator-Tree Value-Numbering Example

The �nal block processed will be B4. The �rst step is to examine the �-nodes. Notice that we are able

to examine the �-nodes only because we processed B1's children in the dominator tree (B2, B3, and B4) in

reverse postorder and because there are no back edges
owing into B4. The �-node de�ning u2 is meaningless

because all its parameters are equal. Therefore, we eliminate the �-node by assigning u2 the value number

u0. Notice that this �-node was made meaningless by eliminating the only assignment to u in a block with B4

in its dominance frontier. In other words, when we eliminate the assignment to u in block B3, we eliminate

the reason the �-node for u was inserted during the construction of SSA form. The second �-node combines

the values v0 and w0. Since this is the �rst appearance of a �-node with these parameters, x2 is assigned its

SSA name as its value number. The �-node de�ning y2 is redundant because it is equal to x2. Therefore, we

eliminate this �-node by assigning y2 the value number x2. When processing the assignments in the block,

we replace each operand by its value number. This results in the expression u0+x2 in the assignment to z0.

The assignment to u3 is eliminated by giving u3 the value number u0.

Notice that if we applied single-basic-block value numbering to this example, the only redundancies we

could remove are the assignments to y0 and y1. If we applied extended-basic-block value numbering, we

could also remove the assignments to x0, u1, and x1. Only dominator-tree value numbering can remove the

assignments to u2, y2, and u3.

2.3 Incorporating Value Numbering into SSA Construction

We have described dominator-tree value numbering as it would be applied to routines already in SSA form.

However, it is possible to incorporate value numbering into the SSA construction process. There is a great

deal of similarity between the value numbering process and the renaming process during SSA construction [7,

section 5.2]. The renaming process can be modi�ed as follows to accomplish renaming and value numbering

simultaneously:

� For each name in the original program, a stack is maintained which contains subscripts used to replace
uses of that name. To accomplish value numbering, these stacks will contain value numbers.

5

� Before inventing a new name for each �-node or assignment, we �rst check if it can be eliminated. If
so, we push the value number of the �-node or assignment onto the stack for the de�ned name.

For comparison, the algorithms for dominator-tree value numbering after SSA construction and during SSA

construction are presented side by side in Figure 2.

3 Global Value Numbering

Alpern, Wegman, and Zadeck presented a technique that uses a variation on Hopcroft's DFA-minimization

algorithm to partition values into congruence classes [3, 1]. It operates on the SSA form of the routine [7].

Two values are congruent if they are computed by the same opcode, and their corresponding operands are

congruent. For all legal expressions, two congruent values must be equal. Since the de�nition of congruence

is recursive, there will be routines where the solution is not unique. A trivial solution would be to set each

value in the routine to be congruent only to itself; however, the solution we seek is the maximal �xed point

{ the solution that contains the most congruent values.

Initially, the partition contains a congruence class for the values de�ned by each operator in the program.

The partition is iteratively re�ned by examining the uses of all members of a class and determining which

classes must be further subdivided. After the partition stabilizes, the registers and �-nodes in the routine

are renumbered based on the congruence classes. Because the e�ects of partitioning and renumbering are

analogous to those of value numbering described in the previous section, we think of this technique as a form

of global (or intraprocedural) value numbering.2

Partitioning and renumbering alone will not improve the running time of the routine; the compiler must

also �nd and remove the redundant computations. We explore three possibilities: dominator-based removal,

AVAIL-based removal, and partial redundancy elimination.

3.1 Dominator-Based Removal

Alpern, Wegman, and Zadeck suggest removing computations that are dominated by another member of

the congruence class [3]. The computation of x in Figure 4 is a redundancy that this method can eliminate.

Since the computation of x in block B1 dominates the computation in block B4, the second computation

can be removed.

To perform dominator-based removal, the compiler considers each congruence class and looks for pairs of

members where one dominates the other. If we bucket sort the members of the class based on the preorder

index in the dominator tree of the block where they are computed, then we can e�ciently compare adjacent

elements in the list and decide if one dominates the other. This decision is based on an ancestor test in the

dominator tree. The entire process can be done in time proportional to the size of the congruence class.

3.2 AVAIL-Based Removal

The classical approach to redundancy elimination is to remove computations that are in the set of available

expressions (AVAIL) at the point where they appear in the routine [2]. This approach uses data-
ow analysis

to determine the set of expressions available along all paths from the start of the routine. Notice that the

calculation of x in Figure 4 will be removed because it is in the AVAIL set. In fact, any computation that

2Rosen, Wegman, and Zadeck describe a technique called global value numbering [11]. It is an interesting and powerful approach
to redundancy elimination, but it should not be confused with global partitioning.

6

HH
HHj

��
���

�
�

���

H
H
HHj

x a+ b

if (: : :)
B1

y c+ d
B2

y c+ d

z e + f
B3

x a+ b

y c+ d

z e+ f

((((hhhh
B4

HH
HHj

��
���

�
�
���

H
H
HHj

x a+ b

if (: : :)
B1

y c+ d
B2

y c+ d

z e + f
B3

x a+ b

y c + d

z e+ f

((((hhhh
((((hhhh B4

HH
HHj

��
���

�
�
���

H
H
HHj

x a+ b

if (: : :)
B1

y c + d
B2

y c + d

z e+ f
B3

x a+ b

y c+ d

z e + f

((((hhhh
((((hhhh B4

............
...
...
...
...
..
..
..
..6

Dominator-Based AVAIL-Based Partial Redundancy Elimination

Figure 4 Eliminating Redundancies

would be removed by dominator-based removal would also be removed by AVAIL-based removal. This is

because any block that dominates another is on all paths from the start of the routine to the dominated

block. However, there are improvements that can be made by the AVAIL-based technique that are not

possible using dominators. In Figure 4, y is calculated in both B2 and B3, so it is in the AVAIL set at

B4. Thus, the calculation of y in B4 can be removed. However, since neither B2 nor B3 dominate B4,

dominator-based removal could not remove y.

Properties of the partitioning algorithm let us simplify the formulation of AVAIL. The traditional data-

ow equations deal with lexical names while our equations deal with values. We need not consider the killed

set for a block because no values are rede�ned in SSA form, and partitioning preserves this property. Consider

the code fragment on the left side of Figure 5. Under the traditional data-
ow framework, the assignment

to X would kill the Z expression. However, if the assignment to X caused the two assignments to Z to

have di�erent values, then they would not be congruent to each other, and they would be assigned di�erent

names. Since the partitioning algorithm has determined that the two assignments to Z are congruent, the

second one is redundant and can be removed. The only way the intervening assignment will be given the

name X is if the value computed is congruent to the de�nition of X that reaches the �rst assignment to Z.

The data-
ow equations we use are shown in Figure 5.

Z X + Y

X : : :

Z X + Y

AVAIL ini =

8>><
>>:

;; if i is the entry block

\
j2pred(i)

AVAIL outj; otherwise

AVAIL outi = AVAIL ini [de�nedi

Example Data-Flow Equations

Figure 5 AVAIL-Based Removal

7

3.3 Partial Redundancy Elimination

Partial redundancy elimination (PRE) is an optimization introduced by Morel and Renvoise [10]. Partially

redundant computations are redundant along some, but not necessarily all, execution paths. Notice that the

computations of x and y in Figure 4 are redundant along all paths to block B4, so they will be removed by

PRE. On the other hand, the computation of z in block B4 cannot be removed using AVAIL-based removal,

because it is not available along the path through block B2. The value of z is computed twice along the

path through B3 but only once along the path through B2. Therefore, it is considered partially redundant.

PRE can move the computation of z from block B4 to block B2. This will shorten the path through B3 and

leave the length of the path through B2 unchanged. PRE has the added advantage that it moves invariant

code out of loops.

4 Comparing the Techniques

Assume that X and Y are known to be equal in the code fragment in the left column of Figure 6. Then the

partitioning algorithm will �nd A congruent to B and C congruent to D. However, a careful examination of

the code reveals that if X is congruent to Y , then A, B, C, and D are all zero. The partitioning technique

will not discover that A and B are equal to C and D, and it also will not discover that any of the expressions

are equal to zero. On the other hand, the hash-based approach will conclude that if X = Y then A, B, C,

and D are all zero.

The critical di�erence between the hashing and partitioning algorithms identi�ed by this example is their

notion of equivalence. The hash-based approach proves equivalences based on values, while the partitioning

technique considers only congruent computations to be equivalent. The code in this example hides the

redundancy behind an algebraic identity. Only the techniques based on value equivalence will discover the

common subexpression here.

Now consider the code fragment in the right column of Figure 6. If we apply any of the hash-based

approaches to this example, none of them will be able to prove that X2 is equal to Y2. This is because at the

time a value number must be assigned to X2 and Y2, none of these techniques have visited X3 or Y3. They

must therefore assign a unique value number to X2 and Y2. However, the partitioning technique will prove

that X2 is congruent to Y2 (and thus X3 is congruent to Y3). The key feature of the partitioning algorithm

which makes this possible is its initial optimistic assumption that all values de�ned by the same operator

A X � Y

B Y �X

C A� B

D B �A

X0 1
Y0 1
while (: : :)

X2 �(X0; X3)
Y2 �(Y0; Y3)
X3 X2 + 1
Y3 Y2 + 1

Improved by Hash-Based Techniques Improved by Partitioning Techniques

Figure 6 Comparing the Techniques

8

are congruent. It then proceeds to disprove the instances where the assumption is false. In contrast, the

hash-based approaches begin with the pessimistic assumption that no values are equal and proceeds to prove

as many equalities as possible.

We should point out that eliminating more redundancies does not necessarily result in reduced execution

time. When the compiler removes an operation in this fashion, it necessarily extends the live range of some

other value, possibly hurting register allocation. On the other hand, the live range of the operands of the

removed operation may be shortened, possibly improving register allocation. Our experience suggests that

the negative impact on register allocation is negligible.

5 Experimental Results

Even though we can prove that each of the three global techniques and each form of hash-based value

numbering is never worse than its predecessor, an equally important question is how much this theoretical

distinction matters in practice. To assess the real impact of these techniques, we have implemented all of

the optimizations in our experimental Fortran compiler. Comparisons were made using routines from a suite

of benchmarks consisting of routines drawn from the Spec benchmark and from Forsythe, Malcolm, and

Moler's book on numerical methods [8].

The complete results are shown in Table 1. Each column represents dynamic counts of ILOC operations.

Routines are optimized using the sequence of global reassociation [4], value numbering (the type is indicated in

the column header), global constant propagation [12], global peephole optimization, dead code elimination [7,

Section 7.1], copy coalescing, and a pass to eliminate empty basic blocks. All forms of value numbering were

performed on the SSA form of the routine.

The �rst section of Table 1 compares the hash-based techniques. On average, code optimized using

extended basic blocks performs 12.2% better than code optimized using single basic blocks; dominator-tree

value numbering improves the code by another 5.4%. In our experiment, dominator-tree value numbering

performs slightly better on average than global value numbering with dominator-based removal.

The second section of Table 1 compares the partitioning techniques. The AVAIL-based technique improves

the code by 0.3% compared to the dominator-based technique, and PRE improves the code by another 12.0%.

The ability of PRE to move invariant code out of loops contributes greatly to this improvement.

6 Summary

In this paper, we study a variety of redundancy elimination techniques. We have introduced a technique

for applying hash-based value numbering to a routine's dominator tree. This technique is competitive in

practice with the global value numbering techniques, while being faster and simpler. Additionally, we have

improved the e�ectiveness of global value numbering by removing computations based on available values

rather than dominance information and by applying partial redundancy elimination.

We presented experimental data comparing the e�ectiveness of each type of value numbering in the

context of our optimizing compiler. The data indicates that our extensions to the existing algorithms can

produce signi�cant improvements in execution time.

9

routine Hash-Based Global

single extended dominator dominator AVAIL PRE

tomcatv 436863008 417095649 411877418 411878446 411878446 187980202
twldrv 83877543 72748320 69913464 69913456 69850544 69236916
gamgen 156608 138200 138199 138199 138199 104632
iniset 93438 65252 56672 56672 56672 47426
deseco 18605 15920 15142 15215 15137 12941
prophy 6294 5446 4569 4569 4429 3804
pastem 5582 4606 3850 3850 3850 3477
debflu 5502 5086 4797 4797 4797 4622
bilan 4613 4304 3757 3757 3731 3132
paroi 4307 4035 3973 3973 3981 3614
fpppp 4046 4046 4046 4046 4046 4046
repvid 3997 3325 2745 2758 2731 2458
inithx 3829 3337 3074 3074 3074 2741
debico 3367 3120 3095 3095 3069 2637
integr 3313 2984 2640 2640 2640 2312
sgemv 1892 1690 1687 1687 1687 1002
sgemm 1614 1494 1493 1493 1493 954
inideb 1501 955 942 942 942 774
cardeb 1145 1076 1029 1029 1029 785
saxpy 1015 915 915 915 915 524
ddeflu 836 797 759 757 756 713
supp 831 831 828 828 822 822
fmtset 677 476 451 451 451 406
subb 636 636 636 636 636 636
ihbtr 496 437 435 435 435 410
x21y21 379 319 319 319 319 239
drepvi 369 326 276 277 275 273
saturr 320 331 328 328 320 317
efill 311 272 235 235 232 230
fmtgen 292 243 219 219 211 188
si 249 177 176 177 177 166
heat 209 208 177 176 176 177
dcoera 192 174 165 165 165 165
lclear 186 146 146 146 146 109
orgpar 173 147 144 144 144 120
yeh 169 144 132 132 132 132
colbur 152 134 121 123 123 123
coeray 139 121 112 112 112 104
drigl 120 117 112 112 112 111
lissag 116 100 100 100 100 89
aclear 114 90 90 90 90 69
sortie 92 90 84 84 84 83
sigma 55 55 55 55 55 55
svd 7230 6365 5998 6012 5990 4472
fmin 2075 1135 946 946 946 871
zeroin 1406 912 836 836 836 742
spline 1070 921 907 907 907 759
decomp 932 763 756 756 749 645
fehl 753 705 705 705 705 516
urand 227 222 221 221 221 221
solve 221 195 197 199 199 179
seval 114 107 80 80 80 79
rkf45 58 58 58 58 58 58

Table 1 Experimental Results

10

7 Acknowledgments

Our interest in this problem began with suggestions from both Jonathan Brezin of IBM and Bob Morgan

of DEC. Independently, they suggested that we investigate value numbering over dominator regions. Bruce

Knobe of Intermetrics also urged us to look at extending value numbering to ever larger regions.

Our colleagues in the Massively Scalar Compiler Project at Rice have played a large role in this work. In

particular, we owe a debt of gratitude to Cli� Click, Tim Harvey, Linlong Jiang, John Lu, Philip Schielke,

Rob Shillner, Lisa Thomas, Linda Torczon, and Edmar Wienskoski. Without their tireless implementation

e�orts, we could not have completed this study.

References

[1] Alfred V. Aho, John E. Hopcroft, and Je�rey D. Ullman. The Design and Analysis of Computer Algorithms.
Addison-Wesley, Reading, Massachusetts, 1974.

[2] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers: Principles, Techniques, and Tools. Addison-
Wesley, 1986.

[3] Bowen Alpern, Mark N. Wegman, and F. Kenneth Zadeck. Detecting equality of variables in programs. In
Conference Record of the Fifteenth Annual ACM Symposium on Principles of Programming Languages, pages
1{11, San Diego, California, January 1988.

[4] Preston Briggs and Keith D. Cooper. E�ective partial redundancy elimination. SIGPLAN Notices, 29(6):159{
170, June 1994. Proceedings of the ACM SIGPLAN '94 Conference on Programming Language Design and

Implementation.

[5] Jiazhen Cai and Robert Paige. \Look Ma, no hashing, and no arrays neither". In Conference Record of the

Eighteenth Annual ACM Symposium on Principles of Programming Languages, pages 143{154, Orlando, Florida,
January 1991.

[6] John Cocke and Jacob T. Schwartz. Programming languages and their compilers: Preliminary notes. Technical
report, Courant Institute of Mathematical Sciences, New York University, 1970.

[7] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. E�ciently computing
static single assignment form and the control dependence graph. ACM Transactions on Programming Languages

and Systems, 13(4):451{490, October 1991.

[8] George E. Forsythe, Michael A. Malcolm, and Cleve B. Moler. Computer Methods for Mathematical Computa-

tions. Prentice-Hall, Englewood Cli�s, New Jersey, 1977.

[9] Matthew S. Hecht. Flow Analysis of Computer Programs. Programming Languages Series. Elsevier North-
Holland, Inc., 52 Vanderbilt Avenue, New York, NY 10017, 1977.

[10] Etienne Morel and Claude Renvoise. Global optimization by suppression of partial redundancies. Communica-
tions of the ACM, 22(2):96{103, February 1979.

[11] Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. Global value numbers and redundant computations.
In Conference Record of the Fifteenth Annual ACM Symposium on Principles of Programming Languages, pages
12{27, San Diego, California, January 1988.

[12] Mark N. Wegman and F. Kenneth Zadeck. Constant propagation with conditional branches. ACM Transactions

on Programming Languages and Systems, 13(2):181{210, April 1991.

11

