
Object-Oriented Sorting

Dung (“ Zung”) Nguyen, Stephen B. Wong
Dept. of Computer Science

Rice University
Houston, TX 77251

dxnguyen@cs.rice.edu, swong@cs.rice.edu

Figure 1 below shows the recursive call tree for the sort() method of a hypothetical sort algorithm.

Figure 1: Hypothetical Sort Recursion Tree.

unsorted

sorted

split

split

split

split

join

join

join join

split

join

= unsorted = sorted

= sort process

Table 1 below summarizes the split/join operations of a few common sort algorithms.

Sort Split operation Join operation

Insertion Return hi
Insert A[hi] into proper
location.

Merge Return midpoint index. Merge subarrays.
Quick Find and return pivot point index Do nothing.
Selection Swap extremum with A[hi] and return hi Do nothing.
Bubble Bubble up extremum to A[hi] and return hi Do nothing.

Heap
Swap extremum (A[lo]) and A[hi], reheapify A[lo, hi-1],
and return hi.

Do nothing.

Table 1: Concrete split/join Operations

From Table 1, we can see that selection sort, bubble sort, and heap sort1 are essentially identical
processes, though they have different algorithmic complexities: they all pull out the extremum from the
array and split it off. A trivial no-op join then follows this. Quick sort is similar to the
selection/bubble/heap genera except that it pulls off a set of one or more extrema values.

On the flip side of the coin, we see that insertion sort and merge sort are similar in that their split
operations are trivial while their join operations are more complex. Insertion splits off one element at a
time while merge sort splits the array in half each time. One can think of the join() method in insertion
sort as merging a sorted array with a one-element array (which is obviously sorted).

1 Heap sort heapifies the array only once at construction time.

Complexity Analysis

On one hand, the sort template method engenders a recursion tree (see Figure 1), which provides some
heuristics on the sort complexity. On the other hand, it leads to a canonical recurrence relation that
serves as a common starting point for the analysis of each of the concrete sort algorithms.

It is easy to see from Figure 1 that the total running time of a sort is equal to the sum of the running time
of each level of the recursion sort tree. If the running time at each level is uniformly bounded by some
function f(n), then the total running time is bounded by f(n) times the height of the sort tree.

A formal treatment of complexity involves deriving a recurrence relation for T(lo, hi), the running time
to sort an array A[lo..hi] indexed from lo to hi with lo <= hi. The code for sort() clearly indicates that

R1:
î



<++++
=

=
h lJ(l,s,h)T(s,h))T(l,s-S(l,h)c

 h l c
T(l, h)

if 1

if

where c is the constant running time to compare lo with hi, S(lo, hi) is the running time to split A into
two subarrays, A[lo..s-1] and A[s, hi], and J[lo, s, hi] is the running time for joining the two sorted
subarrays A[lo..s-1] and A[s..hi] to form the sorted array A[lo..hi].

It is necessary to examine the code for the specific split() and join() methods of a particular sort
algorithm to compute S[lo, hi] and J[lo, s, hi] in order to solve R1. Let n denote the size of the array.
The steps in the computation of T(n) are identical for all of the sort algorithms: start with the canonical
relation R1, plug in the values for s, S[lo, hi], and J[lo, s, hi], and simplify. Note that the functional
form of s may depend on whether one sorts from lo to hi or hi to lo. The simplification will lead to one
of the following two recurrence relations:

R2:
î



>Ο+
=Ο

=
1 if 1

1if1

n(f(n)))T(n-

, n) (
T(n)

R3:
î



>Ο+
=Ο

=
1if

1if1

 n(f(n)) aT(n/b)

, n) (
T(n)

R2 and R3 can then be solved using the same standard discrete mathematics technique yielding the
results shown in Table 2 below.

Sort s S[lo, hi] J[lo, s, hi] T(n)
Insertion hi O(1) O(hi-lo) O(n2)
Merge (lo+hi+1)/2 O(1) O(hi-lo) O(n log n)
Quick varies O(hi-lo) O(1) O(n2) worst case
Selection lo + 1 O(hi-lo) O(1) O(n2)
Bubble hi O(hi-lo) O(1) O(n2)
Heap hi O(log(hi-lo)) O(1) O(n log n)

Table 2: Running Time for Sorting

